1
|
Chen M, Fu L, Zhu D, Huang Y, Li R, He S, Liu S, Lee SC, Cao J. Promoting Low-Temperature Toluene Oxidation via Pt-O-Fe Interfacial Sites in a Pt/CuO-Fe 3O 4 Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40425311 DOI: 10.1021/acs.est.5c02048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Electronic metal-support interaction (EMSI) has been widely explored in the catalytic degradation of volatile organic compounds (VOCs) owing to the formation of special interfacial sites. Herein, the EMSI effect was engineered by constructing the serial Pt catalysts supported on CuO-Fe3O4 bimetal oxide (Pt/CFO). Among them, the 0.5Pt/CFO catalyst with 0.5 wt % Pt loading exhibited an outstanding catalytic activity, with T90 (the temperature of 90% toluene conversion) lowered to 185 °C, and displayed excellent stability and water resistance. Comprehensive physicochemical characterizations revealed that an evident electron transfer occurred via the interface structure (Pt-O-Fe), producing the positively charged Pt (Ptδ+) and abundant Fe2+ species. Notably, the increased electron density around the Fe species weakened the Fe-O bond and thus activated the surface lattice oxygen (Olatt). Further, temperature-programmed desorption experiments and in situ diffuse reflectance infrared Fourier transform spectroscopy results demonstrated that the electron-deficient Ptδ+ was conducive to the adsorption and activation of toluene at low temperature. Consequently, the deep oxidation of toluene was achieved with the participation of Olatt, benefiting from the Ptδ+-O-Fe2+ interfacial sites with synergistic catalysis for toluene adsorption and oxygen activation. This work provides an interesting idea to explore the relationship between the electron transfer effect and highly efficient VOC abatement.
Collapse
Affiliation(s)
- Meijuan Chen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China
| | - Lijuan Fu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China
| | - Dandan Zhu
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China
| | - Yu Huang
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China
| | - Rong Li
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China
| | - Shu He
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China
| | - Suixin Liu
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China
| | - Shun-Cheng Lee
- The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, P. R. China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
2
|
Zhang N, He C, Jing Y, Qian Y, Obuchi M, Toyoshima R, Kondoh H, Oka K, Wu B, Li L, Anzai A, Toyao T, Shimizu KI. Enhanced Nitrous Oxide Decomposition on Zirconium-Supported Rhodium Catalysts by Iridium Augmentation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1598-1607. [PMID: 39813396 DOI: 10.1021/acs.est.4c08083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The effective elimination of N2O from automobile exhaust at low temperatures poses significant challenges. Compared to other materials, supported RhOx catalysts exhibit high N2O decomposition activities, even in the presence of O2, CO2, and H2O. Metal additives can enhance the low-temperature N2O decomposition activities over supported RhOx catalysts; however, the enhancement mechanism and active sites require further investigation. In this study, we demonstrate the significant enhancement of the low-temperature N2O decomposition activity of a monoclinic ZrO2-supported Rh catalyst [Rh(1)/ZrO2] with Ir addition in the presence of N2O + O2 + CO2 + H2O. The promotional effect of Ir and the active sites on N2O decomposition in Rh(1)-Ir(1)/ZrO2 (Rh = 1 wt % and Ir = 1 wt %) were investigated by kinetic studies and in situ spectroscopic methods, including X-ray absorption spectroscopy, ambient-pressure X-ray photoelectron spectroscopy, and ultraviolet-visible spectroscopy. These results indicate that both surface Rh and Ir species in Rh(1)-Ir(1)/ZrO2 were active sites for N2O catalytic decomposition at low temperatures, and Ir augmentation promoted the desorption of gaseous O2, which are regarded as key steps in N2O decomposition.
