1
|
Dai C, Li K, Liu Y, Teng B, Chen Q, Jin X, Xu D, Hong R. Unveiling the directional dynamics: Hydrated electron driven defluorination in PFOA⁻ and PFOS⁻ through ab Initio molecular dynamics and quantum chemistry. WATER RESEARCH 2025; 280:123486. [PMID: 40101503 DOI: 10.1016/j.watres.2025.123486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Hydrated electrons (e-(aq)) are recognized for their potent reducing capabilities, making them significant in environmental engineering, particularly in the degradation of persistent pollutants like perfluoroalkyl compounds (PFCs). This study investigates the influence of attack direction of e-(aq) on the degradation mechanisms of PFCs, addressing a critical gap in understanding due to experimental limitations. Utilizing ab initio molecular dynamics and quantum chemical calculations, we systematically simulated the attack direction of e-(aq) on PFCs, focusing on the formation of anionic radicals and their excited-state reactivity. Our results indicate that the attack direction is pivotal for C-F bond cleavage: e-(aq) targeting the carboxyl end promotes effective bond cleavage, while approaches from the carbon-fluorine chain are hindered by molecular orbital shielding effects. Furthermore, we demonstrate that employing micellar systems to maintain PFCs in an unsolvated anionic state significantly reduces excitation energy, enhances red-shifted absorption, and increases excitation probability. Importantly, the excited-state electronic structure of PFCs closely mirrors that of their anionic radicals. These findings provide a novel strategy for improving the degradation of PFCs, thereby advancing treatment processes for persistent environmental pollutants and contributing to the broader understanding of water quality management.
Collapse
Affiliation(s)
- Chencheng Dai
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui Province, PR China
| | - Kaixin Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui Province, PR China
| | - Yazi Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui Province, PR China
| | - BoChen Teng
- Zhejiang Zhonghuan Detection CO., LTD, Wenzhou 325003, Zhejiang Province, PR China
| | - Qi Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui Province, PR China
| | - Xin Jin
- School of the Environment, Nanjing Normal University, Nanjing 210093, PR China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui Province, PR China.
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui Province, PR China; National local joint engineering laboratory to functional adsorption material technology for the environmental protection, Jiangsu, Suzhou, 215123, China.
| |
Collapse
|
2
|
Jouanneau W, Boulinier T, Herzke D, Nikiforov VA, Gabrielsen GW, Chastel O. Legacy and emerging per- and polyfluoroalkyl substances in eggs of yellow-legged gulls from Southern France. MARINE POLLUTION BULLETIN 2025; 216:117941. [PMID: 40220546 DOI: 10.1016/j.marpolbul.2025.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
More than 70 years of industrial production of per- and polyfluoroalkyl substances (PFAS) have resulted in their ubiquitous presence in the environment on a global scale, although differences in sources, transport and fate lead to variability of occurrence in the environment. Gull eggs are excellent bioindicators of environmental pollution, especially for persistent organic pollutants such as PFAS, known to bioaccumulate in organisms and to be deposited in bird eggs by maternal transfer. Using yellow-legged gull (Larus michahellis) eggs, we investigated the occurrence of more than 30 PFAS, including the most common chemicals (i.e., legacy PFAS) as well as their alternatives (i.e., emerging PFAS) in the Bay of Marseille, the second largest city in France. Compared to eggs from other colonies along the Mediterranean coast, those from Marseille had PFAS concentrations ranging from slightly higher to up to four times lower, suggesting that this area cannot be specifically identified as a hotspot for these compounds. We also found several emerging PFAS including 8:2 and 10:2 FTS, 7:3 FTCA or PFECHS in all collected eggs. Although the scarcity in toxicity thresholds for seabirds, especially during embryogenesis, does not enable any precise statement about the risks faced by this population, this study contributes to the effort in documenting legacy PFAS contamination on Mediterranean coasts while providing valuable novel inputs on PFAS of emerging concern. Identifying exposure in free-ranging species also participate to determine the main target for toxicity testing in wildlife.
Collapse
Affiliation(s)
- William Jouanneau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France; Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Thierry Boulinier
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
| | | | | | | | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France
| |
Collapse
|
3
|
Xiong X, Luo Z, Luo S, Bai L, Shang Y, Junker AL, Wei Z. Sustained hydrated electron production for enhanced reductive defluorination of PFAS in groundwater. WATER RESEARCH 2025; 279:123401. [PMID: 40081177 DOI: 10.1016/j.watres.2025.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025]
Abstract
Hydrated electrons (eaq‒; ‒2.9 V) are effective at defluorinating per- and polyfluoroalkyl substances (PFAS), but production of eaq‒ often requires excess source chemicals, anoxic environment, and harsh pH conditions. To improve the feasibility of the reductive process, we harnessed phenol as a source chemical yielding four eaq‒ stoichiometrically and utilized dithionite (DTN) to catalyze phenol cycle for sustained eaq‒ yields. The added DTN not only scavenges dissolved oxygen, the eaq‒ trap, but also reductively transforms phenol degradation product, p-benzoquinone, to hydroquinone which yields more eaq‒ upon UV irradiation. In the UV/phenol/DTN system, up to 70 % defluorination of PFOA solution was achieved while the impact of groundwater matrix was minor on the degradation performance of PFOA, PFOS and GenX. Especially in acidic conditions, •H, the conjugate acid of eaq‒, is the dominant radical for decomposing the three tested PFAS. Density functional theory calculations reveal hydrogen bonding and van der Waals interactions between PFAS and phenol, facilitating both decarboxylation and fluorine elimination in PFAS structures. The combined experimental and theoretical evidence demonstrated the capability of the new UV/phenol/DTN method to sustain eaq‒ production for effective defluorination of PFAS in the groundwater matrix.
Collapse
Affiliation(s)
- Xingaoyuan Xiong
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3 Aarhus C, 8000, Denmark
| | - Zirui Luo
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3 Aarhus C, 8000, Denmark
| | - Shuang Luo
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3 Aarhus C, 8000, Denmark; College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Lu Bai
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3 Aarhus C, 8000, Denmark
| | - Yanan Shang
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3 Aarhus C, 8000, Denmark; School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Allyson L Junker
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3 Aarhus C, 8000, Denmark
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3 Aarhus C, 8000, Denmark.
| |
Collapse
|
4
|
Wang Y, Chen H, Xing Q, Xu X. Emerging and legacy per- and polyfluoroalkyl substances from offshore oilfields and receiving water in China. ENVIRONMENTAL RESEARCH 2025:121865. [PMID: 40378999 DOI: 10.1016/j.envres.2025.121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/19/2025] [Accepted: 05/14/2025] [Indexed: 05/19/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are extensively utilized as oilfield production chemicals and aqueous film-forming foams (AFFFs) in oilfields. A comprehensive investigation was undertaken to analyze twenty per-and polyfluoroalkyl substances (PFASs), including three emerging PFASs in drill cuttings, slurry and produced water from offshore oilfields in three main sea areas of China. The investigation results were further compared with those in their receiving water. The concentration ranges of ΣPFASs in drill cuttings, slurry as well as produced water were 1049-3473 ng/g and 81.9 ng/L-2090 ng/L, respectively. In comparison, the concentrations range of PFASs in receiving water was 46.2-99.7 ng/L. Both sodium p-perfluorous nonenoxybenzenesulfonate (OBS) and hexafluoropropylene oxide dimer acid (HFPO-DA) were identified as the predominant PFASs detected at elevated concentrations in drilling cuttings, slurry, and produced water, demonstrating their extensive utilization in such environments. HFPO-DA and OBS concentrations in produced water exceeded those in receiving water by 1-2 orders of magnitude. Principal component analysis (PCA) analyses revealed that the compositions of PFASs in the receiving water samples exhibited significant similarity to those in drill cuttings, slurry and produced water from oilfields. It was indicated that discharges from oilfields were the primary contributors of PFASs in their receiving water. In 60-96% of samples from produced water in the Bohai Sea and South China Sea oilfields, as well as receiving water adjacent to the Bohai Sea oilfields, the risk quotient (RQ) of HFPO-DA ranged 0.1-1, indicating moderate ecological risks to aquatic organisms. In contrast, legacy PFASs generally showed lower risk levels.
Collapse
Affiliation(s)
- Yumeng Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Hong Chen
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Qinghui Xing
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xuemei Xu
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
5
|
Luo S, Wei Z. Correspondence on "Unveiling the Contribution of Hydrogen Radicals to Per- and Polyfluoroalkyl Substances (PFASs) Defluorination: Applicability and Degradation Mechanisms". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7791-7793. [PMID: 40209719 DOI: 10.1021/acs.est.5c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Affiliation(s)
- Shuang Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
- Centre for Water Technology (WATEC) and Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, Aarhus 8000, Denmark
| | - Zongsu Wei
- Centre for Water Technology (WATEC) and Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, Aarhus 8000, Denmark
| |
Collapse
|
6
|
Liu B, Chen J, You Y, Sun M. Cyclic removal and destruction of per- and polyfluoroalkyl substances from water using ion exchange, resin regeneration, and UV/sulfite reduction. WATER RESEARCH 2025; 272:122915. [PMID: 39657560 DOI: 10.1016/j.watres.2024.122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Ion exchange (IX) can effectively remove per- and poly-fluoroalkyl substances (PFAS) from drinking water sources at ng/L to µg/L levels. However, adsorbed PFAS on spent resins should be further destructed for detoxification. Traditional resin incineration or landfilling may cause secondary pollution to the surrounding environment and cannot achieve resin reuse. This study explored three variations of a PFAS treatment train, aiming to completely defluorinate PFAS with different chain lengths and functional groups at environmentally relevant levels (ng/L) and to reuse the resins and solvents. The optimized treatment train includes IX, resin regeneration with 5 wt% NaCl and 60 % v/v methanol, distillation of waste regenerant, and advanced reduction by hydrated electrons (eaq-) generated during the ultraviolet/sulfite (UV/sulfite) treatment of still bottoms. Such a treatment train achieved nearly 100 % PFAS removal from surface water and groundwater using either PFAS-specific or generic resins, and almost 100 % defluorination of PFAS except a few short-chain fluorinated sulfonates and ethers. Regenerated resins had comparable PFAS removal to the pristine resins over three cycles. The generic resins (e.g., Dupont AmberLite™ IRA910) are easier to regenerate and thus are recommended for the treatment train over PFAS-selective resins (e.g., Purofine® PFA694E). Direct heterogenous defluorination on resins loaded with perfluorooctane sulfonate (PFOS) was ineffective, potentially due to the consumption of UV light/eaq- by the resins and insufficient contact between the UV light/eaq- with PFOS on the resin surface. Distillation of the waste regenerant successfully concentrated PFAS in the still bottoms, reduced the waste volume, and removed excess methanol, all essential for effective UV/sulfite treatment. Meanwhile, the produced condensate with high methanol contents and low PFAS levels can be reused for the next regeneration cycle. Findings from this study provide a timely and sustainable solution to the stringent and evolving regulations on PFAS and the resultant production of PFAS-laden resins as hazardous wastes.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Jinchen Chen
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Yingying You
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Mei Sun
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
7
|
Paultre CB, Mebel AM, O'Shea KE. Computational Study of the Gas-Phase Thermal Degradation and the Reaction Rate Coefficients of Perfluoroalkyl Ether Carboxylic Acids. J Phys Chem A 2025; 129:1856-1868. [PMID: 39919206 DOI: 10.1021/acs.jpca.4c06808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Perfluoroalkyl ether carboxylic acids (PFECA), which are replacements for legacy per- and polyfluorinated alkyl substances (PFAS), exhibit undesirable properties and often require thermal remediation. Detailed kinetic evaluation of the pyrolysis of PFECA was achieved computationally using density functional ωB97xD/6-311+G (d,p) to establish homolytic bond dissociation energies for the carboxylic acid and carboxylate forms of ∼90-100 kcal/mol and as low as 65 ± 3 kcal/mol, respectively. The negatively charged oxygenated radical products collapse with activation energies (Ea) of Ea(β-scission) ∼ 12-42 kcal/mol, Ea(1,2-F-shift) ∼ 24-47 kcal/mol, and Ea(oxygen atom-shift) ∼ 33-35 kcal/mol and enthalpies (ΔH) of ΔH(F-loss) ∼ 56-71 kcal/mol. The perfluoroalkoxyl radical intermediates transform via Ea(β scission) ∼ 2-9 kcal/mol and Ea(F-loss) ∼ 25-43 kcal/mol. The radical intermediates have lifetimes in the microsecond-to-nanosecond range at 1000 K and 1 atm, with some radicals stable for hours or even days with respect to the unimolecular processes. The results provide new fundamental thermodynamic and kinetic parameters for the partitioning of the degradation pathways of PFECA and establish specific structure-activity relationships of intermediates, leading to the final degradation products. These results are critical for modeling the thermal treatment of PFECA and related PFAS.
