1
|
Wu S, Chi J, Fang L, Liu K, Zhang W, Gong Z, Liu C, Putnis CV, Li F. Cadmium Immobilization on Fe Oxyhydroxides Enhanced by DOM Using Single-Molecule Determinations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3771-3779. [PMID: 39950734 DOI: 10.1021/acs.est.4c12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The groups from dissolved organic matter (DOM) enhance cadmium (Cd) immobilization on Fe oxyhydroxide, while it is difficult to evaluate the contributions of different groups on the binding configurations and strength between Cd and Fe oxyhydroxides because of DOM's complex composition and lack of in situ methods. Here, we selected organic small molecules with representative functional groups to investigate the molecular mechanisms of Cd immobilization on goethite using batch experiments, solid characterization, theoretical calculations, and single-molecule force spectroscopy (SMFS) combined with K-means analysis. These organic molecules increase Cd adsorption on goethite, with carboxyl groups showing the most substantial enhancement (increased by 81.7%). Solid-state characterization reveals that the adsorption of organic molecules is the primary driver of enhanced Cd immobilization, promoting the formation of new Cd-O(C) and Cd-O(Fe/C) bonds. Especially, thermodynamic analysis indicates that Cd-O(C) and Cd-O(Fe/C) bonds represent 75%-80% of total Cd binding configurations in the presence of organic molecules. Notably, the newly developed thermodynamic results show a strong correlation with the adsorption capacity, which may deepen the understanding of DOM-mediated Cd immobilization on Fe oxyhydroxides, offering crucial insights into Cd behavior and providing a theoretical basis for pollution control in subsurface and superficial environments.
Collapse
Affiliation(s)
- Shiyin Wu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialin Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Chuanping Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Christine V Putnis
- Institut für Mineralogie, University of Münster, 48149 Münster, Germany
- School of Molecular and Life Sciences, Curtin University, Perth 6845, Australia
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
2
|
He L, Zhang M, Li J, Duan Q, Zhang D, Pan X. Aquaculture oxidant (ClO 2) or antibiotic disinfection induces unique bimodal aggregation and boosts exDNA sedimentation: A disinfection-driven great spatial shift of antibiotic resistance risk. WATER RESEARCH 2025; 270:122820. [PMID: 39612813 DOI: 10.1016/j.watres.2024.122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
ClO2 has been ever-increasingly used as an alternative disinfectant to alleviate antibiotic resistance risk in aquaculture. However, the feasibility of ClO2 disinfection in reducing antibiotic resistance has not been clarified yet. We comparatively explored the aggregation mechanisms and their effect on extracellular DNA (exDNA) partition and settlement in disinfected aquaculture waters and natural waters. In contrast to the unimodal aggregation in natural non-aquaculture waters, a unique bimodal size distribution pattern of micron-sized aggregates was found in aquaculture waters regardless of the disinfectants (macro-aggregates - 200-700 μm in diameter and micro-aggregates - 2-200 μm in diameter). The bimodal aggregates had 2-4 orders of magnitude higher content of Ferron cations and enriched hundred-fold exDNA in aquaculture waters than in natural waters. ExDNA was adsorbed on the surface of aggregates and conglutinated mainly by carbohydrates and coagulative cations. Macro-aggregates had lower fractal dimension but greater sedimentation velocities compared with micro-aggregates. Polylithionite was the key ballast mineral facilitating fast sedimentation of aggregates in aquaculture waters. Loading more antibiotic resistance genes and mobile gene elements, the aquaculture aggregates sank more rapidly from water to sediments than the natural-water aggregates. It indicates that disinfection with ClO2 or antibiotics facilitated the spatial transfer of antibiotic resistance risk with high horizontal transfer potential from water column to sediment through forming bimodal aggregates. These findings imply that the adoption of antibiotic alternatives such as the oxidant of ClO2 is far from sufficient to alleviate antibiotic resistance in aquaculture.
