1
|
Ariyarathna T, Fallis S, Davis MC, Tobias C. Quantifying removal and mineralization of nitrotriazolone in contrasting freshwater sediment systems using 13C and 15N stable isotope tracers. CHEMOSPHERE 2025; 376:144289. [PMID: 40086305 DOI: 10.1016/j.chemosphere.2025.144289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
The environmental fate of insensitive high explosive compound nitrotriazolone (NTO) has not been adequately studied in surface freshwater environments. The goal of this study was to evaluate and quantify removal and complete mineralization of NTO in distinct freshwater sediment systems. We conducted aquaria-scale experiments using four freshwater sediment types: low organic carbon (OC) river sand, low OC silt, high OC wetland sediment, high OC pond silt with and without submerged aquatic plants to investigate natural attenuation of NTO. Isotopically labeled NTO (13C and 15N) was added to the aquaria and time series aqueous and sediment samples were collected over three to four weeks. Aqueous NTO half-lives ranged from 6 to 63 days in the presence of sediments while no NTO loss from the aqueous phase was measured in the absence of sediment. Nitrotriazolone completely disappeared within one month in pond silt and wetland sediment aquaria that had higher sediment organic contents, facilitating NTO biotransformation in freshwater ecosystems. Approximately 7%-50% of the NTO loss was demonstrated to be complete mineralization, and NTO mineralization half-lives ranged from 17 to 533 days, with the shortest mineralization half-lives measured in the highest organic content wetland. There was good fidelity between the appearance of 13C tracer and 15N tracer in mineralization products, providing high confidence that both tracers were quantifying complete mineralization. For NTO, increased sediment organic content corresponded to both faster rates of loss of NTO from overlying water and a higher fraction of that loss representing mineralization.
Collapse
Affiliation(s)
- Thivanka Ariyarathna
- University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, Groton, CT, USA; Rowan University, Department of Environmental Science, 201 Mullica Hill Road, Glassboro, NJ, USA.
| | - Stephen Fallis
- Naval Air Warfare Center Weapons Division (NAWCWD), China Lake, California, USA.
| | - Matthew C Davis
- Naval Air Warfare Center Weapons Division (NAWCWD), China Lake, California, USA.
| | - Craig Tobias
- University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, Groton, CT, USA.
| |
Collapse
|
2
|
Fuller ME, Hedman PC, Chu KH, Webster TS, Hatzinger PB. Evaluation of a sequential anaerobic-aerobic membrane bioreactor system for treatment of traditional and insensitive munitions constituents. CHEMOSPHERE 2023; 340:139887. [PMID: 37604336 DOI: 10.1016/j.chemosphere.2023.139887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
New energetic formulations containing insensitive high explosives (IHE), such as 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazole-5-one (NTO), and nitroguanidine (NQ) are being developed to provide safer munitions. The addition of IHE to munitions formulations results in complex wastewaters from explosives manufacturing, load and pour operations and demilitarization activities. New technologies are required to treat those wastewaters. The core objective of this research effort was to develop and optimize a dual anaerobic-aerobic membrane bioreactor (MBR) system for treatment of wastewater containing variable mixtures of traditional energetics, IHE, and anions. The combined system proved highly effective for treatment of traditional explosives (TNT, RDX, HMX), IHE (DNAN, NTO, NQ) and anions commonly used as military oxidants (ClO4-, NO3-). The anaerobic MBR, which was operated for more than 500 d, was observed to completely degrade mg L-1 concentrations of TNT, DNAN, ClO4- and NO3- under all operational conditions, including at the lowest hydraulic residence time (HRT) tested (2.2 d). The combined system generally resulted in complete treatment of mg L-1 concentrations of RDX and HMX to <20 μg L-1, with most of the degradation occurring in the anaerobic MBR and polishing in the aerobic system. No common daughter products of DNAN, TNT, RDX, or HMX were detected in the effluent. NTO was completely transformed in the anaerobic MBR, but residual 3-amino-1,2,4-triazole-5-one (ATO) was detected in system effluent. The ATO rapidly decomposed when bleach solution was added to the final effluent. NQ was initially recalcitrant in the system, but microbial populations eventually developed that could degrade >90% of the ∼10 mg L-1 NQ entering the anaerobic MBR, with the remainder degraded to <50 μg L-1 in the aerobic system. The dual MBR system proved to be capable of complete degradation of a wide mixture of munitions constituents and was resilient to changing influent composition.