Collapse
Affiliation(s)
- Claude-Bernard Paultre
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
8
|
Kawai K, Usui M, Ikawa S, Hoshiya N, Kishikawa Y, Shibata N. Radical trifluoromethoxylation of fluorinated alkenes for accessing difluoro(trifluoromethoxy)methyl groups. Chem Sci 2025; 16:2830-2836. [PMID: 39811005 PMCID: PMC11726583 DOI: 10.1039/d4sc07788a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
In this study, we explore the potential of the difluoro(trifluoromethoxy)methyl group, CF2-O-CF3, an underexplored but promising structural analog of the trifluoromethoxy group (OCF3). This moiety offers unique electronic properties and enhanced chemical stability due to its multiple C-F bonds, along with the added advantage of C-O bond cleavage, making it an attractive option in fluorine chemistry. We have succeeded in synthesizing difluoro(trifluoromethoxy)methyl compounds via radical amino- and hydroxy-trifluoromethoxylations of β,β-difluorostyrenes. Control experiments, including radical clock experiments, support a free radical mechanism. The synthetic utility of the resulting difluoro(trifluoromethoxy)methyl compounds is also demonstrated through transformations into bioactive analogs, such as pyrrole derivatives, fendiline analogs, and carpropamid analogs, highlighting their potential in drug development.
Collapse
Affiliation(s)
- Koki Kawai
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Mai Usui
- Department of Engineering, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Sota Ikawa
- Department of Engineering, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Naoyuki Hoshiya
- Technology and Innovation Center, DAIKIN Industries, Ltd 1-1 Nishi-Hitotsuya, Settsu Osaka 566-8585 Japan
| | - Yosuke Kishikawa
- Technology and Innovation Center, DAIKIN Industries, Ltd 1-1 Nishi-Hitotsuya, Settsu Osaka 566-8585 Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
- Department of Engineering, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
9
|
Litvanová K, Klemetsrud B, Xiao F, Kubátová A. Investigation of Real-Time Gaseous Thermal Decomposition Products of Representative Per- and Polyfluoroalkyl Substances (PFAS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:108-118. [PMID: 39667807 DOI: 10.1021/jasms.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The thermal decomposition of per- and poly fluoroalkyl substances (PFAS) is poorly understood. Here, we present an innovative, comprehensive analytical method to investigate their thermal decomposition, including perfluorocarboxylic acids (PFCAs), alcohol, sulfonates, and GenX (acid dimer), focusing on identifying their breakdown products. In this study, evolved gas analysis-mass spectrometry (EGA-MS) was used for fast real-time screening to determine the significant temperatures to be investigated with the thermal desorption-pyrolysis coupled with gas chromatography-mass spectrometry (TD-Py-GC-MS), which provided detailed information about evolved PFAS and their breakdown products. This approach enabled a systematic study of perfluorocarboxylic acids (PFCAs) ranging from C3 to C9 and GenX showing volatilization, followed by degradation and formation of respective perfluorinated-1-alkenes and C5F10O perfluorinated ether (from GenX). At elevated temperatures (e.g., 600 °C), the products observed included perfluorinated butene and higher molecular-weight products, likely formed by pyrolytic polymerization of perfluorinated radicals. 1H,1H,2H,2H-perfluoro-1-decanol, i.e., 8:2 FTOH, volatilized at 100 °C; however, at higher temperatures, several novel decomposition products were observed, including perfluoro-1-decene and perfluorinated compounds suggesting the presence of the hydroxylic group. Our method offers an alternative approach to studying the thermal behavior of currently regulated and emerging PFAS with a focus on application to a wide range of matrices (laboratory grade standards or environmental samples).
Collapse
Affiliation(s)
- Kateřina Litvanová
- Department of Chemical Engineering, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Bethany Klemetsrud
- Department of Chemical Engineering, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Feng Xiao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
10
|
Zhang H, Chen JX, Qu JP, Kang YB. Photocatalytic low-temperature defluorination of PFASs. Nature 2024; 635:610-617. [PMID: 39567791 DOI: 10.1038/s41586-024-08179-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are found in many everyday consumer products, often because of their high thermal and chemical stabilities, as well as their hydrophobic and oleophobic properties1. However, the inert carbon-fluorine (C-F) bonds that give PFASs their properties also provide resistance to decomposition through defluorination, leading to long-term persistence in the environment, as well as in the human body, raising substantial safety and health concerns1-5. Despite recent advances in non-incineration approaches for the destruction of functionalized PFASs, processes for the recycling of perfluorocarbons (PFCs) as well as polymeric PFASs such as polytetrafluoroethylene (PTFE) are limited to methods that use either elevated temperatures or strong reducing reagents. Here we report the defluorination of PFASs with a highly twisted carbazole-cored super-photoreductant KQGZ. A series of PFASs could be defluorinated photocatalytically at 40-60 °C. PTFE gave amorphous carbon and fluoride salts as the major products. Oligomeric PFASs such as PFCs, perfluorooctane sulfonic acid (PFOS), polyfluorooctanoic acid (PFOA) and derivatives give carbonate, formate, oxalate and trifluoroacetate as the defluorinated products. This allows for the recycling of fluorine in PFASs as inorganic fluoride salt. The mechanistic investigation reveals the difference in reaction behaviour and product components for PTFE and oligomeric PFASs. This work opens a window for the low-temperature photoreductive defluorination of the 'forever chemicals' PFASs, especially for PTFE, as well as the discovery of new super-photoreductants.
Collapse
Affiliation(s)
- Hao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jin-Xiang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China.
| | - Yan-Biao Kang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
11
|
Chen Z, Zhang S, Mi N, Wang X, Xu Y, Qiu L, Gu C, Zeng G. Synergistic adsorption and UV degradation of perfluorooctanoic acid by amine-functionalized A-center sphalerite. WATER RESEARCH 2024; 265:122277. [PMID: 39167974 DOI: 10.1016/j.watres.2024.122277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Perfluorinated alkylated substances (PFAS), as a category of persistent organic pollutants, have garnered extensive concern due to their resilience against environmental degradation. Herein, we developed an amine-functionalized sphalerite (ZnS) with adjustable surface amine functional groups and Zn defects (ZnS-X%[N]) by in situ coprecipitation and simple hydrothermal method in the presence of cetyltrimethylammonium bromide (CTAB). This material demonstrated efficient PFAS adsorption and subsequent photo-induced degradation under UV irradiation. The characterization results by TEM, BET, FTIR, XPS and EPR revealed that CTAB primarily influences ZnS by modulating surface amine functionalities, zinc defect density, and enhancing its photoreductive capacity. Adsorption and kinetic degradation experiments further showed that a medium CTAB concentration in ZnS-40%[N] achieves highest PFAS adsorption capacity (Cmax: 0.201 mol kg-1), and the corresponding decomposition rate was the fastest (kde: 1.53; kdf: 1.19). This efficacy is attributed to the ZnS-40%[N]'s ideal adsorptive sites and surface shallow defects. Moreover, theoretical simulation also supports the above experimental inference. Overall, ZnS-X%[N] exhibits a synergistic effect on PFAS adsorption and degradation, showcasing its potential for environmental adaptability and practical application.
Collapse
Affiliation(s)
- Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Shuoqi Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Na Mi
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Yichen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Longlong Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Guixiang Zeng
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
12
|
Zeng Y, Dai Y, Yin L, Huang J, Hoffmann MR. Rethinking alternatives to fluorinated pops in aqueous environment and corresponding destructive treatment strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174200. [PMID: 38936705 DOI: 10.1016/j.scitotenv.2024.174200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/25/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Alternatives are being developed to replace fluorinated persistent organic pollutants (POPs) listed in the Stockholm Convention, bypass environmental regulations, and overcome environmental risks. However, the extensive usage of fluorinated POPs alternatives has revealed potential risks such as high exposure levels, long-range transport properties, and physiological toxicity. Therefore, it is imperative to rethink the alternatives and their treatment technologies. This review aims to consider the existing destructive technologies for completely eliminating fluorinated POPs alternatives from the earth based on the updated classification and risks overview. Herein, the types of common alternatives were renewed and categorized, and their risks to the environment and organisms were concluded. The efficiency, effectiveness, energy utilization, sustainability, and cost of various degradation technologies in the treatment of fluorinated POPs alternatives were reviewed and evaluated. Meanwhile, the reaction mechanisms of different fluorinated POPs alternatives are systematically generalized, and the correlation between the structure of alternatives and the degradation characteristics was discussed, providing mechanistic insights for their removal from the environment. Overall, the review supplies a theoretical foundation and reference for the control and treatment of fluorinated POPs alternatives pollution.
Collapse
Affiliation(s)
- Yuxin Zeng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Yunrong Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, PR China.
| | - Michael R Hoffmann
- Department of Environmental Science & Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
13
|
Liu M, Wang B, Yi S, Dou X, Zhang Y, Yu H, Zhang X, Dong S, Feng J, Cao Z, Zhu L. Novel insights into the mechanisms of bioaccumulation and tissue-specific distribution of hexafluoropropylene oxide homologues, novel PFOA alternatives, in zebrafish (Danio rerio). ENVIRONMENT INTERNATIONAL 2024; 192:109053. [PMID: 39383767 DOI: 10.1016/j.envint.2024.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA) and hexafluoropropylene oxide tetramer acid (HFPO-TeA) are two novel alternatives of perfluorooctanoic acid (PFOA). However, their toxicokinetics and accumulation mechanisms in fish are still unknown. This study provides the first line of in vivo uptake and depuration kinetic, bioaccumulation mechanism and tissue-specific distribution for HFPO-TA and HFPO-TeA, upon a 28-day water exposure and a 14-day depuration in zebrafish (Danio rerio). HFPO-TeA and HFPO-TA could quickly accumulate in zebrafish, and the highest concentrations of HFPO-TeA (15.4 ± 1.6 nmol/g ww), HFPO-TA (4.95 ± 0.19 nmol/g ww) and PFOA (0.47 ± 0.03 nmol/g ww) were consistently present in the blood, which was followed by liver, kidney, intestine, gill, gonad and brain, while the lowest were observed in the muscle (1.01 ± 0.11, 0.16 ± 0.02, and 0.01 ± 0.001 nmol/g ww, respectively), indicating both higher accumulation potentials of both HFPO homologs than their predecessor PFOA. The tissue protein content, rather than lipid content, played an enhancing role in the enrichment of three target chemicals, exhibiting a significant positive correlation (r = 0.735, p = 0.038 for HFPO-TeA; r = 0.770, p = 0.026 for HFPO-TA and r = 0.942, p = 0.001 for PFOA) between the tissue bioconcentration factor (BCF) and the protein contents in corresponding tissues. This phenomenon was validated by the equilibrium dialysis experiment, molecular docking analysis and molecular dynamics simulation, which consistently indicated that the binding affinities of serum and liver proteins were greatest with HFPO-TeA, followed by HFPO-TA and least with PFOA. These results suggested that the binding of the target chemicals to specific proteins determined their tissue-specific accumulation potentials. Nontarget screening by high resolution mass spectrometry (HRMS) did not identify suspicious degradation products for HFPO-TA, implying the strong persistence of HFPO-TA in fish.