Collapse
Affiliation(s)
- Lizhi He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Jiahao Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qingdong Duan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
3
|
Kariyawasam NL, Wereszczynski J. The Influence of Ionic Environment on Nucleosome-Mica Interactions Revealed via Molecular Dynamics Simulations. J Phys Chem B 2024; 128:12038-12049. [PMID: 39607409 DOI: 10.1021/acs.jpcb.4c04223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Nucleosomes are the fundamental units of DNA compaction, playing a key role in modulating gene expression. As such, they are widely studied through both experimental and computational methods. While atomic force microscopy (AFM) is a powerful tool for visualizing and characterizing both canonical and modified nucleosomes, it relies on nucleosome interactions with mica surfaces. These interactions occur through cations adsorbed on the negatively charged mica, but the specific influences of monovalent and divalent cations on nucleosome adsorption remain unclear. In this study, we used molecular dynamics simulations to investigate how monovalent potassium ions and divalent magnesium ions affect nucleosome binding to mica surfaces. We also explored the impact of pretreated mica surfaces on nucleosome binding and structure. Our findings reveal that nucleosome-mica interactions depend on the type of cations present, which leads to distinct effects on nucleosome structure. Notably, nucleosomes bind effectively to mica surfaces in the presence of potassium ions with minimal structural perturbations.
Collapse
Affiliation(s)
- Nilusha L Kariyawasam
- Department of Physics, Illinois Institute of Technology, Chicago 60616, United States
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60625, United States
| | - Jeff Wereszczynski
- Departments of Physics and Biology, Illinois Institute of Technology, Chicago, Illinois 60625, United States
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60625, United States
| |
Collapse
|
4
|
Kariyawasam NL, Wereszczynski J. The Influence of Ionic Environment on Nucleosome-Mica Interactions Revealed via Molecular Dynamics Simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600666. [PMID: 38979319 PMCID: PMC11230366 DOI: 10.1101/2024.06.25.600666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mica serves as a crucial substrate in Atomic Force Microscopy (AFM) studies for visualizing and characterizing nucleosomes. Nucleosomes interact with the negatively charged mica surface via adsorbed cations. However, the specific influences of monovalent and divalent cations on nucleosome adsorption to the mica surface remain unclear. In this study, we investigated the binding of nucleosomes to the mica surface in the presence of monovalent potassium ions and divalent magnesium ions using molecular dynamics simulations. We also explored the impact of pre-treated mica surfaces on nucleosome binding and structure. Our findings reveal that nucleosome-mica interactions vary depending on the cations present, resulting in distinct effects on nucleosome structure. Notably, nucleosomes bind effectively to a mica surface in the presence of potassium ions with minimal structural perturbations.
Collapse
Affiliation(s)
- Nilusha L Kariyawasam
- Department of Physics, Illinois Institute of Technology, Chicago, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, USA
| | - Jeff Wereszczynski
- Departments of Physics and Biology, Illinois Institute of Technology, Chicago, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, USA
| |
Collapse
|
5
|
Wang X, Guo Q, Guo J, Wang C. Magnetic composite microspheres with a controlled mesoporous shell for highly efficient DNA extraction and fragment screening. J Mater Chem B 2024; 12:4899-4908. [PMID: 38682549 DOI: 10.1039/d4tb00104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Rapid extraction and screening of high-purity DNA fragments is an indispensable technology in advanced molecular biology. In this article, mesoporous magnetic composite microspheres (MSP@mTiO2) with tunable pore sizes were successfully fabricated for high-purity DNA extraction and fragment screening. Owing to the strong complexation ability of Ti ions with DNA phosphate groups and the high specific surface area of mesoporous microspheres, the MSP@mTiO2 microspheres possess excellent adsorption performance, where the saturated loading capacity of MSP@mTiO2 with a specific surface area of 122 m2 g-1 is as high as 575 μg mg-1 for a salmon sperm specimen. ITC experiments demonstrated that DNA adsorption on MSP@mTiO2 microspheres is mainly driven by entropy, which gives us more potential ways to regulate the balance of adsorption and desorption. Meanwhile, the mesoporous MSP@mTiO2 microspheres exhibit a much higher extraction efficiency compared with non-porous MSP@TiO2 for whole genome DNA from Arabidopsis thaliana plants. Interestingly, DNA fragments with different lengths could be screened by simply regulating the pore size of MSP@mTiO2 or the concentration of Na3PO4 in the eluent. A small pore size and low phosphate concentration are advantageous for the extraction of short-stranded DNA fragments, and DNA fragments (≤1000 bp) can be efficiently extracted when the mesopore size of MSP@mTiO2 is lower than 7.6 nm. The extraction results from the mesoporous composite microspheres provide new promising insights into the purification and screening of DNA from complex biological samples.