Collapse
Affiliation(s)
- Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ, 08648, USA
| | - Paul C Hedman
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ, 08648, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Todd S Webster
- Envirogen Technologies, Inc., 9360 Santa Anita Ave., Suite 107, Rancho Cucamonga, CA, 91730, USA
| | - Paul B Hatzinger
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ, 08648, USA.
| |
Collapse
|
3
|
Konya A, Fiddler BA, Bunch O, Hess KZ, Ferguson C, Krzmarzick MJ. Lead or cadmium co-contamination alters benzene and toluene degrading bacterial communities. Biodegradation 2023; 34:357-369. [PMID: 36840890 PMCID: PMC10191895 DOI: 10.1007/s10532-023-10021-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
Co-contamination of hydrocarbons with heavy metals in soils often complicates and hinders bioremediation. A comprehensive characterization of site-specific degraders at contaminated sites can help determine if in situ bioremediation processes are sufficient. This study aimed to identify differences in benzene and toluene degradation rates and the microbial communities enriched under aerobic conditions when different concentrations of Cd and Pb are introduced. Microcosms were used to study the degradation of 0.23 mM benzene or 0.19 mM toluene under various concentrations of Pb (up to 240 µM) and Cd (up to 440 µM). Soil collected from a stormwater retention basin receiving runoff from a large parking lot was utilized to seed the microcosms. The hydrocarbon degradation time and rates were measured. After further rounds of amendment and degradation of benzene and toluene, 16S rRNA gene amplicon sequencing and quantitative PCR were used to ascertain the microbial communities enriched under the various concentrations of the heavy metals. The initial degradation time for toluene and benzene was 7 to 9 days and 10 to 13 days, respectively. Degradation rates were similar for each hydrocarbon despite the concentration and presence of metal co-contaminant, however, the enriched microbial communities under each condition differed. Microcosms without metal co-contaminant contained a diversity of putative benzene and toluene degrading bacteria. Cd strongly reduced the richness of the microbial communities. With higher levels of heavy metals, genera such as Ralstonia, Cupriavidus, Azoarcus, and Rhodococcus became more dominant under various conditions. The study finds that highly efficient benzene- and toluene-degrading consortia can develop under variations of heavy metal co-contamination, but the consortia are dependent on the heavy metal type and concentrations.
Collapse
Affiliation(s)
- Aniko Konya
- Environmental Science Graduate Program, Oklahoma State University, Stillwater, OK, USA
| | - Brice A Fiddler
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Olivia Bunch
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Kendra Z Hess
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Cade Ferguson
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Mark J Krzmarzick
- Environmental Science Graduate Program, Oklahoma State University, Stillwater, OK, USA.
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
4
|
Stein N, Podder A, Goel R. Biodegradation of insensitive munition (IM) formulations: IMX-101 and IMX-104 using aerobic granule technology. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130942. [PMID: 36801711 DOI: 10.1016/j.jhazmat.2023.130942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
A laboratory-scale aerobic granular sludge (AGS) sequencing batch bioreactor (SBR) was initiated in this study for the biodegradation of hazardous insensitive munition (IM) formulation constituents; 2,4-dinitroanisole (DNAN), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 1-nitroguanidine (NQ), and 3-nitro-1,2,4-triazol-5-one (NTO). Efficient (bio)transformation of the influent DNAN and NTO was achieved throughout reactor operation with removal efficiencies greater than 95%. An average removal efficiency of 38.4 ± 17.5% was recorded for RDX. NQ was only slightly removed (3.96 ± 4.15%) until alkalinity was provided in the influent media, which subsequently increased the NQ removal efficiency up to an average of 65.8 ± 24.4%. Batch experiments demonstrated a competitive advantage for aerobic granular biofilms over flocculated biomass for the (bio)transformation DNAN, RDX, NTO, and NQ, as aerobic granules were capable of reductively (bio)transforming each IM compound under bulk aerobic conditions while flocculated biomass could not, thus demonstrating the contribution of inner oxygen-free zones within aerobic granules. A variety of catalytic enzymes were identified in the extracellular polymeric matrix of the AGS biomass. 16 S rDNA amplicon sequencing found Proteobacteria (27.2-81.2%) to be the most abundant phyla, with many genera associated with nutrient removal as well as genera previously described in relation to the biodegradation of explosives or related compounds.
