1
|
Cai XL, Yao X, Zhang L, Chai YH, Liu X, Liu WW, Zhang RX, Fan YY, Xiao X. Dual-directional regulation of extracellular respiration in Shewanella oneidensis for intelligently treating multi-nuclide contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136371. [PMID: 39488975 DOI: 10.1016/j.jhazmat.2024.136371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Radionuclide contamination has become a global environmental concern due to the high mobility and toxicity of certain isotopes. Bioreduction mediated by electrochemically active bacteria (EAB) with unique extracellular electron transfer (EET) capability is recognized as a promising approach for nuclear waste treatment. However, it is difficult to achieve bidirectional regulation of EET pathway through traditional genetic manipulation, limiting the bioremediation application of EAB. Here, we designed and optimized a novel Esa quorum sensing (EQS) system for highly efficient gene expression and interleaved cellular functional output. By promoting dimethyl sulfoxide reductase at low cell density and increasing the synthesis of electron conductive complex and flavins at high cell density, the EQS system dynamically switched the extracellular respiratory pathway of Shewanella oneidensis MR-1 according to cell density. The engineered strain exhibited precise switching and substantial improvement in the extracellular remediation of multiple nuclides, sequentially increasing the reduction of iodine IO3- and uranium U(VI) by 2.51- and 2.05-fold compared with the control, respectively. Furthermore, a mobile bacterial biofilm material was fabricated for collecting uranium precipitates coupled with U(VI) reduction. This work clearly demonstrates that EQS system contributes to the bidirectional regulation of EET pathway in EAB, providing an effective and refined strategy for bioremediation of multi-nuclide contamination.
Collapse
Affiliation(s)
- Xin-Lu Cai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xuan Yao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Li Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yu-Han Chai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xuan Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Wen-Wen Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ruo-Xi Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Yang-Yang Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
2
|
Zhao Y, Yin N, Yang R, Faiola F. Recent advances in environmental toxicology: Exploring gene editing, organ-on-a-chip, chimeric animals, and in silico models. Food Chem Toxicol 2024; 193:115022. [PMID: 39326696 DOI: 10.1016/j.fct.2024.115022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
In our daily life, we are exposed to various environmental pollutants in multiple ways. At present, we mainly rely on animal models and two-dimensional cell culture models to evaluate the toxicity of environmental pollutants. Nevertheless, results in animal models do not always apply to humans because of differences between species, while two-dimensional cell culture models cannot replicate the in vivo microenvironments, making it difficult to predict the true toxic response of environmental pollutants in humans. The development of various high-end technologies in recent years has provided new opportunities for environmental toxicology research. The application of these high-end technologies in environmental toxicology can complement the limitations of traditional environmental toxicology screening and more accurately predict the toxicity of environmental pollutants. In this review, we first introduce the advantages and disadvantages of traditional environmental toxicology methods, then review the principles and development of four high-end technologies, such as gene editing, organ-on-a-chip, chimeric animals, and in silico models, summarize their application in toxicity testing, and finally emphasize their importance/potential in environmental toxicology.
Collapse
Affiliation(s)
- Yanyi Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Wei Y, Wang SG, Xia PF. Blue valorization of lignin-derived monomers via reprogramming marine bacterium Roseovarius nubinhibens. Appl Environ Microbiol 2024; 90:e0089024. [PMID: 38940564 PMCID: PMC11267941 DOI: 10.1128/aem.00890-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
Biological valorization of lignin, the second most abundant biopolymer on Earth, is an indispensable sector to build a circular economy and net-zero future. However, lignin is recalcitrant to bioupcycling, demanding innovative solutions. We report here the biological valorization of lignin-derived aromatic carbon to value-added chemicals without requesting extra organic carbon and freshwater via reprogramming the marine Roseobacter clade bacterium Roseovarius nubinhibens. We discovered the unusual advantages of this strain for the oxidation of lignin monomers and implemented a CRISPR interference (CRISPRi) system with the lacI-Ptrc inducible module, nuclease-deactivated Cas9, and programmable gRNAs. This is the first CRISPR-based regulatory system in R. nubinhibens, enabling precise and efficient repression of genes of interest. By deploying the customized CRISPRi, we reprogrammed the carbon flux from a lignin monomer, 4-hydroxybenzoate, to achieve the maximum production of protocatechuate, a pharmaceutical compound with antibacterial, antioxidant, and anticancer properties, with minimal carbon to maintain cell growth and drive biocatalysis. As a result, we achieved a 4.89-fold increase in protocatechuate yield with a dual-targeting CRISPRi system, and the system was demonstrated with real seawater. Our work underscores the power of CRISPRi in exploiting novel microbial chassis and will accelerate the development of marine synthetic biology. Meanwhile, the introduction of a new-to-the-field lineage of marine bacteria unveils the potential of blue biotechnology leveraging resources from the ocean.IMPORTANCEOne often overlooked sector in carbon-conservative biotechnology is the water resource that sustains these enabling technologies. Similar to the "food-versus-fuel" debate, the competition of freshwater between human demands and bioproduction is another controversial issue, especially under global water scarcity. Here, we bring a new-to-the-field lineage of marine bacteria with unusual advantages to the stage of engineering biology for simultaneous carbon and water conservation. We report the valorization of lignin monomers to pharmaceutical compounds without requesting extra organic substrate (e.g., glucose) or freshwater by reprogramming the marine bacterium Roseovarius nubinhibens with a multiplex CRISPR interference system. Beyond the blue lignin valorization, we present a proof-of-principle of leveraging marine bacteria and engineering biology for a sustainable future.