Collapse
Affiliation(s)
- Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Qilin Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
6
|
Cochran JP, Zhang L, Parrott BB, Seaman JC. Plasmid size determines adsorption to clay and breakthrough in a saturated sand column. Heliyon 2024; 10:e29679. [PMID: 38707295 PMCID: PMC11066139 DOI: 10.1016/j.heliyon.2024.e29679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Horizontal gene transfer (HGT) is a major factor in the spread of antibiotic resistant genes (ARG). Transformation, one mode of HGT, involves the acquisition and expression of extracellular DNA (eDNA). eDNA in soils is degraded rapidly by extracellular nucleases. However, if bound to a clay particle, eDNA can persist for long periods of time without losing its transformation ability. To better understand the mechanism of eDNA persistence in soil, this experiment assessed the effects of 1) clay mineralogy, 2) mixed salt solution, 3) plasmid size on DNA adsorption to clay and 4) breakthrough behavior of three differently sized plasmids in an environmentally relevant solution. Batch test methods were used to determine adsorption trends of three differently sized DNA plasmids, pUC19, pBR322, and pTYB21, to several pure clay minerals, goethite (α-FeOOH), illite, and kaolinite, and one environmental soil sample. Results show not all sorbents have equal adsorption capacity based on surface area with adsorption capacities decreasing from goethite > illite = kaolinite > bulk soil, and low ionic strength solutions will likely not significantly alter sorption trends. Additionally, plasmid DNA size (i.e., length) was shown to be a significant predictor of adsorption efficiency and that size affects DNA breakthrough, with breakthroughs occurring later with larger plasmids. Given that DNA persistence is linked to its adsorption to soil constituents and breakthrough, eDNA size is likely an important contributor to the spread of ARG within natural microbial communities.
Collapse
Affiliation(s)
- Jarad P. Cochran
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States
| | - Liyun Zhang
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Crops and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Benjamin B. Parrott
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Odum School of Ecology, University of Georgia, Athens, GA, United States
| | - John C. Seaman
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Crops and Soil Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
7
|
Ibrahim M, Wenzel C, Lallemang M, Balzer BN, Schwierz N. Adsorbing DNA to Mica by Cations: Influence of Valency and Ion Type. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15553-15562. [PMID: 37877163 DOI: 10.1021/acs.langmuir.3c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Ion-mediated attraction between DNA and mica plays a crucial role in biotechnological applications and molecular imaging. Here, we combine molecular dynamics simulations and single-molecule atomic force microscopy experiments to characterize the detachment forces of single-stranded DNA at mica surfaces mediated by the metal cations Li+, Na+, K+, Cs+, Mg2+, and Ca2+. Ion-specific adsorption at the mica/water interface compensates (Li+ and Na+) or overcompensates (K+, Cs+, Mg2+, and Ca2+) the bare negative surface charge of mica. In addition, direct and water-mediated contacts are formed between the ions, the phosphate oxygens of DNA, and mica. The different contact types give rise to low- and high-force pathways and a broad distribution of detachment forces. Weakly hydrated ions, such as Cs+ and water-mediated contacts, lead to low detachment forces and high mobility of the DNA on the surface. Direct ion-DNA or ion-surface contacts lead to significantly higher forces. The comprehensive view gained from our combined approach allows us to highlight the most promising cations for imaging in physiological conditions: K+, which overcompensates the negative mica charge and induces long-ranged attractions. Mg2+ and Ca2+, which form a few specific and long-lived contacts to bind DNA with high affinity.
