1
|
Liu Y, Li M, Wan QL, Wang X, Mortimer M, Fang WD, Guo LH. Recent advances in bioassays for assessing the toxicity of environmental contaminants in effect-directed analysis. J Environ Sci (China) 2025; 155:343-358. [PMID: 40246470 DOI: 10.1016/j.jes.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 04/19/2025]
Abstract
Chemical cocktails in the environment can cause adverse impacts on ecosystems and human health even at low concentrations. Effect-directed analysis (EDA) has proven to be very valuable in identifying key toxic substances in environmental mixtures. For this, it is important to carefully select accurate bioassays from a wide range of tests for EDA when applying it to actual environmental samples. This article reviews studies published from 2014 to 2023 that have applied EDA and summarizes the bioassays and their corresponding biological effects. A total of 127 studies were selected from 591 publications evaluating the toxic effects of environmental samples, including wastewater, surface water, and sediments. Here, bioassays used in EDA are summarized, including the assays that measure specific receptor-mediated modes of action (MOA), induction of xenobiotic metabolism pathways, and induction of adaptive stress response pathways using either in vitro or in vivo bioassays. Also, the identified substances using EDA are discussed based on their MOA. The importance of EDA in establishing a comprehensive approach for the detection of environmental contaminants using bioanalytical methods is emphasized. The current limitations and benefits of using EDA in practical applications are outlined and strategies for moving forward are proposed.
Collapse
Affiliation(s)
- Yao Liu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China
| | - Minjie Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Qi-Lin Wan
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Xun Wang
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Wen-Di Fang
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Rosenberger T, Bell AM, Reifferscheid G, Smith KEC, Schäffer A, Ternes TA, Buchinger S. Extrapolation of cytotoxic masked effects in planar in vitro assays. Anal Bioanal Chem 2024; 416:3519-3532. [PMID: 38656365 PMCID: PMC11525312 DOI: 10.1007/s00216-024-05302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
The masking of specific effects in in vitro assays by cytotoxicity is a commonly known phenomenon. This may result in a partial or complete loss of effect signals. For common in vitro assays, approaches for identifying and quantifying cytotoxic masking are partly available. However, a quantification of cytotoxicity-affected signals is not possible. As an alternative, planar bioassays that combine high-performance thin layer chromatography with in vitro assays, such as the planar yeast estrogen screen (p-YES), might allow for a quantification of cytotoxically affected signals. Affected signals form a typical ring structure with a supressed or completely lacking centre that results in a double peak chromatogram. This study investigates whether these double peaks can be used for fitting a peak function to extrapolate the theoretical, unaffected signals. The precision of the modelling was evaluated for four individual peak functions, using 42 ideal, undistorted peaks from estrogenic model compounds in the p-YES. Modelled ED50-values from bisphenol A (BPA) experiments with cytotoxically disturbed signals were 13 times higher than for the apparent data without compensation for cytotoxicity (320 ± 63 ng versus 24 ± 17 ng). This finding has a high relevance for the modelling of mixture effects according to concentration addition that requires unaffected, complete dose-response relationships. Finally, we applied the approach to results of a p-YES assay on leachate samples of an elastomer material used in water engineering. In summary, the fitting approach enables the quantitative evaluation of cytotoxically affected signals in planar in vitro assays and also has applications for other fields of chemical analysis like distorted chromatography signals.
Collapse
Affiliation(s)
- Timothy Rosenberger
- Department G - Qualitative Hydrology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Anna Maria Bell
- Department G - Qualitative Hydrology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Georg Reifferscheid
- Department G - Qualitative Hydrology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Kilian E C Smith
- Environmental Chemistry - Department of Water, Environment, Construction and Safety, University of Applied Sciences Magdeburg-Stendal, Breitscheidstraße 2, 39114, Magdeburg, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Thomas A Ternes
- Department G - Qualitative Hydrology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Sebastian Buchinger
- Department G - Qualitative Hydrology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany.
| |
Collapse
|
3
|
Ruan T, Li P, Wang H, Li T, Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem Rev 2023; 123:10584-10640. [PMID: 37531601 DOI: 10.1021/acs.chemrev.3c00056] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made. In this review, the basic principles on recognition of environmental organic pollutants are overviewed. Complementary analytical methodologies (i.e., quantitative structure-activity relationship prediction, mass spectrometric nontarget screening, and effect-directed analysis) and experimental platforms are briefly described. The stages of technique development and/or essential parts of the analytical workflow for each of the methodologies are then reviewed. Finally, plausible technique paths and applications of the future nontarget screening methods, interdisciplinary techniques for achieving toxicant identification, and burgeoning strategies on risk assessment of chemical cocktails are discussed.