Collapse
Affiliation(s)
- Nathan Stein
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Pal Y, Mayilraj S, Krishnamurthi S. Uncovering the structure and function of specialist bacterial lineages in environments routinely exposed to explosives. Lett Appl Microbiol 2022; 75:1433-1448. [PMID: 35972393 DOI: 10.1111/lam.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Environmental contamination by hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), and Octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX), the two most widely used compounds for military operations, is a long-standing problem at the manufacturing and decommissioning plants. Since explosives contamination has previously been shown to favour the growth of specific bacterial communities, the present study attempts to identify the specialist bacterial communities and their potential functional and metabolic roles by using amplicon targeted and whole-metagenome sequencing approaches (WMS) in samples collected from two distinct explosives manufacturing sites. We hypothesize that the community structure and functional attributes of bacterial population are substantially altered by the concentration of explosives and physicochemical conditions. The results highlight the predominance of Planctomycetes in contrast to previous reports from similar habitats. The detailed phylogenetic analysis revealed the presence of OTU's related to bacterial members known for their explosives degradation. Further, the functional and metabolic analyses highlighted the abundance of putative genes and unidentified taxa possibly associated with xenobiotic biodegradation. Our findings suggest that microbial species capable of utilizing explosives as a carbon, energy, or electron source are favoured by certain selective pressures based on the prevailing physicochemical and geographical conditions.
Collapse
Affiliation(s)
- Yash Pal
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036
| | - Shanmugam Mayilraj
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036.,Director of Research, Bentoli AgriNutrition, India Pvt Ltd., 3F2, Third Floor, Front Block, Metro Tower, Building No.115, Poonamallee, High Road, Chennai, - 600 084
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036
| |
Collapse
|
6
|
Tran D, Weidhaas J. Ion exchange for effective separation of 3-nitro-1,2,4-triazol-5-one (NTO) from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129215. [PMID: 35739737 DOI: 10.1016/j.jhazmat.2022.129215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The explosive 3-nitro-1,2,4-triazol-5-one (NTO) presents a physiochemical challenge for treatment of munitions wastewater. Leveraging NTO's ionic character in neutral pH wastewater allows for expanded treatment options. Four commercial drinking water anion exchange resins specific for NO3- and ClO4- were evaluated for NTO adsorption extent, adsorption kinetics, and regeneration potential. Batch studies demonstrated NTO adsorption to all resins tested (max 690 mg NTO/g resin) and that resins were regenerable with 6% NaCl. Adsorption capacities (88-99%) and desorption efficiencies (80-85%) of NTO from the resins remained stable over three loading cycles. Perchlorate selective resins adsorbed more NTO, with larger desorption efficiencies, than nitrate selective resins. Kinetic experiments demonstrated that equilibrium adsorption between NTO and resins occurs within 120 min of exposure, following the pseudo second-order model (K2 range 9.8 × 10-5 to 15 × 10-5 g resin/mg NTO/min). Intraparticle diffusion modeling suggested that boundary-layer diffusion was the predominant sorption mechanism in NTO adsorption to the resins compared to intraparticle diffusion. In synthetic wastewater mixtures of NTO, 2-4-dinitroanisole (DNAN), nitroguanidine (NQ), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), only NTO was exchanged to any great extent. This work suggests that perchlorate anion exchange resins may be a viable segregation technology for NTO from munitions wastewater as compared to activated carbon.