Collapse
Affiliation(s)
- Mohd Ibrahim
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Christiane Wenzel
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Max Lallemang
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Bizan N Balzer
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
| | - Nadine Schwierz
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Jia C, Chi J, Zhang W. Adsorption effects and mechanisms of phosphorus by nanosized laponite. CHEMOSPHERE 2023; 331:138684. [PMID: 37059202 DOI: 10.1016/j.chemosphere.2023.138684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Phosphorus (P), an important macroelement for crops, may be lost into water systems by human activities and subsequently cause serious environmental problems such as eutrophication. Thus, the recovery of P from wastewater is essential. P can be adsorbed and recovered from wastewater using many natural, environmentally friendly clay minerals, however the adsorption ability is limited. Here we applied a synthesis nanosized clay mineral, laponite, to evaluate the P adsorption ability and molecular mechanisms of the adsorption process. We apply X-ray Photoelectron Spectroscopy (XPS) to observe the adsorption of inorganic phosphate onto laponite, and then measure the adsorption content of phosphate by laponite via batch experiments in different solution conditions, including pH, ionic species and concentrations. Then the molecular mechanisms of adsorption are analyzed by Transmission Electron Microscopy (TEM) and molecular modeling using Density Functional Theory (DFT). The results show that phosphate adsorbs to the surface and interlayer of laponite via hydrogen bonding, and the adsorption energies of the interlayer are greater than those of the surface. These bulk solution and molecular-scale results in a model system may provide new insights into the recovery of phosphorus by nanosized clay, with possible environmental engineering applications for P-pollution control and sustainable utilization of P sources.
Collapse
Affiliation(s)
- Chonghao Jia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jialin Chi
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Tong T, Liu X, Li T, Park S, Anger B. A Tale of Two Foulants: The Coupling of Organic Fouling and Mineral Scaling in Membrane Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7129-7149. [PMID: 37104038 DOI: 10.1021/acs.est.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane desalination that enables the harvesting of purified water from unconventional sources such as seawater, brackish groundwater, and wastewater has become indispensable to ensure sustainable freshwater supply in the context of a changing climate. However, the efficiency of membrane desalination is greatly constrained by organic fouling and mineral scaling. Although extensive studies have focused on understanding membrane fouling or scaling separately, organic foulants commonly coexist with inorganic scalants in the feedwaters of membrane desalination. Compared to individual fouling or scaling, combined fouling and scaling often exhibits different behaviors and is governed by foulant-scalant interactions, resembling more complex but practical scenarios than using feedwaters containing only organic foulants or inorganic scalants. In this critical review, we first summarize the performance of membrane desalination under combined fouling and scaling, involving mineral scales formed via both crystallization and polymerization. We then provide the state-of-the-art knowledge and characterization techniques pertaining to the molecular interactions between organic foulants and inorganic scalants, which alter the kinetics and thermodynamics of mineral nucleation as well as the deposition of mineral scales onto membrane surfaces. We further review the current efforts of mitigating combined fouling and scaling via membrane materials development and pretreatment. Finally, we provide prospects for future research needs that guide the design of more effective control strategies for combined fouling and scaling to improve the efficiency and resilience of membrane desalination for the treatment of feedwaters with complex compositions.
Collapse
Affiliation(s)
- Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xitong Liu
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Tianshu Li
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bridget Anger
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| |
Collapse
|
10
|
Pan L, Wu J, Wang R, Zhang Y, Chen B, Zhu X. Visualization the fixation of cadmium on manganese dioxide in sulfur reduction environments. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130022. [PMID: 36155303 DOI: 10.1016/j.jhazmat.2022.130022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Manganese oxides as common soil components were considered as an important sink for the cadmium pollution, which, however, would be affected by the reductive sulfide introduced during the flooding period of paddy soil. In this study, the phase transitions caused by the reactions among S2-, MnO2 and Cd2+ were visualized by atomic force microscopy (AFM). The dissolution of MnO2 was in-situ studied by AFM in the S2-containing environments. Moreover, in the ternary system (S2-, MnO2 and Cd2+), the pre-adsorption of Cd2+ by the MnO2 nanosheets would promote the subsequent precipitation of CdS on the surface of MnO2, while the pre-formed CdS nanoparticles in the aquatic phase would tend to suspense rather than precipitating on MnO2. The kinetic study results indicated that the CdS crystallite generation rate was faster than the MnO2 dissolution rate in the aquatic environments with different sulfide contents. In the macroscopic Cd2+ fixation test, the introduction of S2- dramatically improved the fixation of the pre-adsorbed Cd2+ on the MnO2 nanosheets by forming the CdS precipitate. This study provided a fundamental understanding of the interactions among the S2-, MnO2 and Cd2+ ternary system and shed light on the development of Cd pollution remediation methods for paddy soils.