Collapse
Affiliation(s)
- Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Lee J, Hong S, An SA, Khim JS. Methodological advances and future directions of microalgal bioassays for evaluation of potential toxicity in environmental samples: A review. ENVIRONMENT INTERNATIONAL 2023; 173:107869. [PMID: 36905773 DOI: 10.1016/j.envint.2023.107869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Microalgal bioassays are widely applied to evaluate the potential toxicity of various persistent toxic substances in environmental samples due to multiple advantages, including high sensitivity, short test duration, and cost-effectiveness. Microalgal bioassay is gradually developing in method, and the scope of application to environmental samples is also expanding. Here, we reviewed the published literature on microalgal bioassays for environmental assessments, focusing on types of samples, sample preparation methods, and endpoints, and highlighted key scientific advancements. Bibliographic analysis was performed with the keywords 'microalgae' and 'toxicity' or 'bioassay', and 'microalgal toxicity'; 89 research articles were selected and reviewed. Traditionally, most studies implementing microalgal bioassays focused on water samples (44%) with passive samplers (38%). Studies using the direct exposure method (41%) of injecting microalgae into sampled water mainly evaluated toxic effects by growth inhibition (63%). Recently, various automated sampling techniques, in situ bioanalytical methods with multiple endpoints, and targeted and non-targeted chemical analyses have been applied. More research is needed to identify causative toxicants affecting microalgae and to quantify the cause-effect relationships. This study provides the first comprehensive overview of recent advances in microalgal bioassays performed with environmental samples, suggesting future research directions based on current understanding and limitations.
Collapse
Affiliation(s)
- Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Seong-Ah An
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Planar chromatography-bioassays for the parallel and sensitive detection of androgenicity, anti-androgenicity and cytotoxicity. J Chromatogr A 2022; 1684:463582. [DOI: 10.1016/j.chroma.2022.463582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022]
|
6
|
Li B, Stuart DD, Shanta PV, Pike CD, Cheng Q. Probing Herbicide Toxicity to Algae ( Selenastrum capricornutum) by Lipid Profiling with Machine Learning and Microchip/MALDI-TOF Mass Spectrometry. Chem Res Toxicol 2022; 35:606-615. [PMID: 35289601 DOI: 10.1021/acs.chemrestox.1c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS)-based lipid profiling is a powerful method to study the cytotoxicity of chemical exposure to microorganisms at the single cell level. We report here a combined approach of machine learning (ML) and microchip-based MALDI-time of flight (TOF) mass spectrometry to investigate the cytotoxic effect of herbicides on algae through single cell lipid profiling. Algal species Selenastrum capricornutum was chosen as the target system, and its exposure to different doses of common chemical herbicides and the resulting cytotoxic behaviors under various stress conditions were characterized. A lipid library for S. capricornutum has been established with 63 identified lipids that include glycosyldiacylglycerols and triacylglycerols. We demonstrated that major alternations occurred for lipids with functional groups of digalactosyldiacylglycerol (DGDG), triacylglycerol (TAG), and monogalactosyldiacylglycerol (MGDG). DGDG was shown to decrease upon exposure to herbicides of norflurazon and atrazine, while some MGDG and TAG lipids would increase for norflurazon. Compared to other algae, S. capricornutum was more strongly impacted by norflurazon than atrazine while the latter was observed to have a greater effect on C. reinhardtii. Machine learning algorithms have been applied to improve the classification of herbicide impact and help identify lipid species affected by the chemical exposure. A total of 69 machine learning models were trained and tested for the identification of ideal algorithms in the classification process, in which flexible discriminant analysis and support vector machine model were found to be the most accurate and consistent. The ML algorithms accurately differentiated herbicide impact and have identified cytotoxic differences that were previously hidden. The results suggest that herbicides express toxicity among different algae likely on the basis of metabolic differences. The ML-assisted method proves to be highly effective and can provide an advanced technological platform for probing cytotoxicity for bacterial species and in metabolic pathway analysis.