Collapse
Affiliation(s)
- Ying Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Wu J, Wu J, He RL, Hu L, Liu DF, Li WW. Modularized Engineering of Shewanella oneidensis MR-1 for Efficient and Directional Synthesis of 5-Aminolevulinic Acid. Metab Eng 2024; 83:206-215. [PMID: 38710300 DOI: 10.1016/j.ymben.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Shewanella oneidensis MR-1 has found widespread applications in pollutant transformation and bioenergy production, closely tied to its outstanding heme synthesis capabilities. However, this significant biosynthetic potential is still unexploited so far. Here, we turned this bacterium into a highly-efficient bio-factory for green synthesis of 5-Aminolevulinic Acid (5-ALA), an important chemical for broad applications in agriculture, medicine, and the food industries. The native C5 pathway genes of S. oneidensis was employed, together with the introduction of foreign anti-oxidation module, to establish the 5-ALA production module, resulting 87-fold higher 5-ALA yield and drastically enhanced tolerance than the wild type. Furthermore, the metabolic flux was regulated by using CRISPR interference and base editing techniques to suppress the competitive pathways to further improve the 5-ALA titer. The engineered strain exhibited 123-fold higher 5-ALA production capability than the wild type. This study not only provides an appealing new route for 5-ALA biosynthesis, but also presents a multi-dimensional modularized engineering strategy to broaden the application scope of S. oneidensis.
Collapse
Affiliation(s)
- Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China; Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230000, China
| | - Jing Wu
- School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230026, China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China; Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230000, China
| | - Lan Hu
- School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China.
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China; Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230000, China; School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
5
|
Li HH, Wu J, Liu JQ, Wu QZ, He RL, Cheng ZH, Lv JL, Lin WQ, Wu J, Liu DF, Li WW. Nonsterilized Fermentation of Crude Glycerol for Polyhydroxybutyrate Production by Metabolically Engineered Vibrio natriegens. ACS Synth Biol 2023; 12:3454-3462. [PMID: 37856147 DOI: 10.1021/acssynbio.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Polyhydroxybutyrate (PHB) is an attractive biodegradable polymer that can be produced through the microbial fermentation of organic wastes or wastewater. However, its mass production has been restricted by the poor utilization of organic wastes due to the presence of inhibitory substances, slow microbial growth, and high energy input required for feedstock sterilization. Here, Vibrio natriegens, a fast-growing bacterium with a broad substrate spectrum and high tolerance to salt and toxic substances, was genetically engineered to enable efficient PHB production from nonsterilized fermentation of organic wastes. The key genes encoding the PHB biosynthesis pathway of V. natriegens were identified through base editing and overexpressed. The metabolically engineered strain showed 166-fold higher PHB content (34.95 wt %) than the wide type when using glycerol as a substrate. Enhanced PHB production was also achieved when other sugars were used as feedstock. Importantly, it outperformed the engineered Escherichia coli MG1655 in PHB productivity (0.053 g/L/h) and tolerance to toxic substances in crude glycerol, without obvious activity decline under nonsterilized fermentation conditions. Our work demonstrates the great potential of engineered V. natriegens for low-cost PHB bioproduction and lays a foundation for exploiting this strain as a next-generation model chassis microorganism in synthetic biology.