Collapse
Affiliation(s)
- Ningqiang Zhang
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Chenxi He
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yucheng Qian
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Minami Obuchi
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ryo Toyoshima
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroshi Kondoh
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kohei Oka
- Isuzu Advanced Engineering Center, Ltd., 8 Tsuchidana, Fujisawa 252-0881, Japan
| | - Bo Wu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Lingcong Li
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Akihiko Anzai
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| |
Collapse
|
3
|
Zhang W, Chen S, Chen Z, Li Z, Zhou M, Ma Z. A review of chemical kinetic mechanisms and after-treatment of amino fuel combustion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178220. [PMID: 39754946 DOI: 10.1016/j.scitotenv.2024.178220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Ammonia is a highly promising carbon-neutral fuel. The use of ammonia as a fuel for internal combustion engines can reduce fossil energy consumption and greenhouse gas emissions. However, the high ignition energy required for ammonia and the slow flame propagation rate result in low combustion efficiency when ammonia is used directly in internal combustion engines. The combination of ammonia with highly reactive fuels improves combustion quality and increases efficiency. However, the combustion of these combined fuels generates particulate matter, CO, hydrocarbon, and significant amounts of NOx. Therefore, pollutant emissions must be reduced through after-treatment technologies. In this paper, a series of combustion and post-treatment challenges faced by amino fuel combustion in internal combustion engines are extensively discussed and the combustion reaction mechanisms of different amino fuels are also analyzed. The paper then reviews five key technologies applicable to the reprocessing of amino fuels, including selective catalytic reduction, selective catalytic reduction filter technology, electrochemical methods for NOx removal, direct catalytic decomposition of N2O, and ammonia sliding catalysts. An in-depth discussion of the catalytic materials and reaction mechanisms involved in these technologies is also provided in this paper. Finally, the paper summarizes the main technical challenges that must be addressed for the future application of amino fuels in internal combustion engines. These discussions can serve as an essential reference for developing and applying critical technologies for combustion control and pollutant treatment of amino fuels.
Collapse
Affiliation(s)
- Wei Zhang
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuai Chen
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhaohui Chen
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zehong Li
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| | - Mayi Zhou
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhenzhu Ma
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
4
|
Dang H, Li L, Sun H, Wu R, Zhang L, Zhang C, Zheng K, Wang Y, Ren Z, Zhao Y. Highly active Mn-V O-Co sites by cobalt doping on cryptomethane for enhanced catalytic decomposition of N 2O. J Colloid Interface Sci 2024; 680:699-711. [PMID: 39580922 DOI: 10.1016/j.jcis.2024.11.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Direct catalytic decomposition has shown great promise in controlling the greenhouse gas N2O. Herein, we synthesize a series of cobalt-doped cryptomethane (OMS-2) catalysts for N2O catalytic decomposition by a mild one-step sol-gel method. The Co0.1-OMS-2 exhibits superior catalytic performance with 90% N2O conversion at 398 °C, which is attributed to the formation of the Mn-VO-Co structure served as active sites. The increased electron density on oxygen vacancies promotes the electron transfer between oxygen vacancies and N2O molecules, in turn facilitating the adsorption and activation of N2O. Moreover, Co doping reduces the formation energy of oxygen vacancies. However, excessive Co doping results in the decrease of highly active Mn-VO-Co sites and the formation of Co3O4, which makes Co0.3-OMS-2 exhibit poor catalytic activity. The DFT calculation illustrates that Langmuir-Hinshelwood is the primary reaction mechanism over Co0.1-OMS-2. This study broadens the materials applicable for the catalytic decomposition of N2O, offering an effective approach to modulate the electronic structure at oxygen vacancies.
Collapse
Affiliation(s)
- Hui Dang
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China; School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Linmao Li
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China; School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Huading Sun
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China; School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ruifang Wu
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Liangliang Zhang
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Chengming Zhang
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China; School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ke Zheng
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China; School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yongzhao Wang
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China.
| | - Zhenxing Ren
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China.
| | - Yongxiang Zhao
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
5
|
Park C, Choi Y, Park G, Jang I, Kim M, Kim Y, Choi Y. Investigation on the reduction in unburned ammonia and nitrogen oxide emissions from ammonia direct injection SI engine by using SCR after-treatment system. Heliyon 2024; 10:e37684. [PMID: 39315173 PMCID: PMC11417158 DOI: 10.1016/j.heliyon.2024.e37684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/24/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Currently generated nitrogen oxides (NOx) and unburned ammonia (NH3) can be converted into nitrogen and moisture that are harmless to the human body and environment using selective catalytic reduction (SCR). The concentrations of NOx and unburned NH3 emitted from the ammonia combustion engines are significantly higher than those emitted by engines using existing hydrocarbon fuels. In this study, ammonia, a representative carbon-free fuel, was used in spark ignition engines for existing passenger vehicles to identify the trends in exhaust gases emitted from engines and conduct experiments on after-treatment strategies to reduce NOx and unburned NH3. The addition of oxygen significantly maximized the conversion efficiency of the SCR after-treatment system by changing the concentration of both NOx and NH3 in the exhaust gas.
