1
|
Bajda T, Grela A, Pamuła J, Kuc J, Klimek A, Matusik J, Franus W, Alagarsamy SKK, Danek T, Gara P. Using Zeolite Materials to Remove Pharmaceuticals from Water. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3848. [PMID: 39124512 PMCID: PMC11313275 DOI: 10.3390/ma17153848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Pharmaceutical drugs, including antibiotics and hormonal agents, pose a significant threat to environmental and public health due to their persistent presence in aquatic environments. Colistin (KOL), fluoxetine (FLUO), amoxicillin (AMO), and 17-alpha-ethinylestradiol (EST) are pharmaceuticals (PhCs) that frequently exceed regulatory limits in water and wastewater. Current removal methods are mainly ineffective, necessitating the development of more efficient techniques. This study investigates the use of synthetic zeolite (NaP1_FA) and zeolite-carbon composites (NaP1_C), both derived from fly ash (FA), for the removal of KOL, FLUO, AMO, and EST from aquatic environments. Batch adsorption experiments assessed the effects of contact time, adsorbent dosage, initial concentration, and pH on the removal efficiency of the pharmaceuticals. The results demonstrated that NaP1_FA and NaP1_C exhibited high removal efficiencies for all tested pharmaceuticals, achieving over 90% removal within 2 min of contact time. The Behnajady-Modirshahla-Ghanbary (BMG) kinetic model best described the adsorption processes. The most effective sorption was observed with a sorbent dose of 1-2 g L-1. Regarding removal efficiency, the substances ranked in this order: EST was the highest, followed by AMO, KOL, and FLUO. Sorption efficiency was influenced by the initial pH of the solutions, with optimal performance observed at pH 2-2.5 for KOL and FLUO. The zeolite-carbon composite NaP1_C, due to its hydrophobic nature, showed superior sorption efficiency for hydrophobic pharmaceuticals like FLUO and EST. The spectral analysis reveals that the primary mechanism for immobilizing the tested PhCs on zeolite sorbents is mainly due to physical sorption. This study underscores the potential of utilizing inexpensive, fly ash-derived zeolites and zeolite-carbon composites to remove pharmaceuticals from water effectively. These findings contribute to developing advanced materials for decentralized wastewater treatment systems, directly addressing pollution sources in various facilities.
Collapse
Affiliation(s)
- Tomasz Bajda
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (J.M.); (T.D.)
| | - Agnieszka Grela
- Faculty of Environmental and Power Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland; (A.G.); (J.P.)
| | - Justyna Pamuła
- Faculty of Environmental and Power Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland; (A.G.); (J.P.)
| | - Joanna Kuc
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland;
| | - Agnieszka Klimek
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (J.M.); (T.D.)
| | - Jakub Matusik
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (J.M.); (T.D.)
| | - Wojciech Franus
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, ul. Nadbystrzycka 40, 20-618 Lublin, Poland;
| | | | - Tomasz Danek
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (J.M.); (T.D.)
| | - Paweł Gara
- Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
2
|
Römer CI, Ashauer R, Escher BI, Höfer K, Muehlebach M, Sadeghi-Tehran P, Sherborne N, Buchholz A. Fate of synthetic chemicals in the agronomic insect pest Spodoptera littoralis: experimental feeding-contact assay and toxicokinetic model. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:982-992. [PMID: 38691062 DOI: 10.1093/jee/toae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Insecticides prevent or reduce insect crop damage, maintaining crop quality and quantity. Physiological traits, such as an insect's feeding behavior, influence the way insecticides are absorbed and processed in the body (toxicokinetics), which can be exploited to improve species selectivity. To fully understand the uptake of insecticides, it is essential to study their total uptake and toxicokinetics independent of their toxic effects on insects. We studied the toxicokinetics (TK) of insecticidally inactive test compounds incorporating agro-like structural motifs in larvae of the Egyptian cotton leafworm (Spodoptera littoralis, Lepidoptera), and their distribution across all biological matrices, using laboratory experiments and modeling. We measured Spodoptera larval behavior and temporal changes of whole-body concentrations of test compounds during feeding on treated soybean leaf disks and throughout a subsequent depuration period. Differences in the distribution of the total quantities of compounds were found between the biological matrices leaf, larva, and feces. Rate constants for uptake and elimination of test compounds were derived by calibrating a toxicokinetic model to the whole-body concentrations. Uptake and elimination rate constants depended on the physicochemical properties of the test compounds. Increasing hydrophobicity increased the bioaccumulation potential of test compounds. Incomplete quantities in larval matrices indicated that some compounds may undergo biotransformation. As fecal excretion was a major elimination pathway, the variable time of release and number of feces pellets led to a high variability in the body burden. We provide quantitative models to predict the toxicokinetics and bioaccumulation potential of inactive insecticide analogs (parent compounds) in Spodoptera.