Collapse
Affiliation(s)
- Liuyi Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Jiayi Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Rui Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
11
|
Math RK, Bharatham N, Javaregowda PK, Yun HD. Role of Cel5H protein surface amino acids in binding with clay minerals and measurements of its forces. Appl Microsc 2021; 51:17. [PMID: 34762191 PMCID: PMC8586110 DOI: 10.1186/s42649-021-00066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
Our previous study on the binding activity between Cel5H and clay minerals showed highest binding efficiency among other cellulase enzymes cloned. Here, based on previous studies, we hypothesized that the positive amino acids on the surface of Cel5H protein may play an important role in binding to clay surfaces. To examine this, protein sequences of Bacillus licheniformis Cel5H (BlCel5H) and Paenibacillus polymyxa Cel5A (PpCel5A) were analyzed and then selected amino acids were mutated. These mutated proteins were investigated for binding activity and force measurement via atomic force microscopy (AFM). A total of seven amino acids which are only present in BlCel5H but not in PpCel5A were selected for mutational studies and the positive residues which are present in both were omitted. Of the seven selected surface lysine residues, only three mutants K196A(M2), K54A(M3) and K157T(M4) showed 12%, 7% and 8% less clay mineral binding ability, respectively compared with wild-type. The probable reason why other mutants did not show altered binding efficiency might be due to relative location of amino acids on the protein surface. Meanwhile, measurement of adhesion forces on mica sheets showed a well-defined maximum at 69 ± 19 pN for wild-type, 58 ± 19 pN for M2, 53 ± 19 pN for M3, and 49 ± 19 pN for M4 proteins. Hence, our results demonstrated that relative location of surface amino acids of Cel5H protein especially positive charged amino acids are important in the process of clay mineral-protein binding interaction through electrostatic exchange of charges.
Collapse
Affiliation(s)
- Renukaradhya K Math
- SDM Research Institute for Biomedical Sciences, 5th Floor, Manjushree Building, SDM College of Medical Sciences & Hospital Campus, Shri Dharmasthala Manjunatheshwara University, Dharwad, Sattur, 580009, India. .,Division of Applied Life Sciences, Gyeongsang National University, Chinju, 660701, Republic of Korea.
| | - Nagakumar Bharatham
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka, 560064, India
| | - Palaksha K Javaregowda
- SDM Research Institute for Biomedical Sciences, 5th Floor, Manjushree Building, SDM College of Medical Sciences & Hospital Campus, Shri Dharmasthala Manjunatheshwara University, Dharwad, Sattur, 580009, India
| | - Han Dae Yun
- Division of Applied Life Sciences, Gyeongsang National University, Chinju, 660701, Republic of Korea
| |
Collapse
|
12
|
Bag S, Rauwolf S, Schwaminger SP, Wenzel W, Berensmeier S. DNA Binding to the Silica: Cooperative Adsorption in Action. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5902-5908. [PMID: 33951395 DOI: 10.1021/acs.langmuir.1c00381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The adsorption and desorption of nucleic acid to a solid surface is ubiquitous in various research areas like pharmaceutics, nanotechnology, molecular biology, and molecular electronics. In spite of this widespread importance, it is still not well understood how the negatively charged deoxyribonucleic acid (DNA) binds to the negatively charged silica surface in an aqueous solution. In this article, we study the adsorption of DNA to the silica surface using both modeling and experiments and shed light on the complicated binding (DNA to silica) process. The binding agent mediated DNA adsorption was elegantly captured by cooperative Langmuir model. Bulk-depletion experiments were performed to conclude the necessity of a positively charged binding agent for efficient DNA binding, which complements the findings from the model. A profound understanding of DNA binding will help to tune various processes for efficient nucleic acid extraction and purification. However, this work goes beyond the DNA binding and can shed light on other binding agent mediated surface-surface, surface-molecule, molecule-molecule interaction.