Collapse
Affiliation(s)
- Menglin Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Bingjing Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuanxuan Dou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Yuqing Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Hao Yu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Shuying Dong
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Jinglan Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
14
|
Zhang H, Zhang Y, Zhu L, Liu Y. Efficient degradation of F-53B as PFOS alternative in water by plasma discharge: Feasibility and mechanism insights. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135069. [PMID: 38944988 DOI: 10.1016/j.jhazmat.2024.135069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
The frequent detection of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) in various environments has raised concerns owing to its comparable or even higher environmental persistence and toxicity than perfluorooctane sulfonate (PFOS). This study investigated the plasma degradation of F-53B for the first time using a water film plasma discharge system. The results revealed that F-53B demonstrated a higher rate constant but similar defluorination compared to PFOS, which could be ascribed to the introduction of the chlorine atom. Successful elimination (94.8-100 %) was attained at F-53B initial concentrations between 0.5 and 10 mg/L, with energy yields varying from 15.1 to 84.5 mg/kWh. The mechanistic exploration suggested that the decomposition of F-53B mainly occurred at the gas-liquid interface, where it directly reacted with reactive species generated by gas discharge. F-53B degradation pathways involving dechlorination, desulfonation, carboxylation, C-O bond cleavage, and stepwise CF2 elimination were proposed based on the identified byproducts and theoretical calculations. Furthermore, the demonstrated effectiveness in removing F-53B in various coexisting ions and water matrices highlighted the robust anti-interference ability of the treatment process. These findings provide mechanistic insights into the plasma degradation of F-53B, showcasing the potential of plasma processes for eliminating PFAS alternatives in water.
Collapse
Affiliation(s)
- Han Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yinyin Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Luxiang Zhu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
15
|
Oh HT, Kim G, Jung SH, Ku Y, Lee JK, Kim K, Park BG, Lee S, Koh C, Nishi T, Kim HW. Solubility Change Behavior of Fluoroalkyl Ether-Tagged Dendritic Hexaphenol under Extreme UV Exposure. ACS OMEGA 2024; 9:37365-37373. [PMID: 39246471 PMCID: PMC11375697 DOI: 10.1021/acsomega.4c05535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
This study focuses on the discovery of a single-component molecular resist for extreme ultraviolet (EUV) lithography by employing the ionizing radiation-induced decomposition of carbon-fluorine chemical bonds. The target material, DHP-L6, was synthesized by bonding perfluoroalkyl ether moieties to amorphous dendritic hexaphenol (DHP) with a high glass transition temperature. Upon exposure to EUV and electron beam irradiation, DHP-L6 films exhibited a decreasing solubility in fluorous developer media, resulting in negative-tone images. The underlying chemical mechanisms were elucidated by Fourier transform-infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy, and nanoindentation experiments. These analyses highlighted the possible electron-induced decomposition of C-F bonds in DHP-L6, leading to molecular network formation via recombination of the resulting C-centered radicals. Subsequent high-resolution lithographic patterning under EUV irradiation showed that DHP-L6 could create stencil patterns with a line width of 26 nm at an exposure dose of 110 mJ cm-2. These results confirm that single-component small molecular compounds with fluoroalkyl moieties can be employed as patterning materials under ionizing radiation. Nonetheless, additional research is required to reduce the relatively high exposure energy for high-resolution patterning and to enhance the line-edge roughness of the produced stencil.
Collapse
Affiliation(s)
- Hyun-Taek Oh
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Gayoung Kim
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seok-Heon Jung
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yejin Ku
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jin-Kyun Lee
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kanghyun Kim
- Department of Mechanical Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - Byeong-Gyu Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Sangsul Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Chawon Koh
- Samsung Electronics Co., Ltd., Semiconductor R&D Center, Suwon 18448, Republic of Korea
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tsunehiro Nishi
- Samsung Electronics Co., Ltd., Semiconductor R&D Center, Suwon 18448, Republic of Korea
| | - Hyun-Woo Kim
- Samsung Electronics Co., Ltd., Semiconductor R&D Center, Suwon 18448, Republic of Korea
| |
Collapse
|
16
|
Wu H, Wang J, Du E, Guo H. Comparative analysis of UV-initiated ARPs for degradation of the emerging substitute of perfluorinated compounds: Does defluorination mean the sole factor? JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134687. [PMID: 38805816 DOI: 10.1016/j.jhazmat.2024.134687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Due to the increasing attention for the residual of per- and polyfluorinated compounds in environmental water, Sodium p-Perfluorous Nonenoxybenzenesulfonate (OBS) have been considered as an alternative solution for perfluorooctane sulfonic acid (PFOS). However, recent detections of elevated OBS concentrations in oil fields and Frontal polymerization foams have raised environmental concerns leading to the decontamination exploration for this compound. In this study, three advanced reduction processes including UV-Sulfate (UV-SF), UV-Iodide (UV-KI) and UV-Nitrilotriacetic acid (UV-NTA) were selected to evaluate the removal for OBS. Results revealed that hydrated electrons (eaq-) dominated the degradation and defluorination of OBS. Remarkably, the UV-KI exhibited the highest removal rate (0.005 s-1) and defluorination efficiency (35 %) along with the highest concentration of eaq- (K = -4.651). Despite that nucleophilic attack from eaq- on sp2 carbon and H/F exchange were discovered as the general mechanism, high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS) analysis with density functional theory (DFT) calculations revealed the diversified products and routes. Intermediates with lowest fluorine content for UV-KI were identified, the presence nitrogen-containing intermediates were revealed in the UV-NTA. Notably, the nitrogen-containing intermediates displayed the enhanced toxicity, and the iodine poly-fluorinated intermediates could be a potential-threat compared to the superior defluorination performance for UV-KI.
Collapse
Affiliation(s)
- Han Wu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
17
|
Zhai Z, Zhang C, Chu L, Zhao Y, Zhou X, Zhang Y. Effective defluorination of novel hexafluoropropylene oxide oligomer acids under mild conditions by UV/sulfite/iodide: mechanisms and ecotoxicity. WATER RESEARCH 2024; 258:121804. [PMID: 38781621 DOI: 10.1016/j.watres.2024.121804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
It has recently been discovered that HFPO-TA (a processing aid in the production of fluoropolymers) has high levels of bioaccumulation and biotoxicity. Hydrated electrons (eaq-) have been proposed to be potent nucleophiles that may decompose PFAS. Unlike previous studies in which the generation of eaq- was often restricted to anaerobic or highly alkaline environments, in this study, we applied the UV/SO32-/I- process under mild conditions of neutrality, low source chemical demand, and open-air, which achieved effective degradation (81.92 %, 0.834 h-1) and defluorination (48.99 %, 0.312 h-1) of HFPO-TA. With I- as the primary source of eaq-, SO32- acting as an I- regenerator and oxidizing substances scavenger, UV/SO32-/I- outperformed others under mild circumstances. The eaq- were identified as the main active species by quenching experiments and electron paramagnetic resonance (EPR). During degradation, the first site attacked by eaq- was the ether bond (C6-O7), followed by the generation of HFPO-DA, TFA, acetic and formic acid. Degradation studies of other HFPOs have shown that the defluorination of HFPOs was accompanied by a clear chain-length correlation. At last, toxicological experiments confirmed the safety of the process. This study updated our understanding of the degradation of newly PFASs and the application of eaq- mediated photoreductive approaches under mild conditions.
Collapse
Affiliation(s)
- Zhenyu Zhai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chaojie Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Liquan Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yunmeng Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
18
|
Kawai K, Kato Y, Araki T, Ikawa S, Usui M, Hoshiya N, Kishikawa Y, Escorihuela J, Shibata N. Halo-perfluoroalkoxylation of gem-difluoroalkenes with short-lived alkali metal perfluoroalkoxides in triglyme. Chem Sci 2024; 15:9574-9581. [PMID: 38939153 PMCID: PMC11205273 DOI: 10.1039/d4sc02084g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Alkali metal alkoxides play a pivotal role in nucleophilic alkoxylation reactions, offering pathways for the synthesis of ethers, including the increasingly sought-after trifluoromethyl ethers. However, the synthesis of long-chain perfluoroalkyl ethers remains a substantial challenge in this field. Through the innovative use of triglyme to encapsulate potassium ions, we enhanced the stability of short-lived, longer-chain perfluoroalkoxy anions, thereby facilitating efficient nucleophilic perfluoroalkoxylation reactions. This method provides a new precedent for the halo-perfluoroalkoxylation of gem-difluoroalkenes and offers a versatile tool for the design of perfluoroalkyl ethers, including those containing complex moieties of heterocycles and drug molecules. We also demonstrated the utility of the resulting halo-perfluoroalkoxyl adducts through various chemical transformations to valuable diverse perfluoroalkyl ethers.
Collapse
Affiliation(s)
- Koki Kawai
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Yoshimitsu Kato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Taichi Araki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Sota Ikawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Mai Usui
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Naoyuki Hoshiya
- Technology Innovation Center, DAIKIN Industries, Ltd 1-1 Nishi-Hitotsuya, Settsu Osaka 566-8585 Japan
| | - Yosuke Kishikawa
- Technology Innovation Center, DAIKIN Industries, Ltd 1-1 Nishi-Hitotsuya, Settsu Osaka 566-8585 Japan
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València Avda. Vicente Andrés Estellés S/N, Burjassot 46100 Valencia Spain
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
19
|
Jiang Z, Denisov S, Adjei D, Mostafavi M, Ma J. Overlooked Activation Role of Sulfite in Accelerating Hydrated Electron Treatment of Perfluorosulfonates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9427-9435. [PMID: 38747404 DOI: 10.1021/acs.est.4c01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photoexcitation of sulfite (SO32-) is often used to generate hydrated electrons (eaq-) in processes to degrade perfluoroalkyl and polyfluoroalkyl substances (PFASs). Conventional consensus discourages the utilization of SO32- concentrations exceeding 10 mM for effective defluorination. This has hindered our understanding of SO32- chemistry beyond its electron photogeneration properties. In contrast, the radiation-chemical study presented here, directly producing eaq- through water radiolysis, suggests that SO32- plays a previously overlooked activation role in the defluorination. Quantitative 60Co gamma irradiation experiments indicate that the increased SO32- concentration from 0.1 to 1 M enhances the defluorination rate by a remarkable 15-fold, especially for short-chain perfluoroalkyl sulfonate (PFSA). Furthermore, during the treatment of long-chain PFSA (C8F17-SO3-) with a higher concentration of SO32-, the intermediates of C8H17-SO3- and C3F7-COO- were observed, which are absent without SO32-. These observations highlight that a higher concentration of SO32- facilitates both reaction pathways: chain shortening and H/F exchange. Pulse radiolysis measurements show that elevated SO32- concentrations accelerate the bimolecular reaction between eaq- and PFSA by 2 orders of magnitude. 19F NMR measurements and theoretical simulations reveal the noncovalent interactions between SO32- and F atoms, which exceptionally reduce the C-F bond dissociation energy by nearly 40%. As a result, our study offers a more effective strategy for degrading highly persistent PFSA contaminants.