Collapse
Affiliation(s)
- Dana Tran
- University of Utah, 110 Central Campus Drive, Suite 2000, Salt Lake City, UT 84122, USA
| | - Jennifer Weidhaas
- University of Utah, 110 Central Campus Drive, Suite 2000, Salt Lake City, UT 84122, USA.
| |
Collapse
|
7
|
Menezes O, Owens C, Rios-Valenciana EE, Sierra-Alvarez R, Field JA, Spain JC. Designing bacterial consortia for the complete biodegradation of insensitive munitions compounds in waste streams. Biotechnol Bioeng 2022; 119:2437-2446. [PMID: 35706349 DOI: 10.1002/bit.28160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Insensitive munitions compounds (IMCs), such as 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO), are replacing conventional explosives in munitions formulations. Manufacture and use of IMCs generate waste streams in manufacturing plants and load/assemble/pack facilities. There is a lack of practical experience in executing biodegradation strategies to treat IMCs waste streams. This study establishes a proof-of-concept that bacterial consortia can be designed to mineralize IMCs and co-occurring nitroaromatics in waste streams. First, DNAN, 4-nitroanisole (4-NA), and 4-chloronitrobenzene (4-CNB) in a synthetic DNAN-manufacturing waste stream were biodegraded using an aerobic fluidized-bed reactor (FBR) inoculated with Nocardioides sp. JS 1661 (DNAN degrader), Rhodococcus sp. JS 3073 (4-NA degrader), and Comamonadaceae sp. LW1 (4-CNB degrader). No biodegradation was detected when the FBR was operated under anoxic conditions. Second, DNAN and NTO were biodegraded in a synthetic load/assemble/pack waste stream during a sequential treatment comprising: (i) aerobic DNAN biodegradation in the FBR; (ii) anaerobic NTO biotransformation to 3-amino-1,2,4-triazol-5-one (ATO) by an NTO-respiring enrichment; and (iii) aerobic ATO mineralization by an ATO-oxidizing enrichment. Complete biodegradation relied on switching redox conditions. The results provide the basis for designing consortia to treat mixtures of IMCs and related waste products by incorporating microbes with the required catabolic capabilities.
Collapse
Affiliation(s)
- Osmar Menezes
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Cameron Owens
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida, USA
| | - Erika E Rios-Valenciana
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Jim C Spain
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida, USA.,School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Elijah Akanbi O, Kim I, Cha DK, Attavane AA, Hubbard BP, Chiu PC. A Synergistic Nano‐Zerovalent Iron‐Hydrogen Peroxide Technology for Insensitive Munitions Wastewater Treatment. PROPELLANTS EXPLOSIVES PYROTECHNICS 2022. [DOI: 10.1002/prep.202100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Inyoung Kim
- Department of Civil and Environmental Engineering University of Delaware Newark DE 19716 USA
| | - Daniel K. Cha
- Department of Civil and Environmental Engineering University of Delaware Newark DE 19716 USA
| | - Adithya A. Attavane
- U. S. Army Combat Capabilities Development Command Armaments Center Picatinny Arsenal NJ 07806 USA
| | - Brian P. Hubbard
- U. S. Army Joint Program Executive Office Armaments & Ammunition Picatinny Arsenal NJ 07806 USA
| | - Pei C. Chiu
- Department of Civil and Environmental Engineering University of Delaware Newark DE 19716 USA
| |
Collapse
|
9
|