Collapse
Affiliation(s)
- Cheolwoong Park
- Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Yonghyun Choi
- Korea Construction Equipment Technology Institute, 36 Sandan-ro, Soryong-dong, Gunsan-si, Jeollabuk-do, 54004, Republic of Korea
| | - Gyeongtae Park
- Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Ilpum Jang
- Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Minki Kim
- Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Yongrae Kim
- Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Young Choi
- Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| |
Collapse
|
6
|
Wu X, Du J, Gao Y, Wang H, Zhang C, Zhang R, He H, Lu GM, Wu Z. Progress and challenges in nitrous oxide decomposition and valorization. Chem Soc Rev 2024; 53:8379-8423. [PMID: 39007174 DOI: 10.1039/d3cs00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Nitrous oxide (N2O) decomposition is increasingly acknowledged as a viable strategy for mitigating greenhouse gas emissions and addressing ozone depletion, aligning significantly with the UN's sustainable development goals (SDGs) and carbon neutrality objectives. To enhance efficiency in treatment and explore potential valorization, recent developments have introduced novel N2O reduction catalysts and pathways. Despite these advancements, a comprehensive and comparative review is absent. In this review, we undertake a thorough evaluation of N2O treatment technologies from a holistic perspective. First, we summarize and update the recent progress in thermal decomposition, direct catalytic decomposition (deN2O), and selective catalytic reduction of N2O. The scope extends to the catalytic activity of emerging catalysts, including nanostructured materials and single-atom catalysts. Furthermore, we present a detailed account of the mechanisms and applications of room-temperature techniques characterized by low energy consumption and sustainable merits, including photocatalytic and electrocatalytic N2O reduction. This article also underscores the extensive and effective utilization of N2O resources in chemical synthesis scenarios, providing potential avenues for future resource reuse. This review provides an accessible theoretical foundation and a panoramic vision for practical N2O emission controls.
Collapse
Affiliation(s)
- Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Jiaxin Du
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Yanxia Gao
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Haiqiang Wang
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | | | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Li Z, Wu Y, Wang H, Wu Z, Wu X. High-Efficiency Electrocatalytic Reduction of N 2O with Single-Atom Cu Supported on Nitrogen-Doped Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8976-8987. [PMID: 38653761 DOI: 10.1021/acs.est.4c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas with a high global warming potential, emphasizing the critical need to develop efficient elimination methods. Electrocatalytic N2O reduction reaction (N2ORR) stands out as a promising approach, offering room temperature conversion of N2O to N2 without the production of NOx byproducts. In this study, we present the synthesis of a copper-based single-atom catalyst featuring atomic Cu on nitrogen-doped carbon black (Cu1-NCB). Attributed to the highly dispersed single-atom Cu sites and the effective suppression of the hydrogen evolution reaction, Cu1-NCB demonstrated an optimal N2 faradaic efficiency (82.1%) and yield rate (3.53 mmol h-1 mgmetal-1) at -0.2 and -0.5 V vs RHE, respectively, outperforming previously reported N2ORR electrocatalysts. Further, a gas diffusion electrode cell was employed to improve mass transfer and achieved a 28.6% conversion rate of 30% N2O with only a 14 s residence time, demonstrating the potential for practical application. Density functional theory calculations identified Cu-N4 as the crucial active site for N2ORR, highlighting the significance of the unsaturated coordination and metal-support electronic structure. O-terminal adsorption of N2O was favored, and the dissociative adsorption (*ON2 → *O + N2) was the rate-determining step. These findings reveal the broad prospects of N2O decomposition via electrocatalysis.