Collapse
Affiliation(s)
- Zhiwen Jiang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute de Chimie Physique, UMR8000 CNRS/Université Paris-Saclay, Orsay 91405, France
| | - Sergey Denisov
- Institute de Chimie Physique, UMR8000 CNRS/Université Paris-Saclay, Orsay 91405, France
| | - Daniel Adjei
- Institute de Chimie Physique, UMR8000 CNRS/Université Paris-Saclay, Orsay 91405, France
| | - Mehran Mostafavi
- Institute de Chimie Physique, UMR8000 CNRS/Université Paris-Saclay, Orsay 91405, France
| | - Jun Ma
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
20
|
Asadi Zeidabadi F, Banayan Esfahani E, Moreira R, McBeath ST, Foster J, Mohseni M. Structural dependence of PFAS oxidation in a boron doped diamond-electrochemical system. ENVIRONMENTAL RESEARCH 2024; 246:118103. [PMID: 38181849 DOI: 10.1016/j.envres.2024.118103] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Driven by long-term persistence and adverse health impacts of legacy perfluorooctanoic acid (PFOA), production has shifted towards shorter chain analogs (C4, perfluorobutanoic acid (PFBA)) or fluorinated alternatives such as hexafluoropropylene oxide dimer acid (HFPO-DA, known as GenX) and 6:2 fluorotelomer carboxylic acid (6:2 FTCA). Yet, a thorough understanding of treatment processes for these alternatives is limited. Herein, we conducted a comprehensive study using an electrochemical approach with a boron doped diamond anode in Na2SO4 electrolyte for the remediation of PFOA common alternatives, i.e., PFBA, GenX, and 6:2 FTCA. The degradability, fluorine recovery, transformation pathway, and contributions from electro-synthesized radicals were investigated. The results indicated the significance of chain length and structure, with shorter chains being harder to break down (PFBA (65.6 ± 5.0%) < GenX (84.9 ± 3.3%) < PFOA (97.9 ± 0.1%) < 6:2 FTCA (99.4 ± 0.0%) within 120 min of electrolysis). The same by-products were observed during the oxidation of both low and high concentrations of parent PFAS (2 and 20 mg L-1), indicating that the fundamental mechanism of PFAS degradation remained consistent. Nevertheless, the ratio of these by-products to the parent PFAS concentration varied which primarily arises from the more rapid PFAS decomposition at lower dosages. For all experiments, the main mechanism of PFAS oxidation was initiated by direct electron transfer at the anode surface. Sulfate radical (SO4•-) also contributed to the oxidation of all PFAS, while hydroxyl radical (•OH) only played a role in the decomposition of 6:2 FTCA. Total fluorine recovery of PFBA, GenX, and 6:2 FTCA were 96.5%, 94.0%, and 76.4% within 240 min. The more complex transformation pathway of 6:2 FTCA could explain its lower fluorine recovery. Detailed decomposition pathways for each PFAS were also proposed through identifying the generated intermediates and fluorine recovery. The proposed pathways were also assessed using 19F Nuclear Magnetic Resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Fatemeh Asadi Zeidabadi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Raphaell Moreira
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Sean T McBeath
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA, 01002, United States
| | - Johan Foster
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada.
| |
Collapse
|
21
|
He J, Boersma M, Song Z, Krebsbach S, Fan D, Duin EC, Wang D. Biochar and surfactant synergistically enhanced PFAS destruction in UV/sulfite system at neutral pH. CHEMOSPHERE 2024; 353:141562. [PMID: 38417493 DOI: 10.1016/j.chemosphere.2024.141562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
The UV/sulfite-based advanced reduction process (ARP) emerges as an effective strategy to combat per- and polyfluoroalkyl substances (PFAS) pollution in water. Yet, the UV/sulfite-ARP typically operates at highly alkaline conditions (e.g., pH > 9 or even higher) since the generated reductive radicals for PFAS degradation can be quickly sequestered by protons (H+). To overcome the associated challenges, we prototyped a biochar-surfactant-system (BSS) to synergistically enhance PFAS sorption and degradation by UV/sulfite-ARP. The degradation and defluorination efficiencies of perfluorooctanoic acid (PFOA) depended on solution pH, and concentrations of surfactant (cetyltrimethylammonium bromide; CTAB), sulfite, and biochar. At high pH (8-10), adding biochar and BSS showed no or even small inhibitory effect on PFOA degradation, since the degradation efficiencies were already high enough that cannot be differentiated. However, at acidic and neutral pH (6-7), an evident enhancement of PFOA degradation and defluorination efficiencies occurred. This is due to the synergies between biochar and CTAB that create favorable microenvironments for enhanced PFOA sorption and deeper destruction by prolonging the longevity of reductive radicals (e.g., SO3•-), which is less affected by ambient pH conditions. The performance of UV/sulfite/BSS was further optimized and used for the degradation of four PFAS. At the optimal experimental condition, the UV/sulfite/BSS system can completely degrade PFOA with >30% defluorination efficiency for up to five continuous cycles (n = 5). Overall, our BSS provides a cost-effective and sustainable technique to effectively degrade PFAS in water under environmentally relevant pH conditions. The BSS-enabled ARP technique can be easily tied into PFAS treatment train technology (e.g., advanced oxidation process) for more efficient and deeper defluorination of various PFAS in water.
Collapse
Affiliation(s)
- Jianzhou He
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn university, Auburn, 36849, United States
| | - Melissa Boersma
- Department of Chemistry and Biochemistry, Auburn university, Auburn, 36849, United States
| | - Ziteng Song
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn university, Auburn, 36849, United States
| | - Samuel Krebsbach
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn university, Auburn, 36849, United States
| | - Dimin Fan
- Geosyntec Consultants, Inc, 10211 Wincopin Circle, 4th Floor, Columbia, 21044, United States
| | - Evert C Duin
- Department of Chemistry and Biochemistry, Auburn university, Auburn, 36849, United States
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn university, Auburn, 36849, United States.
| |
Collapse
|
22
|
Zhang H, Zhu L, Zhang Y, Héroux P, Cai L, Liu Y. Removal of per- and polyfluoroalkyl substances from water by plasma treatment: Insights into structural effects and underlying mechanisms. WATER RESEARCH 2024; 253:121316. [PMID: 38377926 DOI: 10.1016/j.watres.2024.121316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Non-thermal plasma emerges as a promising technology for per- and polyfluoroalkyl substances (PFAS) decomposition due to its notable efficacy and environmentally friendly characteristics. In this study, we demonstrated the efficacy of a falling film dielectric barrier discharge (DBD) system for the removal of 10 PFAS, including perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs) and hexafluoropropylene oxide (HFPO) oligomer acids. Results showed that compounds with fluoroalkyl chain length>4 were effectively decomposed within 100 min, with long-chain PFAS demonstrating more pronounced removal performance than their short-chain analogues. The superior removal but low defluorination observed in HFPO oligomer acids could be ascribed to their ether-based structural features. The integration of experimental results with density functional theory (DFT) calculations revealed that the synergistic effects of various reactive species are pivotal to their efficient decomposition, with electrons, OH•, and NO2• playing essential roles. In contrast, the degradation of PFSAs was more dependent on electron attack than that of PFCAs and HFPO oligomer acids. Significantly, the most crucial degradation pathway for HFPO oligomer acids was the cleavage of ether CO, whether through radical or electron attack. Furthermore, the demonstrated effective removal in various water matrices showed the potential of the plasma system for removing PFAS in complex aquatic environments. This study provided mechanistic insights into PFAS degradation behavior in plasma processes, and it underscored the vital influence of molecular structures on degradability, thereby contributing to the further development and regulation of plasma-based technologies for treating PFAS in water.
Collapse
Affiliation(s)
- Han Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Luxiang Zhu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yinyin Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China.
| |
Collapse
|
23
|
Qi Y, Yang Y, Cui S, Tang X, Zhang P, Wang C, Liang Y, Sun H, Ma C, Xing B. Novel Defluorination Pathways of Perfluoroether Compounds (GenX): α-Fe 2O 3 Nanoparticle Layer Retains Higher Concentrations of Effective Hydrated Electrons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5567-5577. [PMID: 38488517 DOI: 10.1021/acs.est.3c09879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The development of efficient defluorination technology is an important issue because the kind of emerging pollutant of hexafluoropropylene oxide dimer acid (GenX) as an alternative to perfluorooctanoic acid (PFOA) has the higher environmental risks. In the UV/bisulfite system, we first developed a hydrophobic confined α-Fe2O3 nanoparticle layer rich in oxygen vacancies, which accelerated the enrichment of HSO3- and GenX on the surface and pores through electrostatic attraction and hydrophobic interaction, retaining more hydrated electrons (eaq-) and rapidly destroying GenX under UV excitation. Especially, under anaerobic and aerobic conditions, the degradation percentage of GenX obtain nearly 100%, defluorination of GenX to 88 and 57% respectively. It was amazed to find that the three parallel H/F exchange pathways triggered by the rapid reactions of eaq- and GenX, which were unique to anaerobic conditions, improved the efficiency of fluoride removal and weaken the interference of dissolved oxygen and H+. Therefore, this study provided an available material and mechanism for sustainable fluoride removal from wastewater in aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yinbo Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Shengyan Cui
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Peng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, New York 12222, United States
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
24
|
Kim J, Kim T, Park H, Kim MK, Eom S, Choe Y, Choe JK, Zoh KD. Kinetics and proposed mechanisms of hexafluoropropylene oxide dimer acid (GenX) degradation via vacuum-UV (VUV) photolysis and VUV/sulfite processes. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132864. [PMID: 37907009 DOI: 10.1016/j.jhazmat.2023.132864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/04/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
We investigated the degradation of hexafluoropropylene oxide dimer acid (GenX) in water via VUV photolysis and VUV/sulfite reactions under nitrogen-saturated conditions. Approximately 35% and 90% of GenX were degraded in 3 h in the VUV photolysis and VUV/sulfite reaction. While GenX removal rate was highest at pH 6 in VUV photolysis, it increased under alkaline pHs, especially at pH 10, in VUV/sulfite reaction. Radical scavenging experiments showed that, while both eaq- and •H contributed to VUV photolysis, eaq- played a significant role and •OH had a negative effect during VUV/sulfite reaction. Two transformation products (TPs) (TFA and PFPrA) were identified in VUV photolysis, whereas five TPs (TFA, PFPrA, TP182, TP348, and TP366) were identified in VUV/sulfite reaction by LCMS/MS and LCQTOF/MS. Defluorination of GenX was observed with the defluorination efficiency after 6 h reaching 17% and 67% in the VUV photolysis and VUV/sulfite reactions, respectively. Degradation mechanism for GenX based on the identified TPs and the theoretical calculation confirmed the susceptibility of GenX to nucleophilic attack. The initial reactions for GenX decomposition were C-C and C-O bond cleavage in both reactions, whereas sulfonation followed by decarboxylation was observed only in the VUV/sulfite reaction. ECOSAR ecotoxicity simulation showed that the toxicities of the TPs were not as harmful as those of GenX.
Collapse
Affiliation(s)
- Jaehee Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Taeyeon Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Heungjoo Park
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Soyeon Eom
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Yerin Choe
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea.
| |
Collapse
|
25
|
Chen Y, Zhou B, Liu H, Yuan R, Wang X, Feng Z, Chen Z, Chen H. Strategies to improve adsorption and photocatalytic performance of metal-organic frameworks (MOFs) for perfluoroalkyl and polyfluoroalkyl substances (PFASs) removal from water: A review. ENVIRONMENTAL RESEARCH 2024; 240:117483. [PMID: 37925130 DOI: 10.1016/j.envres.2023.117483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/08/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) represent a category of persistent and hazardous organic pollutants extensively prevalent across aquatic environments. The combination of adsorption and photocatalytic degradation has been identified as an effective approach for removing trace amounts of PFASs from water. Among the various materials explored for this purpose, metal-organic frameworks (MOFs) have structural solid tunability, and suitable modification methods could endow them with rich adsorption capabilities and excellent photocatalytic performance, which has potential for applications involving the treatment of trace, multi-chain-length PFASs in water. The research within this realm is currently in its nascent phase, and a holistic knowledge of modification methods can provide a comprehensive framework for future studies. Therefore, this review intends to (1) summarize the mechanism underlying the adsorption and photocatalytic removal of PFASs by MOFs; (2) present various modification methods aimed at enhancing the adsorption and photocatalytic performance of MOFs in alignment with the goal mentioned above; (3) provide an outlook on the prospects of utilizing MOFs for PFASs removal based on current trends and data. Ultimately, the findings from these studies will contribute to advancing knowledge in this area and facilitate the development of effective strategies for addressing PFASs contamination in water systems.
Collapse
Affiliation(s)
- Yijie Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, Anqing, China.