Collapse
Affiliation(s)
- Saientan Bag
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Rauwolf
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich (TUM), Munich 85748, Germany
| | - Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich (TUM), Munich 85748, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich (TUM), Munich 85748, Germany
| |
Collapse
|
13
|
Abstract
Sorption of chemicals onto soil particle surfaces is an important process controlling their availability for uptake by organisms and loss from soils to ground and surface waters. The mechanisms of chemical sorption are inner- and outer-sphere adsorption and precipitation onto mineral surfaces. Factors that determine the sorption behavior are properties of soil mineral and organic matter surfaces and properties of the sorbing chemicals (including valence, electron configuration, and hydrophobicity). Because soils are complex heterogeneous mixtures, measuring sorption mechanisms is challenging; however, advancements analytical methods have made direct determination of sorption mechanisms possible. In this review, historical and modern research that supports the mechanistic understanding of sorption mechanisms in soils is discussed. Sorption mechanisms covered include cation exchange, outer-sphere adsorption, inner-sphere adsorption, surface precipitation, and ternary adsorption complexes.
Collapse
|
14
|
Zhai H, Zhang W, Wang L, Putnis CV. Dynamic force spectroscopy for quantifying single-molecule organo–mineral interactions. CrystEngComm 2021. [DOI: 10.1039/d0ce00949k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Organo–mineral interactions have long been the focus in the fields of biomineralization and geomineralization, since such interactions not only modulate the dynamics of crystal nucleation and growth but may also change crystal phases, morphologies, and structures.
Collapse
Affiliation(s)
- Hang Zhai
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
- Department of Plant and Environmental Sciences
| | - Wenjun Zhang
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Lijun Wang
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Christine V. Putnis
- Institut für Mineralogie
- University of Münster
- 48149 Münster
- Germany
- School of Molecular and Life Science
| |
Collapse
|
15
|
Willemsen JAR, Bourg IC. Molecular dynamics simulation of the adsorption of per- and polyfluoroalkyl substances (PFASs) on smectite clay. J Colloid Interface Sci 2020; 585:337-346. [PMID: 33302050 DOI: 10.1016/j.jcis.2020.11.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022]
Abstract
Molecular dynamics (MD) simulations are used to predict the partitioning of per- and polyfluoroalkyl substances (PFASs) to smectite clay, a high surface area adsorbent ubiquitous in temperate soils. Simulated systems model a stack of flexible smectite lamellae in contact with a bulk aqueous reservoir containing PFAS molecules. Perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), and perfluorooctanesulfonic acid (PFOS) are simulated at various aqueous chemistry conditions to examine the effect of PFAS size, salinity, and coordinating cation type (K+, Na+, and Ca2+) on adsorption. The metadynamics technique is employed to facilitate the exploration of the simulation cell and to reconstruct the underlying free energy landscape. Adsorption is favorable on the hydrophobic domains of the external basal surfaces with the fluorinated chain adopting a flat orientation on the surface. Analysis of the adsorption energetics reveals large favorable entropic contributions to adsorption. The enthalpy of adsorption is unfavorable, though much less so in the presence of Ca2+ due to stabilizing 'lateral cation bridging' interactions between divalent cations and PFAS sulfonate head groups. Overall, this research advances the mechanistic understanding of PFAS-smectite interactions and provides new insights that could help inform fate and transport models and the development of adsorbents and remediation techniques.
Collapse
Affiliation(s)
- Jennifer A R Willemsen
- Department of Civil & Environmental Engineering and High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, United States.