Collapse
Affiliation(s)
- Zhe Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yunshuo Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Haiqiang Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Li B, Duan X, Zhao T, Niu B, Li G, Zhao Z, Yang Z, Liu D, Zhang F, Cheng J, Hao Z. Boosting N 2O Catalytic Decomposition by the Synergistic Effect of Multiple Elements in Cobalt-Based High-Entropy Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2153-2161. [PMID: 38244211 DOI: 10.1021/acs.est.3c09741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Nitrous oxide (N2O) has a detrimental impact on the greenhouse effect, and its efficient catalytic decomposition at low temperatures remains challenging. Herein, the cobalt-based high-entropy oxide with a spinel-type structure (Co-HEO) is successfully fabricated via a facile coprecipitation method for N2O catalytic decomposition. The obtained Co-HEO catalyst displays more remarkable catalytic performance and higher thermal stability compared with single and binary Co-based oxides, as the temperature of 90% N2O decomposition (T90) is 356 °C. A series of characterization results reveal that the synergistic effect of multiple elements enhances the reducibility and augments oxygen vacancy in the high-entropy system, thus boosting the activity of the Co-HEO catalyst. Moreover, density functional theory (DFT) calculations and the temperature-programmed surface reaction (TPSR) with isotope labeling demonstrate that N2O decomposition on the Co-HEO catalyst follows the Langmuir-Hinshelwood (L-H) mechanism with the promotion of abundant oxygen vacancies. This work provides a fundamental understanding of the synergistic catalytic effect in N2O decomposition and paves the way for the novel environmental catalytic applications of HEO.
Collapse
Affiliation(s)
- Bingzhi Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Xiaoxiao Duan
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Ting Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Ben Niu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Ganggang Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Zeyu Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Zhenwen Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Dongmei Liu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Fenglian Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| |
Collapse
|
9
|
Gong Y, Liu Z, Li Z, Liu C, Yan N, Ma L. Boosting N 2O Decomposition by Fabricating the Cs-O-Co Structure over Co 3O 4 with Single-Layer Atoms of Cs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:906-914. [PMID: 38126778 DOI: 10.1021/acs.est.3c06940] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Developing effective catalysts for N2O decomposition at low temperatures is challenging. Herein, the Cs-O-Co structure, as the active species fabricated by single-layer atoms of Cs over pure Co3O4, originally exhibited great catalytic activity of N2O decomposition in simulated vehicle exhaust and flue gas from nitric acid plants. A similar catalytic performance was also observed for Na, K, and Rb alkali metals over Co3O4 catalysts for N2O decomposition, illustrating the prevalence of alkali-metal-promotion over Co3O4 in practical applications. The catalytic results indicated that the TOF of Co3O4 catalysts loaded by 4 wt% Cs was nearly 2 orders of magnitude higher than that of pure Co3O4 catalysts at 300 °C. Interestingly, the conversions of N2O decomposition over Co3O4 catalysts doped by the same Cs loadings were significantly inhibited. Characterization results indicated that the primary active Cs-O-Co structure was formed by highly orbital hybridization between the Cs 6s and the O 2p orbital over the supported Co3O4 catalysts, where Cs could donate electrons to Co3+ and produce much more Co2+. In contrast, the doped Co3O4 catalysts were dominated by Cs2O2 species; meanwhile, CsOH species was generated by adsorbed water vapor led to a significant decrease in catalytic activity. In situ DRIFTS, rigorous kinetics, and DFT results elaborated the reaction mechanism of N2O decomposition, where the direct decomposition of adsorbed N2O was the kinetically relevant step over supported catalysts in the absence of O2. Meanwhile, the assistance of adsorbed N2O decomposition by activated oxygen was observed as the kinetically relevant step in the presence of O2. The results may pave a promising path toward developing alkali-metal-promotion catalysts for efficient N2O decomposition.