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xu Wang
- Beijing Municipal Research Institute of Eco-Environment Protection, National Engineering Research Center for Urban Environmental Pollution Control, Beijing, 100037, China.
| | - Zhuqing Feng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Praha-Suchdol, Czech Republic
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
26
|
Wang Z, Jin X, Hong R, Wang X, Chen Z, Gao G, He H, Liu J, Gu C. New Indole Derivative Heterogeneous System for the Synergistic Reduction and Oxidation of Various Per-/Polyfluoroalkyl Substances: Insights into the Degradation/Defluorination Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21459-21469. [PMID: 38056012 DOI: 10.1021/acs.est.3c05940] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The hydrated electron (eaq-) system is typically suitable for degrading perfluoroalkyl substances (PFASs). To enhance eaq- utilization, we synthesized a new indole compound (DIHA) that forms stable nanospheres (100-200 nm) in water via a supramolecular assembly. Herein, the DIHA nanoemulsion system exhibits high degradation efficiencies toward a broad category of PFASs, regardless of the headgroup, chain length, and branching structure, under UV (254 nm) irradiation. The strong adsorption of PFAS on the DIHA surface ensures its effective degradation/defluorination. Quenching experiments further demonstrated that the reaction took place on the surface of DIHA nanospheres. This specific heterogeneous surface reaction unveiled novel PFAS degradation and defluorination mechanisms that differ from previously reported eaq- systems. First, the photogenerated surface electrons nonselectively attacked multiple C-F bonds of the -CF2- chain. This plays a dominant degrading/defluorinating role in the DIHA system. Second, abundant hydroxyl radicals (•OH) were also produced, leading to synergistic reduction (by surface electron) and oxidation (by surface •OH) in a single system. This facilitates faster and deeper defluorination of different structured PFASs through multiple pathways. The new mechanism inspires the design of innovative organo-heterogeneous eaq- systems possessing synergistic reduction and oxidation functions, thereby making them potentially effective for treating PFAS-contaminated water.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering and Materials Science & Engineering Program, University of California, Riverside, California 92521, United States
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
27
|
Wen J, Li H, Ottosen LDM, Lundqvist J, Vergeynst L. Comparison of the photocatalytic degradability of PFOA, PFOS and GenX using Fe-zeolite in water. CHEMOSPHERE 2023; 344:140344. [PMID: 37802482 DOI: 10.1016/j.chemosphere.2023.140344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Knowledge on the photocatalytic degradability of the emerging poly- and perfluorinated alkyl substances (PFAS) in water, specifically GenX, is limited. GenX has been detected globally in river water and is considered potentially more toxic than legacy PFAS. In this study, we compared the photocatalytic degradability of GenX with the legacy compounds perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) using Fe-zeolite photocatalysts. After 7 h of irradiation, GenX showed lower removal (79%) and defluorination (33%) as compared to PFOA (100% removal and 69% defluorination) and PFOS (100% removal and 51% defluorination). The quasi-first-order degradation rate of GenX (1.5 h1) was 12 and 1.2 times lower than PFOA (18.4 h-1) and PFOS (1.8 h-1), respectively. Additionally, PFOA's defluorination rate (0.9 h-1) was approximately 2.6 and 9 times higher than GenX (0.35 h-1) and PFOS (0.1 h-1), respectively. These outcomes correlate with GenX's lower hydrophobicity, leading to reduced adsorption (40%) compared to PFOA (99%) and PFOS (87%). Based on identified transformation products, we proposed a GenX degradation pathway, resulting in ultra-short-chain PFASs with a chain length of 2 and 3 carbon atoms, while PFOA and PFOS degraded stepwise, losing 1 carbon-fluorine bond at a time, leading to gradually shorter chain lengths (from 7 to 2 carbon atoms). In conclusion, GenX is more challenging to remove and degrade due to its lower adsorption on the photocatalyst, potential steric hindrance, and higher production of persistent ultra-short-chain transformation products through photocatalysis.
Collapse
Affiliation(s)
- Junying Wen
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark
| | - Huarui Li
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark; School of Civil Engineering, Yantai University, 30, Qingquan RD, Laishan District, Yantai, 264005, PR China
| | - Lars Ditlev Mørck Ottosen
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| | - Leendert Vergeynst
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark.
| |
Collapse
|
28
|
Wallis DJ, Kotlarz N, Knappe DRU, Collier DN, Lea CS, Reif D, McCord J, Strynar M, DeWitt JC, Hoppin JA. Estimation of the Half-Lives of Recently Detected Per- and Polyfluorinated Alkyl Ethers in an Exposed Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15348-15355. [PMID: 37801709 PMCID: PMC10790670 DOI: 10.1021/acs.est.2c08241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
To estimate half-lives for novel fluoroethers, the GenX Exposure Study obtained two serum measurements for per- and polyfluoroalkyl substances (PFAS) for 44 participants of age 12-86 years from North Carolina, collected 5 and 11 months after fluoroether discharges into the drinking water source were controlled. The estimated half-lives for these compounds were 127 days (95% confidence interval (95% CI) = 86, 243 days) for perfluorotetraoxadecanoic acid (PFO4DA), 296 days for Nafion byproduct 2 (95% CI = 176, 924 days), and 379 days (95% CI = 199, 3870 days) for perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoA). Using these estimates and the literature values, a model was built that predicted PFAS half-lives using structural properties. Three chemical properties predicted 55% of the variance of PFAS half-lives based on 15 PFAS. A model with only molecular weight predicted 69% of the variance. Some properties can predict the half-lives of PFAS, but a deeper understanding is needed. These fluoroethers had biological half-lives longer than published half-lives for PFHxA and PFHpA (30-60 days) but shorter than those for PFOA and PFOS (800-1200 days). These are the first and possibly only estimates of human elimination half-lives of these fluoroethers.
Collapse
Affiliation(s)
- Dylan J Wallis
- North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nadine Kotlarz
- North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, NC State, Raleigh, North Carolina 27695, United States
| | - Detlef R U Knappe
- North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, NC State, Raleigh, North Carolina 27695, United States
| | - David N Collier
- Center for Human Health and the Environment, NC State, Raleigh, North Carolina 27695, United States
- East Carolina University, Greenville, North Carolina 27858, United States
| | - C Suzanne Lea
- Center for Human Health and the Environment, NC State, Raleigh, North Carolina 27695, United States
- East Carolina University, Greenville, North Carolina 27858, United States
| | - David Reif
- North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, NC State, Raleigh, North Carolina 27695, United States
| | - James McCord
- U.S. Environmental Protection Agency, Triangle Research Park, North Carolina 27709, United States
| | - Mark Strynar
- U.S. Environmental Protection Agency, Triangle Research Park, North Carolina 27709, United States
| | - Jamie C DeWitt
- Center for Human Health and the Environment, NC State, Raleigh, North Carolina 27695, United States
- East Carolina University, Greenville, North Carolina 27858, United States
| | - Jane A Hoppin
- North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, NC State, Raleigh, North Carolina 27695, United States
| |
Collapse
|
29
|
Barisci S, Suri R. Degradation of emerging per- and polyfluoroalkyl substances (PFAS) using an electrochemical plug flow reactor. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132419. [PMID: 37651931 DOI: 10.1016/j.jhazmat.2023.132419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
In recent years, shorter-chain fluorinated compounds have been manufactured as alternatives to legacy per- and polyfluoroalkyl substances (PFAS) after a global ban on some long-chain PFAS. This study is the first to investigate the degradability of emerging PFAS by an electrochemical plug flow reactor (EPFR). Ten different emerging PFAS, representing classes of fluorotelomer alcohol, perfluoroalkyl ether carboxylate, polyfluoroalkyl ethersulfonic acids, perfluoroalkyl ether/polyether carboxylates, perfluoroether sulfonate, N-alkyl perfluoroalkylsulfonamido carboxylate, fluoroalkyl phosphonic acid, and perfluoro alkane sulfonamide were investigated. The process kinetics was performed. The degradation of parent compounds increased with increasing retention time (RT). At 45.2 min of RT, the degradation of parent compounds ranged between 68%-100% with a current density of 17.2 mA/cm2. A linear increase in pseudo-first order rate constants was observed for all PFAS with increasing current density from 5.7 to 28.7 mA/cm2 (R2 > 0.91). The effect of pH, natural organic matter, and bicarbonate on the degradation, defluorination, and fluorine mass balance are reported. Alkaline pH (11) caused a decrease in degradation for all PFAS. While the presence of natural organic matter (NOM) significantly decreased the degradation and defluorination processes, the presence of bicarbonate at all studied concentrations (25, 50, and 100 mg/L) did not affect the process efficiency. The defluorination reduced to 34% from 81% with 15 mg/L NOM. The unknown/undetected fluorine fraction also increased in the presence of 15 mg/L NOM indicating the formation of NOM-PFAS complexes. Additionally, C2-C8 perfluoro carboxylic acids (PFCAs), one perfluoro sulfonic acid (PFSA), two H-PFCAs, and 4:2 fluorotelomer sulfonate (FTS) were identified as degradation byproducts in suspect screening. The electrical energy per order for PFAS ranged between 1.8 and 19.4 kWh/m3. This study demonstrates that emerging types of PFAS can potentially be degraded using an EPFR with relatively low electrical energy requirements.
Collapse
Affiliation(s)
- Sibel Barisci
- Temple University, Civil and Environmental Engineering Department, Water and Environmental Technology (WET) Center, 1947 N 12th Street, Philadelphia, PA 19122, USA; Ege University, Bioengineering Department, Bornova, 35100 Izmir, Turkey
| | - Rominder Suri
- Temple University, Civil and Environmental Engineering Department, Water and Environmental Technology (WET) Center, 1947 N 12th Street, Philadelphia, PA 19122, USA.
| |
Collapse
|
30
|
Hou C, Deng J, Li S, Li H, Zhou Y, Zhai Y. Differences between reductive defluorination of perfluorooctanoic acid by chlorination, bromination, and iodization in the vacuum-ultraviolet/sulfite process. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132459. [PMID: 37683349 DOI: 10.1016/j.jhazmat.2023.132459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
The introduction of iodide (I-) has broad perspectives on the decomposition of perfluorocarboxylates (PFCAs, CnF2n+1COO-). However, the iodinated substances produced are highly toxic synthetic chemicals, hence, it is urgent to find a similar alternative with less toxicity. In this work, the defluorination of perfluorooctanoic acid (PFOA) by I-, bromide (Br-) and chlorine (Cl-) was systematically compared in the VUV/sulfite process. Results indicated that the PFOA defluorination rates increased with increasing nucleophilicity of halogens (I > Br > Cl). Meanwhile, the introduction of I-, Br-, and Cl- reduced the interference of the coexisting water matrix on the degrading influence of PFOA. The in situ produced eaq-, SO3•-, H•, and HO• were recognized, among the addition of I- maximized the relative contribution of eaq- but Br- and Cl- decreased that of H• and other radicals. Additionally, HPLC/MS analysis revealed the presence of I-, Br-, and Cl- had a vital impact on the difference in product concentrations, while they had a negligible effect on the change in the pathway of degradation. Overall, this study demonstrated the similarities and differences between I-, Br-, and Cl-, which has significant implications for further understanding VUV/sulfite degradation.
Collapse
Affiliation(s)
- Changlan Hou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiaqin Deng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Shanhong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hui Li
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China
| | - Yin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
31
|
Gu M, Liu L, Yu G, Huang J. Deeper Defluorination and Mineralization of a Novel PFECA (C7 HFPO-TA) in Vacuum UV/Sulfite: Unique Mechanism of H/OCF 3 Exchange. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15288-15297. [PMID: 37747133 DOI: 10.1021/acs.est.3c03308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
C7 HFPO-TA is a newly identified alternative to PFOA, which possesses a unique structure fragment (CF3O-CF(CF3)-). In this study, we evaluated the chemical reactivity of C7 HFPO-TA in advanced oxidation and reduction processes for the first time, which revealed a series of unexpected transformation mechanisms. The results showed that reductive degradation based on hydrated electrons (eaq-) was more feasible for the degradation of C7 HFPO-TA. For oxidative degradation, the branched -CF3 at the α-position carbon posed as the spatial hindrance, shielding the attack of SO4•- to -COO-. The synergistic effects of HO•/eaq- and direct photolysis led to deeper defluorination and mineralization of C7 HFPO-TA in the vacuum UV/sulfite (VUV/SF) process. We identified a unique H/OCF3 exchange that converted the CF3O-CF(CF3)- into H-CF(CF3)- directly, and the SO3•- involved mechanism of C7 HFPO-TA for the first time. We revealed the branched -CF3 connected to the same carbon next to the CF3O- group affected the C-O bond cleavage site, preferring the H/OCF3 exchange pathway. The defluorination of C7 HFPO-TA was compared with PFOA and three PFECAs in the VUV/SF process, which was highly dependent on structures. Degradation kinetics, theoretical calculations, and products' analysis provided an in-depth perspective on the degradation mechanisms and pathways of C7 HFPO-TA.