| | - Ian C Bourg
- Department of Civil & Environmental Engineering and High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
16
|
Cai J, Ye ZL, Ye C, Ye X, Chen S. Struvite crystallization induced the discrepant transports of antibiotics and antibiotic resistance genes in phosphorus recovery from swine wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115361. [PMID: 32810833 DOI: 10.1016/j.envpol.2020.115361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Struvite (MgNH4PO3·6H2O) crystallization is one of important methods of phosphorus recovery from wastewater. As to livestock wastewater, the high-strength occurrence of antibiotics and antibiotic resistance genes might induce struvite recovery to spread antibiotic resistance to the environment. However, limited information has been reported on the simultaneous transport of antibiotics and ARGs in struvite recovery. In the present study, tetracyclines (TCs) and tetracyclines antibiotic resistance genes (ARGs) were selected as the targeted pollutants, and their discrepant residues in struvite recovery from swine wastewater were investigated. TCs and ARGs were obviously detected, with their contents of 4.88-79.5 mg/kg and 6.99 × 107-2.14 × 1011 copies/g, notably higher than those of TCs 0.550-1.94 mg/kg and ARGs 3.98 × 104-5.66 × 107 copies/g obtained from synthetic wastewater. The correlational relationship revealed that predominant factors affecting TCs and ARGs transports were different. Results from network analyses indicated that among the total edges, the negative correlations between TCs and ARGs predominately occupied 18.0%. The redundancy analysis revealed that mineral components in the recovered products, including struvite, K-struvite and amorphous calcium phosphate, coupling with organic contents, displayed insignificant roles on TCs residues, where heavy metals exerted positive and remarkable functions to boost TCs migration. Unexpectedly, mineral components and heavy metals did not displayed significant promotion on ARGs transport as a whole.
Collapse
Affiliation(s)
- Jiasheng Cai
- Key Laboratory of Urban Pollution Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Long Ye
- Key Laboratory of Urban Pollution Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian, 361021, China.
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen City, Fujian, 361005, China
| | - Xin Ye
- Key Laboratory of Urban Pollution Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian, 361021, China
| | - Shaohua Chen
- Key Laboratory of Urban Pollution Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian, 361021, China
| |
Collapse
|
17
|
Zhai H, Bernstein R, Nir O, Wang L. Molecular insight into the interfacial chemical functionalities regulating heterogeneous calcium-arsenate nucleation. J Colloid Interface Sci 2020; 575:464-471. [PMID: 32402825 DOI: 10.1016/j.jcis.2020.04.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/13/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
Heterogeneous nucleation induced by natural organic matter (NOM) can lower the energy barrier for calcium arsenate (Ca-As) precipitation, which aids in immobilizing arsenate (AsⅤ). However, it remains unclear how certain chemical functionalities of NOM affect Ca-As nucleation at the molecular scale. By analyzing changes in the local supersaturation and/or interfacial energy, the present work investigates the Ca-As heterogeneous nucleation kinetics and mechanisms on functional-group-modified model surfaces. Mica surfaces modified by functional groups of amine (NH2), hydroxyl (OH), or carboxyl (COOH) through self-assembled monolayers were used to investigate how chemical functionalities affect the Ca-As heterogeneous nucleation, in which the distributions of formation kinetics and size (as measured by the change in particle height) of nucleated Ca-As particles were measured by using in situ atomic force microscopy. In a parallel analysis, a quartz-crystal microbalance with dissipation was used to detect the buildup of Ca2+ and/or HAsO42- ions at the solid-fluid interface. PeakForce quantitative nanomechanical mapping and dynamic force spectroscopy using functional-group-modified tips made it possible to calculate the binding energies holding functional groups to Ca-As particles. Nucleated Ca-As particles were characterized by using Raman spectroscopy and high-resolution transmission electron microscopy. The results indicate that the height of amorphous Ca-As particles formed on a modified mica surface may be ranked in descending order as NH2 > OH > bare mica > COOH, as determined by the buildup of Ca2+ and HAsO42- ions at the solid-fluid interface and the decrease of interfacial energy due to the functional groups. These nanoscale observations and molecular-scale determinations improve our understanding of the roles played by chemical functionalities on NOM in immobilizing dissolved As through heterogeneous nucleation in soil and water.
Collapse
Affiliation(s)
- Hang Zhai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel
| | - Roy Bernstein
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel.