Collapse
Affiliation(s)
- Clara I Römer
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
- Department of Geosciences, Eberhard Karls University Tübingen, Environmental Toxicology, Tübingen 72076, Germany
| | - Roman Ashauer
- Syngenta Crop Protection AG, Basel 4058, Switzerland
- Environment Department, University of York, Wentworth Way, Heslington, York YO10 5NG, UK
| | - Beate I Escher
- Department of Geosciences, Eberhard Karls University Tübingen, Environmental Toxicology, Tübingen 72076, Germany
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Kristin Höfer
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| | - Michel Muehlebach
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| | - Pouria Sadeghi-Tehran
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| | | | - Anke Buchholz
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| |
Collapse
|
3
|
Raths J, Švara V, Lauper B, Fu Q, Hollender J. Speed it up: How temperature drives toxicokinetics of organic contaminants in freshwater amphipods. GLOBAL CHANGE BIOLOGY 2023; 29:1390-1406. [PMID: 36448880 PMCID: PMC10107603 DOI: 10.1111/gcb.16542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 05/26/2023]
Abstract
The acceleration of global climate change draws increasing attention towards interactive effects of temperature and organic contaminants. Many studies reported a higher sensitivity of aquatic invertebrates towards contaminant exposure with increasing or fluctuating temperatures. The hypothesis of this study was that the higher sensitivity of invertebrates is associated with the changes of toxicokinetic processes that determine internal concentrations of contaminants and consequently toxic effects. Therefore, the influence of temperature on toxicokinetic processes and the underlying mechanisms were studied in two key amphipod species (Gammarus pulex and Hyalella azteca). Bioconcentration experiments were carried out at four different temperatures with a mixture of 12 exposure relevant polar organic contaminants. Tissue and medium samples were taken in regular intervals and analysed by online solid-phase extraction liquid chromatography high-resolution tandem mass spectrometry. Subsequently, toxicokinetic rates were modelled and analysed in dependence of the exposure temperature using the Arrhenius equation. An exponential relationship between toxicokinetic rates versus temperature was observed and could be well depicted by applying the Arrhenius equation. Due to a similar Arrhenius temperature of uptake and elimination rates, the bioconcentration factors of the contaminants were generally constant across the temperature range. Furthermore, the Arrhenius temperature of the toxicokinetic rates and respiration was mostly similar. However, in some cases (citalopram, cyprodinil), the bioconcentration factor appeared to be temperature dependent, which could potentially be explained by the influence of temperature on active uptake mechanisms or biotransformation. The observed temperature effects on toxicokinetics may be particularly relevant in non-equilibrated systems, such as exposure peaks in summer as exemplified by the exposure modelling of a field measured pesticide peak where the internal concentrations increased by up to fourfold along the temperature gradient. The results provide novel insights into the mechanisms of chemical uptake, biotransformation and elimination in different climate scenarios and can improve environmental risk assessment.
Collapse
Affiliation(s)
- Johannes Raths
- Department of Environmental ChemistrySwiss Federal Institute of Aquatic Science and Technology – EawagDübendorfSwitzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH ZürichZürichSwitzerland
| | - Vid Švara
- UNESCO Chair on Sustainable Management of Conservation Areas, Engineering & ITCarinthia University of Applied SciencesVillachAustria
- Department of Effect‐Directed AnalysisHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Benedikt Lauper
- Department of Environmental ChemistrySwiss Federal Institute of Aquatic Science and Technology – EawagDübendorfSwitzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH ZürichZürichSwitzerland
| | - Qiuguo Fu
- Department of Environmental ChemistrySwiss Federal Institute of Aquatic Science and Technology – EawagDübendorfSwitzerland
| | - Juliane Hollender
- Department of Environmental ChemistrySwiss Federal Institute of Aquatic Science and Technology – EawagDübendorfSwitzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH ZürichZürichSwitzerland
| |
Collapse
|
4
|
Fu Q, Scheidegger A, Laczko E, Hollender J. Metabolomic Profiling and Toxicokinetics Modeling to Assess the Effects of the Pharmaceutical Diclofenac in the Aquatic Invertebrate Hyalella azteca. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7920-7929. [PMID: 34086445 DOI: 10.1021/acs.est.0c07887] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The exposure of ecologically critical invertebrate species to biologically active pharmaceuticals poses a serious risk to the aquatic ecosystem. Yet, the fate and toxic effects of pharmaceuticals on these nontarget aquatic invertebrates and the underlying mechanisms are poorly studied. Herein, we investigated the toxicokinetic (TK) processes (i.e., uptake, biotransformation, and elimination) of the pharmaceutical diclofenac and its biotransformation in the freshwater invertebrate Hyalella azteca. We further employed mass spectrometry-based metabolomics to assess the toxic effects of diclofenac on the metabolic functions of H. azteca exposed to environmentally relevant concentrations (10 and 100 μg/L). The TK results showed a quick uptake of diclofenac by H. azteca (maximum internal concentration of 1.9 μmol/kg) and rapid formation of the conjugate diclofenac taurine (maximum internal concentration of 80.6 μmol/kg), indicating over 40 times higher accumulation of diclofenac taurine than that of diclofenac in H. azteca. Depuration kinetics demonstrated that the elimination of diclofenac taurine was 64 times slower than diclofenac in H. azteca. Metabolomics results suggested that diclofenac inhibited prostaglandin synthesis and affected the carnitine shuttle pathway at environmentally relevant concentrations. These findings shed light on the significance of the TK process of diclofenac, especially the formation of diclofenac taurine, as well as the sublethal effects of diclofenac on the bulk metabolome of H. azteca. Combining the TK processes and metabolomics provides complementary insights and thus a better mechanistic understanding of the effects of diclofenac in aquatic invertebrates.