Collapse
Affiliation(s)
- Mengbin Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 10084, China
| | - Liquan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 10084, China
| | - Gang Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 10084, China
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 10084, China
| |
Collapse
|
32
|
Wilsey MK, Taseska T, Meng Z, Yu W, Müller AM. Advanced electrocatalytic redox processes for environmental remediation of halogenated organic water pollutants. Chem Commun (Camb) 2023; 59:11895-11922. [PMID: 37740361 DOI: 10.1039/d3cc03176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Halogenated organic compounds are widespread, and decades of heavy use have resulted in global bioaccumulation and contamination of the environment, including water sources. Here, we introduce the most common halogenated organic water pollutants, their classification by type of halogen (fluorine, chlorine, or bromine), important policies and regulations, main applications, and environmental and human health risks. Remediation techniques are outlined with particular emphasis on carbon-halogen bond strengths. Aqueous advanced redox processes are discussed, highlighting mechanistic details, including electrochemical oxidations and reductions of the water-oxygen system, and thermodynamic potentials, protonation states, and lifetimes of radicals and reactive oxygen species in aqueous electrolytes at different pH conditions. The state of the art of aqueous advanced redox processes for brominated, chlorinated, and fluorinated organic compounds is presented, along with reported mechanisms for aqueous destruction of select PFAS (per- and polyfluoroalkyl substances). Future research directions for aqueous electrocatalytic destruction of organohalogens are identified, emphasizing the crucial need for developing a quantitative mechanistic understanding of degradation pathways, the improvement of analytical detection methods for organohalogens and transient species during advanced redox processes, and the development of new catalysts and processes that are globally scalable.
Collapse
Affiliation(s)
- Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Teona Taseska
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Wanqing Yu
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Astrid M Müller
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
33
|
Jin B, Zhu Y, Zhao W, Liu Z, Che S, Chen K, Lin YH, Liu J, Men Y. Aerobic Biotransformation and Defluorination of Fluoroalkylether Substances (ether PFAS): Substrate Specificity, Pathways, and Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:755-761. [PMID: 37719205 PMCID: PMC10501197 DOI: 10.1021/acs.estlett.3c00411] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023]
Abstract
Fluoroalkylether substances (ether PFAS) constitute a large group of emerging PFAS with uncertain environmental fate. Among them, GenX is the well-known alternative to perfluorooctanoic acid and one of the six proposed PFAS to be regulated by the U.S. Environmental Protection Agency. This study investigated the structure-biodegradability relationship for 12 different ether PFAS with a carboxylic acid headgroup in activated sludge communities. Only polyfluorinated ethers with at least one -CH2- moiety adjacent to or a C=C bond in the proximity of the ether bond underwent active biotransformation via oxidative and hydrolytic O-dealkylation. The bioreactions at ether bonds led to the formation of unstable fluoroalcohol intermediates subject to spontaneous defluorination. We further demonstrated that this aerobic biotransformation/defluorination could complement the advanced reduction process in a treatment train system to achieve more cost-effective treatment for GenX and other recalcitrant perfluorinated ether PFAS. These findings provide essential insights into the environmental fate of ether PFAS, the design of biodegradable alternative PFAS, and the development of cost-effective ether PFAS treatment strategies.
Collapse
Affiliation(s)
- Bosen Jin
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yiwen Zhu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Weiyang Zhao
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Zekun Liu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Shun Che
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Kunpeng Chen
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Jinyong Liu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yujie Men
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
34
|
Gaines LGT, Sinclair G, Williams AJ. A proposed approach to defining per- and polyfluoroalkyl substances (PFAS) based on molecular structure and formula. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1333-1347. [PMID: 36628931 PMCID: PMC10827356 DOI: 10.1002/ieam.4735] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/06/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Various groups and researchers, including the authors of this work, have proposed different definitions of what constitutes per- and polyfluoroalkyl substances (PFAS). The different definitions are all based on a structural definition. Although a structural definition is reasonable, such an approach is difficult to execute if the intent is to narrow or refine the definition. This approach can also lead to inexplicable demarcations of what are and what are not PFAS. Our objective was to create a narrow, simple PFAS definition that allows interested groups to communicate with a common understanding and will also serve as a starting point to focus on substances that are of real environmental concern. Our studies have demonstrated that numerous highly fluorinated complex structures exist that make a structure-based definition difficult. We suggest that a definition based on fractional fluorination expressed as the percentage of fluorine of a molecular formula using atom counting offers advantages. Using a combination of a structure-based definition and a definition based on the fractional percentage of the molecular formula that is fluorine can provide a more inclusive and succinct definition. Thus, we propose a new definition based on four substructures along with any structures where the molecular formula is 30% fluorine by atom count. Integr Environ Assess Manag 2023;19:1333-1347. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Linda G. T. Gaines
- Office of Superfund Remediation and Technology Innovation, Office of Land and Emergency Management, US Environmental Protection Agency, DC, Washington, USA
| | - Gabriel Sinclair
- ORAU Student Services Contractor to Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, NC, Research Triangle Park, USA
| | - Antony J. Williams
- Office of Research & Development, Center for Computational Toxicology & Exposure, US Environmental Protection Agency, NC, Research Triangle Park, USA
| |
Collapse
|
35
|
Alinezhad A, Shao H, Litvanova K, Sun R, Kubatova A, Zhang W, Li Y, Xiao F. Mechanistic Investigations of Thermal Decomposition of Perfluoroalkyl Ether Carboxylic Acids and Short-Chain Perfluoroalkyl Carboxylic Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8796-8807. [PMID: 37195265 PMCID: PMC10269594 DOI: 10.1021/acs.est.3c00294] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
In this study, we investigated the thermal decomposition mechanisms of perfluoroalkyl ether carboxylic acids (PFECAs) and short-chain perfluoroalkyl carboxylic acids (PFCAs) that have been manufactured as replacements for phased-out per- and polyfluoroalkyl substances (PFAS). C-C, C-F, C-O, O-H, and C═C bond dissociation energies were calculated at the M06-2X/Def2-TZVP level of theory. The α-C and carboxyl-C bond dissociation energy of PFECAs declines with increasing chain length and the attachment of an electron-withdrawing trifluoromethyl (-CF3) group to the α-C. Experimental and computational results show that the thermal transformation of hexafluoropropylene oxide dimer acid to trifluoroacetic acid (TFA) occurs due to the preferential cleavage of the C-O ether bond close to the carboxyl group. This pathway produces precursors of perfluoropropionic acid (PFPeA) and TFA and is supplemented by a minor pathway (CF3CF2CF2OCFCF3COOH → CF3CF2CF2· + ·OCFCF3COOH) through which perfluorobutanoic acid (PFBA) is formed. The weakest C-C bond in PFPeA and PFBA is the one connecting the α-C and the β-C. The results support (1) the C-C scission in the perfluorinated backbone as an effective PFCA thermal decomposition mechanism and (2) the thermal recombination of radicals through which intermediates are formed. Additionally, we detected a few novel thermal decomposition products of studied PFAS.
Collapse
Affiliation(s)
- Ali Alinezhad
- Department
of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - Heng Shao
- Key
Laboratory of Water and Sediment Sciences of Ministry of Education,
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Katerina Litvanova
- Department
of Chemistry, The University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Runze Sun
- Department
of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - Alena Kubatova
- Department
of Chemistry, The University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Wen Zhang
- John
A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yang Li
- Key
Laboratory of Water and Sediment Sciences of Ministry of Education,
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Feng Xiao
- Department
of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
36
|
Fennell B, Fowler D, Mezyk SP, McKay G. Reactivity of Dissolved Organic Matter with the Hydrated Electron: Implications for Treatment of Chemical Contaminants in Water with Advanced Reduction Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7634-7643. [PMID: 37141499 PMCID: PMC10862553 DOI: 10.1021/acs.est.3c00909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Advanced reduction processes (ARP) have garnered increasing attention for the treatment of recalcitrant chemical contaminants, most notably per- and polyfluoroalkyl substances (PFAS). However, the impact of dissolved organic matter (DOM) on the availability of the hydrated electron (eaq-), the key reactive species formed in ARP, is not completely understood. Using electron pulse radiolysis and transient absorption spectroscopy, we measured bimolecular reaction rates constant for eaq- reaction with eight aquatic and terrestrial humic substance and natural organic matter isolates ( kDOM,eaq-), with the resulting values ranging from (0.51 ± 0.01) to (2.11 ± 0.04) × 108 MC-1 s-1. kDOM,eaq- measurements at varying temperature, pH, and ionic strength indicate that activation energies for diverse DOM isolates are ≈18 kJ mol-1 and that kDOM,eaq- could be expected to vary by less than a factor of 1.5 between pH 5 and 9 or from an ionic strength of 0.02 to 0.12 M. kDOM,eaq- exhibited a significant, positive correlation to % carbonyl carbon for the isolates studied, but relationships to other DOM physicochemical properties were surprisingly more scattered. A 24 h UV/sulfite experiment employing chloroacetate as an eaq- probe revealed that continued eaq- exposure abates DOM chromophores and eaq- scavenging capacity over a several hour time scale. Overall, these results indicate that DOM is an important eaq- scavenger that will reduce the rate of target contaminant degradation in ARP. These impacts are likely greater in waste streams like membrane concentrates, spent ion exchange resins, or regeneration brines that have elevated DOM concentrations.
Collapse
Affiliation(s)
- Benjamin
D. Fennell
- Zachry
Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77845, United States
| | - Douglas Fowler
- Department
of Chemistry and Biochemistry, California
State University Long Beach, Long Beach, California 90840, United States
| | - Stephen P. Mezyk
- Department
of Chemistry and Biochemistry, California
State University Long Beach, Long Beach, California 90840, United States
| | - Garrett McKay
- Zachry
Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
37
|
Yang Z, Zhuo Q, Wang W, Guo S, Chen J, Li Y, Lv S, Yu G, Qiu Y. Fabrication and characterizations of Zn-doped SnO 2-Ti 4O 7 anode for electrochemical degradation of hexafluoropropylene oxide dimer acid and its homologues. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131605. [PMID: 37196440 DOI: 10.1016/j.jhazmat.2023.131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA) and its homologues, as perfluorinated ether alkyl substances with strong antioxidant properties, have rarely been reported by electrooxidation processes to achieve good results. Herein, we report the use of an oxygen defect stacking strategy to construct Zn-doped SnO2-Ti4O7 for the first time and enhance the electrochemical activity of Ti4O7. Compared with the original Ti4O7, the Zn-doped SnO2-Ti4O7 showed a 64.4% reduction in interfacial charge transfer resistance, a 17.5% increase in the cumulative rate of •OH generation, and an enhanced oxygen vacancy concentration. The Zn-doped SnO2-Ti4O7 anode exhibited high catalytic efficiency of 96.4% for HFPO-DA within 3.5 h at 40 mA/cm2. Hexafluoropropylene oxide trimer and tetramer acid exhibit more difficult degradation due to the protective effect of the -CF3 branched chain and the addition of the ether oxygen atom leading to a significant increase in the C-F bond dissociation energy. The degradation rates of 10 cyclic degradation experiments and the leaching concentrations of Zn and Sn after 22 electrolysis experiments demonstrated the good stability of the electrodes. In addition, the aqueous toxicity of HFPO-DA and its degradation products was evaluated. This study analyzed the electrooxidation process of HFPO-DA and its homologues for the first time, and provided some new insights.