Xin D, Girón J, Fuller ME, Chiu PC. Abiotic reduction of 3-nitro-1,2,4-triazol-5-one (NTO) and other munitions constituents by wood-derived biochar through its rechargeable electron storage capacity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:316-329. [PMID: 35050280 DOI: 10.1039/d1em00447f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The environmental fate of 3-nitro-1,2,4-triazol-5-one (NTO) and other insensitive munitions constituents (MCs) is of significant concern due to their high water solubility and mobility relative to legacy MCs. Plant-based biochars have been shown to possess a considerable electron storage capacity (ESC), which enables them to undergo reversible electron transfer reactions. We hypothesized biochar can act as a rechargeable electron donor to effect abiotic reduction of MCs repeatedly through its ESC. To test this hypothesis, MC reduction experiments were performed using wood-derived biochars that were oxidized with dissolved oxygen or reduced with dithionite. Removal of aqueous NTO, an anion at circumneutral pH, by oxidized biochar was minimal and occurred through reversible adsorption. In contrast, NTO removal by reduced biochar was much more pronounced and occurred predominantly through reduction, with concomitant formation of 3-amino-1,2,4-triazol-5-one (ATO). Mass balance and electron recovery with ferricyanide further showed that (1) the amount of NTO reduced to ATO was relatively constant (85-100 μmol per gram of biochar) at pH 6-10; (2) the fraction of biochar ESC reactive toward NTO was ca. 30% of that toward ferricyanide; (3) the NTO-reactive fraction of the ESC was regenerable over multiple redox cycles. We also evaluated biochar transformation of other MCs, including nitroguanidine (NQ), 2,4-dinitroanisole (DNAN), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). While mass and electron balances could not be established due to sorption, DNAN and RDX reduction by reduced biochar was confirmed via detection of multiple reduction products. In contrast, NQ was not reduced under any of the conditions tested. This study is the first demonstration of organic contaminant degradation through biochar's rechargeable ESC. Our results indicate biochar is a regenerable electron storage medium and sorbent that can remove MCs from water through concurrent reduction and sorption, and is thus potentially useful for pollution control and remediation at military facilities.
Collapse
Affiliation(s)
- Danhui Xin
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Julián Girón
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA.
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
10
|
Murillo-Gelvez J, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Reductive Transformation of 3-Nitro-1,2,4-triazol-5-one (NTO) by Leonardite Humic Acid and Anthraquinone-2,6-disulfonate (AQDS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12973-12983. [PMID: 34533928 DOI: 10.1021/acs.est.1c03333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
3-Nitro-1,2,4-triazol-5-one (NTO) is a major and the most water-soluble constituent in the insensitive munition formulations IMX-101 and IMX-104. While NTO is known to undergo redox reactions in soils, its reaction with soil humic acid has not been evaluated. We studied NTO reduction by anthraquinone-2,6-disulfonate (AQDS) and Leonardite humic acid (LHA) reduced with dithionite. Both LHA and AQDS reduced NTO to 3-amino-1,2,4-triazol-5-one (ATO), stoichiometrically at alkaline pH and partially (50-60%) at pH ≤ 6.5. Due to NTO and hydroquinone speciation, the pseudo-first-order rate constants (kObs) varied by 3 orders of magnitude from pH 1.5 to 12.5 but remained constant from pH 4 to 10. This distinct pH dependency of kObs suggests that NTO reactivity decreases upon deprotonation and offsets the increasing AQDS reactivity with pH. The reduction of NTO by LHA deviated continuously from first-order behavior for >600 h. The extent of reduction increased with pH and LHA electron content, likely due to greater reactivity of and/or accessibility to hydroquinone groups. Only a fraction of the electrons stored in LHA was utilized for NTO reduction. Electron balance analysis and LHA redox potential profile suggest that the physical conformation of LHA kinetically limited NTO access to hydroquinone groups. This study demonstrates the importance of carbonaceous materials in controlling the environmental fate of NTO.