Collapse
Affiliation(s)
- Yuanyu Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Caixia Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Choi S, Bok Nam K, Phil Ha H, Wook Kwon D. Enhancement of Catalytic N2O Decomposition by Modulating Oxygen Vacancies over Cu/Ce1-XYX Catalysts. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
11
|
Liu H, Yang S, Wang G, Liu H, Peng Y, Sun C, Li J, Chen J. Strong Electronic Orbit Coupling between Cobalt and Single-Atom Praseodymium for Boosted Nitrous Oxide Decomposition on Co 3O 4 Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16325-16335. [PMID: 36283104 DOI: 10.1021/acs.est.2c06677] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nitrous oxide (N2O) has gained increasing attention as an important noncarbon dioxide greenhouse gas, and catalytic decomposition is an effective method of reducing its emissions. Here, Co3O4 was synthesized by the sol-gel method and single-atom Pr was confined in its matrix to improve the N2O decomposition performance. It was observed that the reaction rate varied in a volcano-like pattern with the amount of doped Pr. A N2O decomposition reaction rate 5-7.5 times greater than that of pure Co3O4 is achieved on the catalyst with a Pr/Co molar ratio of 0.06:1, and further Pr doping reduced the activity due to PrOx cluster formation. Combined with X-ray photoelectron spectroscopy, X-ray absorption fine structure, density functional theory and in situ near-ambient pressure X-ray photoelectron spectroscopy, it was demonstrated that the single-atom doped Pr in Co3O4 generates the "Pr 4f-O 2p-Co 3d" network, which redistributes the electrons in Co3O4 lattice and increases the t2g electrons at the tetracoordinated Co2+ sites. This coupling between the Pr 4f orbit and Co2+ 3d orbit triggers the formation of a 4f-3d electronic ladder, which accelerates the electron transfer from Co2+ to the 3π* antibonding orbital of N2O, thus contributing to the N-O bond cleavage. Moreover, the energy barrier for each elementary reaction in the decomposition process of N2O is reduced, especially for O2 desorption. Our work provides a theoretical grounding and reference for designing atomically modified catalysts for N2O decomposition.
Collapse
Affiliation(s)
- Hao Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| | - Shan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, P. R. China
| | - Guimin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| | - Haiyan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| | - Chuanzhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, P. R. China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| |
Collapse
|
12
|
Zhao F, Wang D, Li X, Yin Y, Wang C, Qiu L, Yu J, Chang H. Enhancement of Cs on Co 3O 4 for N 2O Catalytic Decomposition: N 2O Activation and O 2 Desorption. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feilin Zhao
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Dongdong Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Xing Li
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yimeng Yin
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Chizhong Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Lei Qiu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Jie Yu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Huazhen Chang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
13
|
Liao Y, Liu Z, Li Z, Gao G, Ji L, Xu H, Huang W, Qu Z, Yan N. The Unique CO Activation Effects for Boosting NH 3 Selective Catalytic Oxidation over CuO x-CeO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10402-10411. [PMID: 35815997 DOI: 10.1021/acs.est.2c02612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Slip NH3 is a priority pollutant of concern to be removed in various flue gases with NOx and CO after denitrification using NH3-SCR or NH3-SNCR, and the simultaneous catalytic removal of NH3 and CO has become one of the new topics in the deep treatment of such flue gases. Synergistic catalytic oxidation of CO and NH3 appears to be a promising method but still has many challenges. Due to the competition for active oxidizing species, CO was supposed to hinder the NH3 selective catalytic oxidation (NH3-SCO). However, it is first found that CO could significantly promote NH3-SCO over the CuOx-CeO2 catalyst. The NH3 conversion rates increased linearly with CO concentrations in the range of 180-300 °C. Specifically, it accelerated by 2.8 times with 10,000 ppm CO inflow at 220 °C. Mechanism studies found that the Cu-O-Ce solid solution was more active for CO oxidation, while the CuOx species facilitated the NH3 dehydrogenation and mitigated the competition of NH3 and CO, further stabilizing the promotion effects. Gaseous CO boosted the generation of active isolated oxygen atoms (Oi) by actuating the Cu+/Cu2+ redox cycle. The enriched Oi facilitated oxidation of NH3 to NO and was conducive to the NH3-SCO via the i-SCR approach. This study tapped the potential of CO for promoting simultaneous catalytic oxidation of coexisting pollutants in the flue gas.