Collapse
Affiliation(s)
- Zehong Yang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Qiongfang Zhuo
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Dongguan Key Laboratory of Emerging Contaminants, Dongguan 523808, Guangdong, China.
| | - Wenlong Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Shuting Guo
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Jianfeng Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Sihao Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519000, Guangdong, China
| | - Yongfu Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| |
Collapse
|
38
|
Zheng S, Guo W, Li C, Sun Y, Zhao Q, Lu H, Si Q, Wang H. Application of machine learning and deep learning methods for hydrated electron rate constant prediction. ENVIRONMENTAL RESEARCH 2023; 231:115996. [PMID: 37105290 DOI: 10.1016/j.envres.2023.115996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Accurately determining the second-order rate constant with eaq- (keaq-) for organic compounds (OCs) is crucial in the eaq- induced advanced reduction processes (ARPs). In this study, we collected 867 keaq- values at different pHs from peer-reviewed publications and applied machine learning (ML) algorithm-XGBoost and deep learning (DL) algorithm-convolutional neural network (CNN) to predict keaq-. Our results demonstrated that the CNN model with transfer learning and data augmentation (CNN-TL&DA) greatly improved the prediction results and overcame over-fitting. Furthermore, we compared the ML/DL modeling methods and found that the CNN-TL&DA, which combined molecular images (MI), achieved the best overall performance (R2test = 0.896, RMSEtest = 0.362, MAEtest = 0.261) when compared to the XGBoost algorithm combined with Mordred descriptors (MD) (0.692, RMSEtest = 0.622, MAEtest = 0.399) and Morgan fingerprint (MF) (R2test = 0.512, RMSEtest = 0.783, MAEtest = 0.520). Moreover, the interpretation of the MD-XGBoost and MF-XGBoost models using the SHAP method revealed the significance of MDs (e.g., molecular size, branching, electron distribution, polarizability, and bond types), MFs (e.g, aromatic carbon, carbonyl oxygen, nitrogen, and halogen) and environmental conditions (e.g., pH) that effectively influence the keaq- prediction. The interpretation of the 2D molecular image-CNN (MI-CNN) models using the Grad-CAM method showed that they correctly identified key functional groups such as -CN, -NO2, and -X functional groups that can increase the keaq- values. Additionally, almost all electron-withdrawing groups and a small part of electron-donating groups for the MI-CNN model can be highlighted for estimating keaq-. Overall, our results suggest that the CNN approach has smaller errors when compared to ML algorithms, making it a promising candidate for predicting other rate constants.
Collapse
Affiliation(s)
- Shanshan Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, 2555 Jingyue St., Changchun 130117, Jilin Province, China
| | - Yongbin Sun
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, Shandong, People's Republic of China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
39
|
Zhou Z, Guo R, Chen B, Wang L, Cao H, Wei C, Hu M, Zhan Y, Li S, Wang Y, Liang Y. Development of a Completely New PFOS Alternative with Lower Surface Tension for Minimizing the Environmental Burden. Chem Res Chin Univ 2023; 39:408-414. [PMID: 37303471 PMCID: PMC10115474 DOI: 10.1007/s40242-023-3030-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 06/13/2023]
Abstract
Improving the technical performance of related industrial products is an efficient strategy to reducing the application quantities and environmental burden for toxic chemicals. A novel polyfluoroalkyl surfactant potassium 1,1,2,2,3,3,4,4-octafluoro-4-(perfluorobutoxy)butane-1-sulfonate(F404) was synthesized by a commercializable route. It had a surface tension(γ) of 18.2 mN/m at the critical micelle concentration(CMC, 1.04 g/L), significantly lower than that of perfluorooctane sulfonate(PFOS, ca. 33.0 mN/m, 0.72 g/L), and exhibited remarkable suppression of chromium-fog at a dose half that of PFOS. The half maximal inhibitory concentration(IC50) values in HepG2 cells and the lethal concentration of 50%(LC50) in zebrafish embryos after 72 hpf indicated a lower toxicity for F404 in comparison to PFOS. In a UV/sulphite system, 89.3% of F404 were decomposed after 3 h, representing a defluorination efficiency of 43%. The cleavage of the ether C-O bond during the decomposition would be expected to form a short chain·C4F9 as the position of the ether C-O in the F404 fluorocarbon chains is C4-O5. The ether unit is introduced in the perfluoroalkyl chain to improve water solubility, biocompatibility and degradation, thereby minimizing the environmental burden. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s40242-023-3030-4.
Collapse
Affiliation(s)
- Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Rui Guo
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Cuiyun Wei
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Ming Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Yuhang Zhan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Shutao Li
- Hubei Hengxin Chemical Co., Ltd., Yingcheng, 432400 P. R. China
| | - Yawei Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 P. R. China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| |
Collapse
|
40
|
Bowers BB, Lou Z, Xu J, De Silva AO, Xu X, Lowry GV, Sullivan RC. Nontarget analysis and fluorine atom balances of transformation products from UV/sulfite degradation of perfluoroalkyl contaminants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:472-483. [PMID: 36722905 DOI: 10.1039/d2em00425a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of highly fluorinated, anthropogenic compounds that are used in a wide variety of consumer applications. Due to their widespread use and high persistence, PFAS are ubiquitous in drinking water, which is of concern due to the threats these compounds pose to human health. Reduction via the hydrated electron is a promising technology for PFAS remediation and has been well-studied. However, since previous work rarely reports fluorine atom balances and often relies on suspect screening, some transformation products are likely unaccounted for. Therefore, we performed non-target analysis using high-resolution mass spectrometry on solutions of perfluorooctanesulfonate (PFOS), perfluorobutanesulfonate (PFBS), perfluorooctanoate (PFOA), and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate (GenX) that had been treated with UV/sulfite to produce hydrated electrons. We determined fluorine atom balances for all compounds studied, finding high fluorine atom balances for PFOS and PFBS. PFOA and GenX had lower overall fluorine atom balances, likely due to the production of volatile or very polar transformation products that were not measured by our methods. Transformation products identified by our analysis were consistent with literature, with a few exceptions. Namely, shorter-chain perfluorosulfonates (PFSA) and their H/F substituted counterparts were also detected from PFOS. This is an unexpected result based on literature, as no documented pathway exists for the formation of shorter-chain PFSA during UV/sulfite treatment. Furthermore, the nontarget approach we employed allowed for identification of novel, unsaturated products from the hydrated electron treatment of perfluorooctanesulfonate (PFOS) that warrant further investigation.
Collapse
Affiliation(s)
- Bailey B Bowers
- Institute for Green Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Zimo Lou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Amila O De Silva
- Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ryan C Sullivan
- Institute for Green Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
41
|
Zhu X, Liao C, Song D, Yan X, Wan Y, Sun H, Wang X. Glucose facilitates the acclimation of organohalide-respiring bacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130421. [PMID: 36427483 DOI: 10.1016/j.jhazmat.2022.130421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Organohalide respiring bacteria (OHRB) are the mainstay for bioremediation of organohalide contaminated sites. Enrichment screening of OHRB is prerequisite for the development of high performance dehalogenating bacterial agents. Herein, different domestication strategies were formulated for the main factors (nutrients and inocula) affecting the enrichment of OHRB, and the dehalogenation effect was verified with 2-chlorophenol and per/polyfluoroalkyl substances. The nutrients had a greater impact on the dehalogenation of the systems relative to the inocula, where the combination of glucose and anaerobic sludge (Glu-AS) had a faster degradation rate (26 ± 2.5 µmol L-1 d-1) and more complete dechlorination effectiveness. Meanwhile, the dehalogenation results for perfluorooctanoic acid and trifluoroacetic acid showed the biological defluorination was closely related to the position of fluoride. Further, the microbial community structure profiled the resource competition, metabolic cross-feeding and nutrient dynamic exchange among fermenting bacteria, OHRB and methanogenic bacteria under different domestication strategies as endogenous factors affecting the dehalogenation performance, and speculated a hypothetical model for the interaction of different functional bacteria. Our research contributed guidelines and references for the development of efficient dehalogenating bacterial agents, and provided scientific theoretical and technical support for promoting the maximum efficiency of bioremediation of organohalogenated sites.
Collapse
Affiliation(s)
- Xuemei Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Dongbao Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
42
|
Fang Y, Meng P, Schaefer C, Knappe DRU. Removal and destruction of perfluoroalkyl ether carboxylic acids (PFECAs) in an anion exchange resin and electrochemical oxidation treatment train. WATER RESEARCH 2023; 230:119522. [PMID: 36577256 DOI: 10.1016/j.watres.2022.119522] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/18/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Perfluoroalkyl ether carboxylic acids (PFECAs) are a group of emerging recalcitrant contaminants that are being developed to replace legacy per- and polyfluoroalkyl substances (PFAS) in industrial applications and that are generated as by-products in fluoropolymer manufacturing. Here, we report on the removal and destruction of four structurally different PFECAs using an integrated anion exchange resin (AER) and electrochemical oxidation (ECO) treatment train. Results from this work illustrated that (1) flow-through columns packed with PFAS-selective AERs are highly effective for the removal of PFECAs and (2) PFECA affinity is strongly correlated with their hydrophobic features. Regeneration of the spent resin columns revealed that high percentage (e.g., 80%) of organic cosolvent is necessary for achieving 60-100% PFECA release, and regeneration efficiency was higher for a macroporous resin than a gel-type resin. Treatment of spent regenerants showed (1) >99.99% methanol removal was achieved by distillation, (2) >99.999% conversion of the four studied PFECAs was achieved during the ECO treatment of the still bottoms after 24 hours with an energy per order of magnitude of PFECA removal (EE/O) <1.03 kWh/m3 of total groundwater treated, and (3) >85% of the organic fluorine was recovered as inorganic fluoride. Trifluoroacetic acid (TFA), perfluoropropionic acid (PFPrA), and perfluoro-2-methoxyacetic acid (PFMOAA) were confirmed via high-resolution mass spectrometry as transformation products (TPs) in the treated still bottoms, and two distinctive degradation schemes and four reaction pathways are proposed for the four PFECAs. Lastly, dissolved organic matter (DOM) inhibited uptake, regeneration, and oxidation of PFECAs throughout the treatment train, suggesting pretreatment steps targeting DOM removal can enhance the system's treatment efficiency. Results from this work provide guidelines for developing effective separation-concentration-destruction treatment trains and meaningful insights for achieving PFECA destruction in impacted aquatic systems.
Collapse
Affiliation(s)
- Yida Fang
- CDM Smith, 14432 SE Eastgate Way, #100, Bellevue, Washington 98007, United States.
| | - Pingping Meng
- North Carolina State University, 915 Partners Way, Raleigh, North Carolina 27695, United States
| | - Charles Schaefer
- CDM Smith, 110 Fieldcrest Avenue, #8, Edison, New Jersey 08837, United States
| | - Detlef R U Knappe
- North Carolina State University, 915 Partners Way, Raleigh, North Carolina 27695, United States
| |
Collapse
|
43
|
Smeltz MG, Clifton MS, Henderson WM, McMillan L, Wetmore BA. Targeted Per- and Polyfluoroalkyl substances (PFAS) assessments for high throughput screening: Analytical and testing considerations to inform a PFAS stock quality evaluation framework. Toxicol Appl Pharmacol 2023; 459:116355. [PMID: 36535553 PMCID: PMC10367912 DOI: 10.1016/j.taap.2022.116355] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent a large chemical class lacking hazard, toxicokinetic, and exposure information. To accelerate PFAS hazard evaluation, new approach methodologies (NAMs) comprised of in vitro high-throughput toxicity screening, toxicokinetic data, and computational modeling are being employed in read across strategies to evaluate the larger PFAS landscape. A critical consideration to ensure robust evaluations is a parallel assessment of the quality of the screening stock solutions, where dimethyl sulfoxide (DMSO) is often the diluent of choice. Challenged by the lack of commercially available reference standards for many of the selected PFAS and reliance on mass spectrometry approaches for such an evaluation, we developed a high-throughput framework to evaluate the quality of screening stocks for 205 PFAS selected for these NAM efforts. Using mass spectrometry coupled with either liquid or gas chromatography, a quality scoring system was developed that incorporated observations during mass spectral examination to provide a simple pass or fail notation. Informational flags were used to further describe findings regarding parent analyte presence through accurate mass identification, evidence of contaminants and/or degradation, or further describe characteristics such as isomer presence. Across the PFAS-DMSO stocks tested, 148 unique PFAS received passing quality scores to allow for further in vitro testing whereas 57 received a failing score primarily due to detection issues or confounding effects of DMSO. Principle component analysis indicated vapor pressure and Henry's Law Constant as top indicators for a failed quality score for those analyzed by gas chromatography. Three PFAS in the hexafluoropropylene oxide family failed due to degradation in DMSO. As the PFAS evaluated spanned over 20 different structural categories, additional commentary describes analytical observations across specific groups related to PFAS stock composition, detection, stability, and methodologic considerations that will be useful for informing future analytical assessment and downstream HTS efforts. The high-throughput stock quality scoring workflow presented holds value as a tool to evaluate chemical presence and quality efficiently and for informing data inclusion in PFAS or other NAM screening efforts.