Collapse
Affiliation(s)
- Qiuguo Fu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Andreas Scheidegger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Endre Laczko
- Functional Genomics Center Zurich, ETH, University of Zurich, 8057 Zurich, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
5
|
Li R, Braekevelt S, De Carfort JLN, Hussain S, Bollmann UE, Bester K. Laboratory and pilot evaluation of aquaporin-based forward osmosis membranes for rejection of micropollutants. WATER RESEARCH 2021; 194:116924. [PMID: 33618109 DOI: 10.1016/j.watres.2021.116924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Aquaporin-based forward osmosis (AQP FO) membranes were applied both in laboratory- and pilot-scale for removing micropollutants from water. The effect of operating parameters (feed flow, draw flow, and transmembrane pressure) on the i) rejection of micropollutants, ii) water flux, iii) reverse salt flux, and iv) water recovery of the AQP FO membrane modules was studied. Among the 21 micropollutants spiked, only four compounds, atenolol, propranolol, metoprolol, and citalopram, permeated through the AQP FO membranes to an extent that they could be quantified in the draw solutions of both the laboratory and pilot systems. The rejection rates, based on the full mass balance calculations, were between 96.1% and 99.7%, and all the other 17 compounds showed rejection exceeding 90% on both systems. The pilot AQP FO system was further employed for six days to treat effluent from a membrane bioreactor (MBR) treating municipal wastewater. 35 micropollutants were investigated. 27 of these were identified and quantified in the MBR effluent. Minute fractions of gabapentin, benzotriazole, and metoprolol were detected passing through the AQP FO membranes into the draw side with a constant rejection of around 99.2%, 95.4%, and 99.9%. Almost all other micropollutants' minimum rejection rates exceeded 80%.
Collapse
Affiliation(s)
- Rui Li
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark
| | | | - Johan Le Nepvou De Carfort
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Soltofts Plads 229, DK-2800 Kgs. Lyngby, Denmark
| | - Shazad Hussain
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Soltofts Plads 229, DK-2800 Kgs. Lyngby, Denmark
| | - Ulla E Bollmann
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark.
| |
Collapse
|
6
|
Arlos MJ, Focks A, Hollender J, Stamm C. Improving Risk Assessment by Predicting the Survival of Field Gammarids Exposed to Dynamic Pesticide Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12383-12392. [PMID: 32900191 DOI: 10.1021/acs.est.0c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Exposure assessment of pesticides has substantially improved over time, with methods that now include a combination of advanced analytical techniques and fate/transport models to evaluate their spatiotemporal distribution. However, the current regulatory environmental risk assessment considers thresholds from laboratory studies completed under standardized conditions that do not reflect environmental dynamics. Using the General Unified Threshold model for Survival (GUTS) model framework, we predicted the impact of time-varying pesticide exposures on the survival of gammarids in a small agricultural stream. The LP50 values were used as an additional metric for assessing risks (defined in GUTS as a multiplication factor applied to the concentration time series to induce 50% mortality by the end of exposure). Although real-case exposures to individual pesticides were predicted to produce little to no impact on survival, the LP50 values indicate acute (LP50 ≤ 100) and/or chronic (LP50 ≤ 10) toxicities for azoxystrobin, chlorpyrifos, diazinon, and imidacloprid, while risk to propiconazole exposure was considered very low (LP50 ≫ 100). Finally, the model was extended to reflect mixture toxicity via concentration addition. It predicted risks under acute and chronic exposures to organophosphates and neonicotinoids. Given that gammarids are simultaneously exposed to multiple chemicals and other stressors throughout their lifetime, a decline in survival probabilities due to chemical stress can likely influence their overall fitness. We recognize that some assumptions require validation, but our work included a level of realism that can assist risk managers when evaluating the cumulative consequences of chemical exposure.
Collapse
Affiliation(s)
- Maricor J Arlos
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 St. NW, Edmonton, Alberta T6G 1H9, Canada
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Andreas Focks
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Christian Stamm
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|