Collapse
|
7
|
Riegraf C, Reifferscheid G, Moscovici L, Shakibai D, Hollert H, Belkin S, Buchinger S. Coupling high-performance thin-layer chromatography with a battery of cell-based assays reveals bioactive components in wastewater and landfill leachates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112092. [PMID: 33690008 DOI: 10.1016/j.ecoenv.2021.112092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Over the last two decades, effect-directed analysis (EDA) gained importance as a seminal screening tool for tracking biological effects of environmental organic micro-pollutants (MPs). As EDA using high-performance liquid chromatography and bioassays is costly and time consuming, recent implementations of this approach have combined high-performance thin-layer chromatography (HPTLC) with effect-based methods (EBMs) using cell-based bioassays, enabling the detection of estrogenic, androgenic, genotoxic, photosystem II (PSII)- inhibiting, and dioxin-like sample components on a HPTLC plate. In the present study, the developed methodologies were applied as a HPTLC-based bioassay battery, to investigate toxicant elimination efficiency of wastewater treatment plants (WWTPs), and to characterize the toxic potential of landfill leachates. Activity levels detected in untreated landfill leachates, expressed as reference compound equivalence (EQ) concentration, were up to 16.8 µg β-naphthoflavone-EQ L-1 (indicating the degree of dioxin-like activity), 1.9 µg estradiol-EQ L-1 (estrogenicity) and 8.3 µg diuron-EQ L‑1 (PSII-inhibition), dropping to maximal concentrations of 47 ng β-naphthoflavone-EQ L-1, 0.7 µg estradiol-EQ L-1 and 53.1 ng diuron-EQ L-1 following treatment. Bisphenol A (BPA) is suggested to be the main contributor to estrogenic activity, with concentrations determined by the planar yeast estrogen screen corresponding well to results from chemical analysis. In the investigated WWTP samples, a decrease of estrogenic activity of 6-100% was observed following treatment for most of the active fractions, except of a 20% increase in one fraction (Rf = 0.568). In contrast, androgenicity with concentrations up to 640 ng dihydrotestosterone-EQ L-1 was completely removed by treatment. Interestingly, genotoxic activity increased over the WWTP processes, releasing genotoxic fractions into receiving waters. We propose this combined HPTLC and EBM battery to contribute to an efficient, cheap, fast and robust screening of environmental samples; such an assay panel would allow to gain an estimate of potential biological effects for prioritization prior to substance identification, and its routine application will support an inexpensive identification of the toxicity drivers as a first tier in an EDA strategy.
Collapse
Affiliation(s)
- Carolin Riegraf
- Federal Institute of Hydrology, Department G3 Biochemistry and Ecotoxicology, Am Mainzer Tor 1, D-56068 Koblenz, Germany; RWTH Aachen University, Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany
| | - Georg Reifferscheid
- Federal Institute of Hydrology, Department G3 Biochemistry and Ecotoxicology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Liat Moscovici
- Hebrew University of Jerusalem, Institute of Life Sciences, Department of Plant and Environmental Sciences, Jerusalem 9190401, Israel
| | - Dror Shakibai
- Hebrew University of Jerusalem, Institute of Life Sciences, Department of Plant and Environmental Sciences, Jerusalem 9190401, Israel
| | - Henner Hollert
- RWTH Aachen University, Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, D-60438 Frankfurt am Main, Germany
| | - Shimshon Belkin
- Hebrew University of Jerusalem, Institute of Life Sciences, Department of Plant and Environmental Sciences, Jerusalem 9190401, Israel
| | - Sebastian Buchinger
- Federal Institute of Hydrology, Department G3 Biochemistry and Ecotoxicology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
| |
Collapse
|
8
|
De Baat ML, Van der Oost R, Van der Lee GH, Wieringa N, Hamers T, Verdonschot PFM, De Voogt P, Kraak MHS. Advancements in effect-based surface water quality assessment. WATER RESEARCH 2020; 183:116017. [PMID: 32673894 DOI: 10.1016/j.watres.2020.116017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Legally-prescribed chemical monitoring is unfit for determining the pollution status of surface waters, and there is a need for improved assessment methods that consider the aggregated risk of all bioavailable micropollutants present in the aquatic environment. Therefore, the present study aimed to advance effect-based water quality assessment by implementing methodological improvements and to gain insight into contamination source-specific bioanalytical responses. Passive sampling of non-polar and polar organic compounds and metals was applied at 14 surface water locations that were characterized by two major anthropogenic contamination sources, agriculture and wastewater treatment plant (WWTP) effluent, as well as reference locations with a low expected impact from micropollutants. Departing from the experience gained in previous studies, a battery of 20 in vivo and in vitro bioassays was composed and subsequently exposed to the passive sampler extracts. Next, the bioanalytical responses were divided by their respective effect-based trigger values to obtain effect-based risk quotients, which were summed per location. These cumulative ecotoxicological risks were lowest for reference locations (4.3-10.9), followed by agriculture locations (11.3-27.2) and the highest for WWTP locations (12.8-47.7), and were mainly driven by polar organic contaminants. The bioanalytical assessment of the joint risks of metals and (non-)polar organic compounds resulted in the successful identification of pollution source-specific ecotoxicological risk profiles: none of the bioassays were significantly associated with reference locations nor with multiple location types, while horticulture locations were significantly characterized by anti-AR and anti-PR activity and cytotoxicity, and WWTP sites by ERα activity and toxicity in the in vivo bioassays. It is concluded that the presently employed advanced effect-based methods can readily be applied in surface water quality assessment and that the integration of chemical- and effect-based monitoring approaches will foster future-proof water quality assessment strategies on the road to a non-toxic environment.