Collapse
Affiliation(s)
- Marci G Smeltz
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, United States of America
| | - M Scott Clifton
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, United States of America
| | - W Matthew Henderson
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Athens, GA 23605, United States of America
| | - Larry McMillan
- National Caucus and Center on Black Aged, Inc, Durham, NC, United States of America
| | - Barbara A Wetmore
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, United States of America.
| |
Collapse
|
44
|
Paultre CB, Mebel AM, O’Shea KE. Computational Study of the Gas-Phase Thermal Degradation of Perfluoroalkyl Carboxylic Acids. J Phys Chem A 2022; 126:8753-8760. [DOI: 10.1021/acs.jpca.2c06437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Claude-Bernard Paultre
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Kevin E. O’Shea
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
45
|
Tenorio R, Maizel AC, Schaefer CE, Higgins CP, Strathmann TJ. Application of High-Resolution Mass Spectrometry to Evaluate UV-Sulfite-Induced Transformations of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14774-14787. [PMID: 36162863 DOI: 10.1021/acs.est.2c03228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
UV-sulfite has been shown to effectively degrade per- and polyfluoroalkyl substances (PFASs) in single-solute experiments. We recently reported treatment of 15 PFASs, including perfluoroalkyl sulfonic acids (PFSAs), perfluoroalkyl carboxylic acids (PFCAs), and fluorotelomer sulfonic acids (FTSs), detected in aqueous film-forming foam (AFFF) using high-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) targeted analysis. Here, we extend the analysis within those original reaction solutions to include the wider set of PFASs in AFFF for which reactivity is largely unknown by applying recently established LC-QTOF-MS suspect screening and semiquantitative analysis protocols. Sixty-eight additional PFASs were detected (15 targeted + 68 suspect screening = 83 PFASs) with semiquantitative analysis, and their behavior was binned on the basis of (1) detection in untreated AFFF, (2) PFAS photogeneration, and (3) reactivity. These 68 structures account for an additional 20% of the total fluorine content in the AFFF (targeted + suspect screening = 57% of total fluorine content). Structure-reactivity trends were also revealed. During treatment, transformations of highly reactive structures containing sulfonamide (-SO2N-) and reduced sulfur groups (e.g., -S- and -SO-) adjacent to the perfluoroalkyl [F(CF2)n-] or fluorotelomer [F(CF2)n(CH2)2-] chain are likely sources of PFCA, PFSA, and FTS generation previously reported during the early stages of reactions. The results also show the character of headgroup moieties adjacent to the F(CF2)n-/F(CF2)n(CH2)2- chain (e.g., sulfur oxidation state, sulfonamide type, and carboxylic acids) and substitution along the F(CF2)n- chain (e.g., H-, ketone, and ether) together may determine chain length-dependent reactivity trends. The results highlight the importance of monitoring PFASs outside conventional targeted analytical methodologies.
Collapse
Affiliation(s)
- Raul Tenorio
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Andrew C Maizel
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Charles E Schaefer
- CDM Smith, 110 Fieldcrest Avenue, Edison, New Jersey 08837, United States
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| |
Collapse
|
46
|
Liu F, Guan X, Xiao F. Photodegradation of per- and polyfluoroalkyl substances in water: A review of fundamentals and applications. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129580. [PMID: 35905606 DOI: 10.1016/j.jhazmat.2022.129580] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent, mobile, and toxic chemicals that are hazardous to human health and the environment. Several countries, including the United States, plan to set an enforceable maximum contamination level for certain PFAS compounds in drinking water sources. Among the available treatment options, photocatalytic treatment is promising for PFAS degradation and mineralization in the aqueous solution. In this review, recent advances in the abatement of PFAS from water using photo-oxidation and photo-reduction are systematically reviewed. Degradation mechanisms of PFAS by photo-oxidation involving the holes (hvb+) and oxidative radicals and photo-reduction using the electrons (ecb-) and hydrated electrons (eaq-) are integrated. The recent development of innovative heterogeneous photocatalysts and photolysis systems for enhanced degradation of PFAS is highlighted. Photodegradation mechanisms of alternative compounds, such as hexafluoropropylene oxide dimer acid (GenX) and chlorinated polyfluorinated ether sulfonate (F-53B), are also critically evaluated. This paper concludes by identifying major knowledge gaps and some of the challenges that lie ahead in the scalability and adaptability issues of photocatalysis for natural water treatment. Development made in photocatalysts design and system optimization forges a path toward sustainable treatment of PFAS-contaminated water through photodegradation technologies.
Collapse
Affiliation(s)
- Fuqiang Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaohong Guan
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Feng Xiao
- Department of Civil Engineering, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, ND 58202, United States.
| |
Collapse
|
47
|
DiMento BP, Tusei CL, Aeppli C. Photochemical degradation of short-chain chlorinated paraffins in aqueous solution by hydrated electrons and hydroxyl radicals. CHEMOSPHERE 2022; 303:134732. [PMID: 35525447 DOI: 10.1016/j.chemosphere.2022.134732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are a complex mixture of polychlorinated alkanes (C10-C13, chlorine content 40-70%), and have been categorized as persistent organic pollutants. However, there are knowledge gaps about their environmental degradation, particularly the effectiveness and mechanism of photochemical degradation in surface waters. Photochemically-produced hydrated electrons (e-(aq)) have been shown to degrade highly chlorinated compounds in environmentally-relevant conditions more effectively than hydroxyl radicals (·OH), which can degrade a wide range of organic pollutants. This study aimed to evaluate the potential for e-(aq) and ·OH to degrade SCCPs. To this end, the degradation of SCCP model compounds was investigated under laboratory conditions that photochemically produced e-(aq) or ·OH. Resulting SCCP degradation rate constants for e-(aq) were on the same order of magnitude as well-known chlorinated pesticides. Experiments in the presence of ·OH yielded similar or higher second-order rate constants. Trends in e-(aq) and ·OH degradation rate constants of the investigated SCCPs were consistent with those of other chlorinated compounds, with higher chlorine content producing in higher rate constants for e-(aq) and lower for ·OH. Above a chlorine:carbon ratio of approximately 0.6, the e-(aq) second-order rate constants were higher than rate constants for ·OH reactions. Results of this study furthermore suggest that SCCPs are likely susceptible to degradation in sunlit surface waters, facilitated by dissolved organic matter as a source of photochemically produced e-(aq) and ·OH.
Collapse
Affiliation(s)
- Brian P DiMento
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, USA; Colby College, 5750 Mayflower Hill Drive, Waterville, ME, 04901, USA.
| | - Cristina L Tusei
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, USA; Humboldt State University, 1 Harpst St, Arcata, CA, USA
| | - Christoph Aeppli
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, USA; Colby College, 5750 Mayflower Hill Drive, Waterville, ME, 04901, USA
| |
Collapse
|
48
|
Trang B, Li Y, Xue XS, Ateia M, Houk KN, Dichtel WR. Low-temperature mineralization of perfluorocarboxylic acids. Science 2022; 377:839-845. [PMID: 35981038 DOI: 10.1126/science.abm8868] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent, bioaccumulative pollutants found in water resources at concentrations harmful to human health. Whereas current PFAS destruction strategies use nonselective destruction mechanisms, we found that perfluoroalkyl carboxylic acids (PFCAs) could be mineralized through a sodium hydroxide-mediated defluorination pathway. PFCA decarboxylation in polar aprotic solvents produced reactive perfluoroalkyl ion intermediates that degraded to fluoride ions (78 to ~100%) within 24 hours. The carbon-containing intermediates and products were inconsistent with oft-proposed one-carbon-chain shortening mechanisms, and we instead computationally identified pathways consistent with many experiments. Degradation was also observed for branched perfluoroalkyl ether carboxylic acids and might be extended to degrade other PFAS classes as methods to activate their polar headgroups are identified.
Collapse
Affiliation(s)
- Brittany Trang
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Yuli Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
49
|
Fennell BD, Odorisio A, McKay G. Quantifying Hydrated Electron Transformation Kinetics in UV-Advanced Reduction Processes Using the Re-,UV Method. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10329-10338. [PMID: 35791772 DOI: 10.1021/acs.est.2c02003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultraviolet advanced reduction processes (UV-ARP) have garnered significant attention recently for the degradation of several hard to treat contaminants, including recalcitrant per- and polyfluoroalkyl substances (PFAS). The rate of contaminant degradation in UV-ARP is directly related to the available hydrated electron concentration ([eaq-]). However, reports of [eaq-] and other parameters typically used to characterize photochemical systems are not widely reported in the UV-ARP literature. Deploying monochloroacetate as a probe compound, we developed a method (Re-,UV) to quantify the time-based hydrated electron concentration ([eaq]t) available for contaminant degradation relative to inputted UV fluence. Measured [eaq]t was then used to understand the impact of eaq- rate of formation and scavenging capacity on the degradation of two contaminants─nitrate and perfluorooctane sulfonate (PFOS)─in four source waters with varying background water quality. The results show that the long-term treatability of PFOS by UV-ARP is not significantly impacted by the initial eaq- scavenging conditions but rather is influenced by the presence of eaq- scavengers like dissolved organic carbon and bicarbonate. Lastly, using [eaq]t, degradation of nitrate and PFOS was modeled in the source waters. We demonstrate that the Re-,UV method provides an effective tool to assess UV-ARP treatment performance in a variety of source waters.
Collapse
Affiliation(s)
- Benjamin D Fennell
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77845, United States
| | - Adam Odorisio
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77845, United States
| | - Garrett McKay
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
50
|
Fan X, Jiang Y, Guan X, Bao Y, Gu M, Mumtaz M, Huang J, Yu G. Determination of total reducible organofluorine in PFAS-impacted aqueous samples based on hydrated electron defluorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154548. [PMID: 35288136 DOI: 10.1016/j.scitotenv.2022.154548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) is a large group of thousands of anthropogenic chemicals. Recently, measurement of total organic fluorine (TOF) to reflect the total PFASs has been recommended in limits and advisories. In this study, a total reducible organofluorine (TROF) assay is developed based on hydrated electron (eaq-) conversion of PFASs into inorganic fluorine combined with ion chromatograph, which is a common and widespread instrument. The eaq- is generated in UV/sulfite system with alkaline condition, and the concentration of TROF (CF_TROF) is the difference of fluoride concentration before and after assay. Method validation uses perfluorooctanesulfonic acid, perfluorooctanoic acid and their main alternatives, and F- recoveries are 76.6%-101%, except for perfluorobutanesulfonic acid (48.5%). Method application of TROF assay uses industrial surfactant products and fluorochemical industry-contaminated water, meanwhile, target PFAS analysis and total oxidizable precursors (TOP) assay are concurrently conducted. Concentrations of PFASs detected in target analysis and TOP assay were converted to fluorine equivalents concentrations (CF_Target and CF_TOP). ∑CF_Target and ∑CF_TOP account for 0.80%-36% of CF_TROF in industrial samples, 0.12%-54% in environmental water and 9.7%-14% in wastewater. The TROF assay can be used to initially judge whether PFASs contamination occurred near a hotspot with known sources. The CF_TROF could infer the extent of PFAS contamination in PFAS-impacted samples and estimate the fraction of uncharacterized PFAS.
Collapse
Affiliation(s)
- Xueqi Fan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Yiming Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Guan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Yixiang Bao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengbin Gu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Mehvish Mumtaz
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China.
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|