Collapse
Affiliation(s)
- Jimmy Murillo-Gelvez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
- Mutch Associates LLC, Ramsey, New Jersey 07446, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
11
|
RoyChowdhury A, Mukherjee P, Panja S, Datta R, Christodoulatos C, Sarkar D. Evidence for Phytoremediation and Phytoexcretion of NTO from Industrial Wastewater by Vetiver Grass. Molecules 2020; 26:molecules26010074. [PMID: 33375266 PMCID: PMC7796298 DOI: 10.3390/molecules26010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
The use of insensitive munitions such as 3-nitro-1,2,4-triazol-5-one (NTO) is rapidly increasing and is expected to replace conventional munitions in the near future. Various NTO treatment technologies are being developed for the treatment of wastewater from industrial munition facilities. This is the first study to explore the potential phytoremediation of industrial NTO-wastewater using vetiver grass (Chrysopogon zizanioides L.). Here, we present evidence that vetiver can effectively remove NTO from wastewater, and also translocated NTO from root to shoot. NTO was phytotoxic and resulted in a loss of plant biomass and chlorophyll. The metabolomic analysis showed significant differences between treated and control samples, with the upregulation of specific pathways such as glycerophosphate metabolism and amino acid metabolism, providing a glimpse into the stress alleviation strategy of vetiver. One of the mechanisms of NTO stress reduction was the excretion of solid crystals. Scanning electron microscopy (SEM), electrospray ionization mass spectrometry (ESI-MS), and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of NTO crystals in the plant exudates. Further characterization of the exudates is in progress to ascertain the purity of these crystals, and if vetiver could be used for phytomining NTO from industrial wastewater.
Collapse
Affiliation(s)
- Abhishek RoyChowdhury
- Environmental Science and Natural Resources Program, School of Science, Navajo Technical University, Crownpoint, NM 87313, USA;
| | - Pallabi Mukherjee
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (P.M.); (S.P.)
| | - Saumik Panja
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (P.M.); (S.P.)
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA;
| | | | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (P.M.); (S.P.)
- Correspondence: ; Tel.: +1-201-2168028
| |
Collapse
|
12
|
Cárdenas-Hernández PA, Anderson KA, Murillo-Gelvez J, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Reduction of 3-Nitro-1,2,4-Triazol-5-One (NTO) by the Hematite-Aqueous Fe(II) Redox Couple. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12191-12201. [PMID: 32902277 DOI: 10.1021/acs.est.0c03872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3-Nitro-1,2,4-triazol-5-one (NTO) is an insensitive munition compound (MC) that has replaced legacy MC. NTO can be highly mobile in soil and groundwater due to its high solubility and anionic nature, yet little is known about the processes that control its environmental fate. We studied NTO reduction by the hematite-Fe2+ redox couple to assess the importance of this process for the attenuation and remediation of NTO. Fe2+(aq) was either added (type I) or formed through hematite reduction by dithionite (type II). In the presence of both hematite and Fe2+(aq), NTO was quantitatively reduced to 3-amino-1,2,4-triazol-5-one following first-order kinetics. The surface area-normalized rate constant (kSA) showed a strong pH dependency between 5.5 and 7.0 and followed a linear free energy relationship (LFER) proposed in a previous study for nitrobenzene reduction by iron oxide-Fe2+ couples, i.e., log kSA = -(pe + pH) + constant. Sulfite, a major dithionite oxidation product, lowered kSA in type II system by ∼10-fold via at least two mechanisms: by complexing Fe2+ and thereby raising pe, and by making hematite more negatively charged and hence impeding NTO adsorption. This study demonstrates the importance of iron oxide-Fe2+ in controlling NTO transformation, presents an LFER for predicting NTO reduction rate, and illustrates how solutes can shift the LFER by interacting with either iron species.