Collapse
Affiliation(s)
- M L De Baat
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands.
| | - R Van der Oost
- Department of Technology, Research and Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands
| | - G H Van der Lee
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands
| | - N Wieringa
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands
| | - T Hamers
- Department of Environment & Health, Vrije Universiteit Amsterdam, the Netherlands
| | - P F M Verdonschot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands; Wageningen Environmental Research, Wageningen, UR, the Netherlands
| | - P De Voogt
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands
| | - M H S Kraak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands
| |
Collapse
|
9
|
Bergmann AJ, Simon E, Schifferli A, Schönborn A, Vermeirssen ELM. Estrogenic activity of food contact materials-evaluation of 20 chemicals using a yeast estrogen screen on HPTLC or 96-well plates. Anal Bioanal Chem 2020; 412:4527-4536. [PMID: 32458016 PMCID: PMC7329773 DOI: 10.1007/s00216-020-02701-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/08/2020] [Accepted: 05/11/2020] [Indexed: 11/29/2022]
Abstract
Food contact materials (FCM) may contain complex mixtures of estrogenic chemicals. A yeast estrogen screen performed on high performance thin-layer chromatography plates (planar-YES, P-YES) is promising for analysis of such mixtures, as it could allow for better elucidation of effects compared with established methods in microtiter plates. However, the P-YES has not been directly compared with established methods. We compared the performance of a microtiter plate YES (lyticase-YES, L-YES) to P-YES on silica gel HPTLC plates using 17β-estradiol (E2), 20 chemicals representative of migrants from plastic FCM, and three migrates of coated metal food cans. Effective doses (ED10, ED50) and estradiol equivalencies were calculated for each chemical. Thirteen chemicals had calculable EDs in the L-YES or P-YES, with average EDs 13-fold (range 0.63-36) more potent in P-YES than in the L-YES. Normalized to E2, the median estrogenicity was within 1.5-fold (0.43-8.8) between the assays. Therefore, P-YES was as or more sensitive than L-YES but potencies relative to E2 were comparable between assays. With chromatography, the P-YES detected estrogenicity in coated metal cans, effects that were unmeasurable in L-YES. With the sample preparation methods used in this study, both YES assays are sufficiently sensitive to detect bisphenol A below the specific migration limit for plastic packaging (0.05 mg/kg food). This study demonstrates that P-YES outperforms L-YES because it is more sensitive, provides comparable estradiol equivalents, and circumvents confounding mixture effects. The P-YES will be useful for routine monitoring of FCM and toxicant identification in problematic materials. Graphical abstract.
Collapse
Affiliation(s)
- Alan J Bergmann
- Swiss Centre for Applied Ecotoxicology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| | - Eszter Simon
- Swiss Centre for Applied Ecotoxicology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Andrea Schifferli
- Swiss Centre for Applied Ecotoxicology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Andreas Schönborn
- Zürich University of Applied Sciences, Grüental 14, 8820, Wädenswil, Switzerland
| | - Etiënne L M Vermeirssen
- Swiss Centre for Applied Ecotoxicology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| |
Collapse
|