Collapse
Affiliation(s)
- Yong Liao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zihao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guanqun Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Leipeng Ji
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
14
|
Role of the exposure facets upon diverse morphologies of cobalt spinels on catalytic deN2O process. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.06.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Hu X, Wang Y, Wu R, Zhao Y. N-doped Co3O4 catalyst with a high efficiency for the catalytic decomposition of N2O. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Application Prospect of K Used for Catalytic Removal of NOx, COx, and VOCs from Industrial Flue Gas: A Review. Catalysts 2021. [DOI: 10.3390/catal11040419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
NOx, COx, and volatile organic compounds (VOCs) widely exist in motor vehicle exhaust, coke oven flue gas, sintering flue gas, and pelletizing flue gas. Potassium species have an excellent promotion effect on various catalytic reactions for the treatment of these pollutants. This work reviews the promotion effects of potassium species on the reaction processes, including adsorption, desorption, the pathway and selectivity of reaction, recovery of active center, and effects on the properties of catalysts, including basicity, electron donor characteristics, redox property, active center, stability, and strong metal-to support interaction. The suggestions about how to improve the promotion effects of potassium species in various catalytic reactions are put forward, which involve controlling carriers, content, preparation methods and reaction conditions. The promotion effects of different alkali metals are also compared. The article number about commonly used active metals and promotion ways are also analyzed by bibliometric on NOx, COx, and VOCs. The promotion mechanism of potassium species on various reactions is similar; therefore, the application prospect of potassium species for the coupling control of multi-pollutants in industrial flue gas at low-temperature is described.
Collapse
|
17
|
Yang W, Wang Y, Yang W, Liu H, Li Z, Peng Y, Li J. Surface In Situ Doping Modification over Mn 2O 3 for Toluene and Propene Catalytic Oxidation: The Effect of Isolated Cu δ+ Insertion into the Mezzanine of Surface MnO 2 Cladding. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2753-2764. [PMID: 33401915 DOI: 10.1021/acsami.0c19972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heterocation insertion and substitution in tunnels and mezzanines of MnO2 present significant influences on the microchemical environment at the surfaces and interfaces. An innovative surface in situ doping modification method via Cu2+-H+/KMnO4 treatment was applied onto the Mn2O3 surface to provide Mn2O3@MnO2 nanospheres. Cu was stabilized into resulting MnO2 cladding substituting original K+ during a mild comproportionation reaction between Mn(VII) and Mn(III). The Cu25 (Cu(II): Mn(VII)atomic = 25%) catalyst shows significant promotion of the catalytic performance compared with bare Mn2O3 and Cu0 (without Cu involving). Isolated Cuδ+ was predominantly inserted into the mezzanine of the [MnO6]δ- layers in MnO2 instead of K+, leading to slight electron transfer from Cuδ+ to outermost Mn(4-ε)+ and a decrease of interlayer spacing as well as crystallinity. Such a configuration facilitates the formation of additional oxygen vacancies, promoting the redox ability and oxygen mobility at relatively low temperatures. The mechanistic study reveals that Cuδ+ in MnO2 cladding boosts the activation of toluene (methyl) to form benzoates and propene (methyl and double bonds) to form carboxylates, enhancing the chemical adsorption of reactants. Moreover, it also inhibits the unfavored accumulation of incomplete oxidized intermediates on the surface at high temperatures.
Collapse
Affiliation(s)
- Wenhao Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ya Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weinan Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hao Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd, Tianjin 300300, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Wei X, Wang Y, Li X, Wu R, Zhao Y. Co3O4 supported on bone-derived hydroxyapatite as potential catalysts for N2O catalytic decomposition. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Bulk, Surface and Interface Promotion of Co3O4 for the Low-Temperature N2O Decomposition Catalysis. Catalysts 2019. [DOI: 10.3390/catal10010041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nanocrystalline cobalt spinel has been recognized as a very active catalytic material for N2O decomposition. Its catalytic performance can be substantially modified by proper doping with alien cations with precise control of their loading and location (spinel surface, bulk, and spinel-dopant interface). Various doping scenarios for a rational design of the optimal catalyst for low-temperature N2O decomposition are analyzed in detail and the key reactivity descriptors are identified (content and topological localization of dopants, their redox vs. non-redox nature and catalyst work function). The obtained results are discussed in the broader context of the available literature data to establish general guidelines for the rational design of the N2O decomposition catalyst based on a cobalt spinel platform.
Collapse
|