Collapse
Affiliation(s)
- Paula A Cárdenas-Hernández
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Katelyn A Anderson
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jimmy Murillo-Gelvez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
- Mutch Associates LLC, Ramsey, New Jersey 07446, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
13
|
Chen J, Tong T, Jiang X, Xie S. Biodegradation of sulfonamides in both oxic and anoxic zones of vertical flow constructed wetland and the potential degraders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115040. [PMID: 32593905 DOI: 10.1016/j.envpol.2020.115040] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
The pollution of wastewater with antibiotics and antibiotics resistance genes has attracted public concerns about ecosystem and global health. Swine wastewater can contain high concentrations of antibiotics, especially sulfonamides, even after full-scale wastewater treatment. In this study, mesocosm-scale vertical flow constructed wetlands (VF-CWs) were applied to abate nutrients and antibiotics in swine wastewater containing sulfonamides. VF-CWs performed well in the removal of both nutrients and antibiotics. Sulfonamides did not influence total organic carbon (TOC) and total phosphorus (TP) removal, and even slightly enhanced NH4+-N removal. High removal efficiencies (26.42-84.05%) were achieved for sulfadiazine (SDZ), sulfamethoxazole (SMX) and sulfamethazine (SMZ). Together with lab-scale sorption and biodegradation experiments, microbial degradation was found to be the most important removal mechanism for sulfonamides in VF-CWs. Sulfonamides addition increased bacterial alpha-diversity and changed microbial community structure. Moreover, antibiotics promoted antibiotic-resistant or -degrading bacteria. Bacillus, Geobacter and other seven genera were correlated with sulfonamides reduction under either aerobic or anaerobic condition. In summary, VF-CW is a suitable alternative for swine wastewater treatment, and biodegradation plays the key role in sulfonamides abatement. Main findings of the work. This was the first work to combine bacterial community analysis with microcosm experiments to uncover the major removal mechanism of sulfonamides in constructed wetlands.
Collapse
Affiliation(s)
- Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinshu Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing, 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Jog KV, Sierra-Alvarez R, Field JA. Rapid biotransformation of the insensitive munitions compound, 3-nitro-1,2,4-triazol-5-one (NTO), by wastewater sludge. World J Microbiol Biotechnol 2020; 36:67. [DOI: 10.1007/s11274-020-02843-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/15/2020] [Indexed: 02/03/2023]
|
15
|
Lent EM, Narizzano AM, Koistinen KA, Johnson MS. Chronic oral toxicity of 3-nitro-1,2,4-triazol-5-one (NTO) in rats. Regul Toxicol Pharmacol 2020; 112:104609. [PMID: 32027946 DOI: 10.1016/j.yrtph.2020.104609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 01/08/2023]
Abstract
To evaluate the effects of chronic exposure to 3-nitro-1,2,4-triazol-5-one (nitrotriazolone, NTO), male and female rats were given ad libitum access to NTO in drinking water at concentrations of 0, 36, 110, 360, 1100, and 3600 mg/L for one year. NTO did not affect body weight, body weight gain, or food consumption in either sex. No treatment-related effects were observed in clinical chemistry and hematology parameters at the 6 month or one year sampling. At both the interim and final sampling, males and females from the 3600 mg/L group produced smaller volumes of urine that was darker, more concentrated, and contained more bilirubin than the controls. Total and motile sperm counts were not affected by NTO treatment. Absolute and relative organ weights did not differ between control and NTO treated groups for either sex. Spontaneous age-related neoplasms occurred in controls and NTO groups at rates consistent with published historic controls. NTO was generally non-toxic in females at the doses tested. Toxicity in males was limited to testicular toxicity as demonstrated in previous studies. Chronic exposure did not result in testicular toxicity at lower doses and the toxicity observed only in the high dose group in this study is less severe than that observed in shorter exposures of previous studies, suggesting differences may be associated with influences of study design on kinetics. A Benchmark Dose (BMD) of 1604 mg/L (76 mg/kg-day) and a Benchmark Dose Lower Bound (BMDL10) of 921 mg/L (44 mg/kg-day) were determined for chronic effects of NTO in male rats.
Collapse
Affiliation(s)
- Emily May Lent
- Toxicology Directorate. Army Public Health Center, Aberdeen Proving Ground, MD, USA.
| | - Allison M Narizzano
- Toxicology Directorate. Army Public Health Center, Aberdeen Proving Ground, MD, USA
| | - Keith A Koistinen
- Toxicology Directorate. Army Public Health Center, Aberdeen Proving Ground, MD, USA
| | - Mark S Johnson
- Toxicology Directorate. Army Public Health Center, Aberdeen Proving Ground, MD, USA
| |
Collapse
|