| | - Oded Nir
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Wang L, Putnis CV. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy. Acc Chem Res 2020; 53:1196-1205. [PMID: 32441501 DOI: 10.1021/acs.accounts.0c00128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemical reactions at the mineral-solution interface control important interfacial processes, such as geochemical element cycling, nutrient recovery from eutrophicated waters, sequestration of toxic contaminants, and geological carbon storage by mineral carbonation. By time-resolved in situ imaging of nanoscale mineral interfacial reactions, it is possible to clarify the mechanisms governing mineral-fluid reactions.In this Account, we present a concise summary of this topic that addresses a current challenge at the frontier of understanding mineral interfaces and their importance to a wide range of mineral re-equilibration processes in the presence of a fluid aqueous phase. We have used real-time nanoscale imaging of liquid-cell atomic force microscopy (AFM) to observe the in situ coupling of the dissolution-precipitation process, whereby the dissolution of a parent mineral phase is coupled at mineral interfaces with the precipitation of another product phase, chemically different from the parent. These nanoscale observations allow for the identification of dissolution and growth rates through systematically investigating various minerals, including calcite (CaCO3), siderite (FeCO3), cerussite (PbCO3), magnesite (MgCO3), dolomite (CaMg(CO3)2), brushite (CaHPO4·2H2O), brucite (Mg(OH)2), portlandite (Ca(OH)2), and goethite (α-FeOOH), in various reacting aqueous fluids containing solution species, such as arsenic, phosphate, organo- or pyrophosphate, CO2, selenium, lead, cadmium, iron, chromium, and antimony. We detected the in situ replacement of these parent mineral phases by product phases, identified through a variety of analytical methods such as Raman spectroscopy, high-resolution transmission electron microscopy, and various X-ray techniques, as well as modeling by geochemical simulation using PHREEQC. As a consequence of the coupled processes, sequestration of toxic elements and hazardous species and inorganic and organic carbon, and limiting or promoting recovery of nutrients can be achieved at nano- and macroscopic scales.We also used in situ AFM to quantitatively measure the retreat rates of molecular steps and directly observe the morphology changes of dissolution etch pits on calcium phosphates in organic acid solutions present in most rhizosphere environments. By molecular modeling using density functional theory (DFT), we explain the origin of dissolution etch pit evolution through specific stereochemistry and molecular recognition and provide an energetic basis by calculating the binding energies of chemical functionalities on organic acids to direction-specific steps on mineral surfaces. In addition, we further quantified precipitation kinetics of calcium phosphates (Ca-P's) on typical mineral surfaces at the nanoscale in environmentally relevant solutions with various organic molecules, by measurements obtained from sequential images obtained by liquid-cell AFM. In situ dynamic force spectroscopy (DFS) was used to determine binding energies of single-molecules with different chemical functionalities found in natural organic matter at mineral-fluid interfaces. Quantifying molecular organo-mineral bonding or binding energies mechanistically explains phosphate precipitation and transformation. From DFS measurements, molecular-scale interactions of mineral-natural organic matter (DNA, proteins, and polysaccharides) associations were determined. With this powerful tool, single-molecule determinations of polysaccharide-amorphous iron oxide or hematite interactions provided the mechanistic origin of the phase- or facet-dependent adsorption. These systematic investigations and findings significantly contribute to a more quantitative prediction of the fate of nutrients and contaminants, chemical element cycling, and potential geological carbon capture and nuclear waste storage in aqueous environments.
Collapse
Affiliation(s)
- Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Christine V. Putnis
- Institut für Mineralogie, University of Münster, 48149 Münster, Germany
- School of Molecular and Life Science, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
19
|
MORO D, ULIAN G, VALDRÈ G. Nano‐atomic scale hydrophobic/philic confinement of peptides on mineral surfaces by cross‐correlated SPM and quantum mechanical DFT analysis. J Microsc 2020; 280:204-221. [DOI: 10.1111/jmi.12923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023]
Affiliation(s)
- D. MORO
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali Università di Bologna “Alma Mater Studiorum” Piazza di Porta San Donato 1 Bologna Italy
- Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali Università di Bologna “Alma Mater Studiorum” Piazza di Porta San Donato 1 Bologna Italy
| | - G. ULIAN
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali Università di Bologna “Alma Mater Studiorum” Piazza di Porta San Donato 1 Bologna Italy
- Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali Università di Bologna “Alma Mater Studiorum” Piazza di Porta San Donato 1 Bologna Italy
| | - G. VALDRÈ
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali Università di Bologna “Alma Mater Studiorum” Piazza di Porta San Donato 1 Bologna Italy
- Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali Università di Bologna “Alma Mater Studiorum” Piazza di Porta San Donato 1 Bologna Italy
| |
Collapse
|