Collapse
Affiliation(s)
- Hui-Hui Li
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jia-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Qi-Zhong Wu
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ru Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Zhou-Hua Cheng
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jun-Lu Lv
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wei-Qiang Lin
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jing Wu
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
| | - Wen-Wei Li
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
6
|
Liu JQ, Min D, He RL, Cheng ZH, Wu J, Liu DF. Efficient and precise control of gene expression in Geobacter sulfurreducens through new genetic elements and tools for pollutant conversion. Biotechnol Bioeng 2023; 120:3001-3012. [PMID: 37209207 DOI: 10.1002/bit.28433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Geobacter species, exhibiting exceptional extracellular electron transfer aptitude, hold great potential for applications in pollution remediation, bioenergy production, and natural elemental cycles. Nonetheless, a scarcity of well-characterized genetic elements and gene expression tools constrains the effective and precise fine-tuning of gene expression in Geobacter species, thereby limiting their applications. Here, we examined a suite of genetic elements and developed a new genetic editing tool in Geobacter sulfurreducens to enhance their pollutant conversion capacity. First, the performances of the widely used inducible promoters, constitutive promoters, and ribosomal binding sites (RBSs) elements in G. sulfurreducens were quantitatively evaluated. Also, six native promoters with superior expression levels than constitutive promoters were identified on the genome of G. sulfurreducens. Employing the characterized genetic elements, the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system was constructed in G. sulfurreducens to achieve the repression of an essential gene-aroK and morphogenic genes-ftsZ and mreB. Finally, applying the engineered strain to the reduction of tungsten trioxide (WO3 ), methyl orange (MO), and Cr(VI), We found that morphological elongation through ftsZ repression amplified the extracellular electron transfer proficiency of G. sulfurreducens and facilitated its contaminant transformation efficiency. These new systems provide rapid, versatile, and scalable tools poised to expedite advancements in Geobacter genomic engineering to favor environmental and other biotechnological applications.
Collapse
Affiliation(s)
- Jia-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Zhou-Hua Cheng
- School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| |
Collapse
|
7
|
Li X, Bao N, Yan Z, Yuan XZ, Wang SG, Xia PF. Degradation of Antibiotic Resistance Genes by VADER with CRISPR-Cas Immunity. Appl Environ Microbiol 2023; 89:e0005323. [PMID: 36975789 PMCID: PMC10132114 DOI: 10.1128/aem.00053-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
The evolution and dissemination of antibiotic resistance genes (ARGs) are prompting severe health and environmental issues. While environmental processes, e.g., biological wastewater treatment, are key barriers to prevent the spread of ARGs, they are often sources of ARGs at the same time, requiring upgraded biotechnology. Here, we present VADER, a synthetic biology system for the degradation of ARGs based on CRISPR-Cas immunity, an archaeal and bacterial immune system for eliminating invading foreign DNAs, to be implemented for wastewater treatment processes. Navigated by programmable guide RNAs, VADER targets and degrades ARGs depending on their DNA sequences, and by employing an artificial conjugation machinery, IncP, it can be delivered via conjugation. The system was evaluated by degrading plasmid-borne ARGs in Escherichia coli and further demonstrated via the elimination of ARGs on the environmentally relevant RP4 plasmid in Pseudomonas aeruginosa. Next, a prototype conjugation reactor at a 10-mL scale was devised, and 100% of the target ARG was eliminated in the transconjugants receiving VADER, giving a proof of principle for the implementation of VADER in bioprocesses. By generating a nexus of synthetic biology and environmental biotechnology, we believe that our work is not only an enterprise for tackling ARG problems but also a potential solution for managing undesired genetic materials in general in the future. IMPORTANCE Antibiotic resistance has been causing severe health problems and has led to millions of deaths in recent years. Environmental processes, especially those of the wastewater treatment sector, are an important barrier to the spread of antibiotic resistance from the pharmaceutical industry, hospitals, or civil sewage. However, they have been identified as a nonnegligible source of antibiotic resistance at the same time, as antibiotic resistance with its main cause, antibiotic resistance genes (ARGs), may accumulate in biological treatment units. Here, we transplanted the CRISPR-Cas system, an immune system via programmable DNA cleavage, to tackle the antibiotic resistance problem raised in wastewater treatment processes, and we propose a new sector specialized in ARG removal with a conjugation reactor to implement the CRISPR-Cas system. Our study provides a new angle for resolving public health issues via the implementation of synthetic biology in environmental contexts at the process level.
Collapse
Affiliation(s)
- Xin Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Nan Bao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, China
| | - Peng-Fei Xia
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
8
|
Fu XZ, Wu J, Li J, Ding J, Cui S, Wang XM, Wang YJ, Liu HQ, Deng X, Liu DF, Li WW. Heavy-metal resistant bio-hybrid with biogenic ferrous sulfide nanoparticles: pH-regulated self-assembly and wastewater treatment application. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130667. [PMID: 36580783 DOI: 10.1016/j.jhazmat.2022.130667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Self-assembled bio-hybrids with biogenic ferrous sulfide nanoparticles (bio-FeS) on the cell surface are attractive for reduction of toxic heavy metals due to higher activity than bare bacteria, but they still suffer from slow synthesis and regeneration of bio-FeS and bacterial activity decay for removal of high-concentration heavy metals. A further optimization of the bio-FeS synthesis process and properties is of vital importance to address this challenge. Herein, we present a simple pH-regulation strategy to enhance bio-FeS synthesis and elucidated the underlying regulatory mechanisms. Slightly raising the pH from 7.4 to 8.3 led to 1.5-fold higher sulfide generation rate due to upregulated expression of thiosulfate reduction-related genes, and triggered the formation of fine-sized bio-FeS (29.4 ± 6.1 nm). The resulting bio-hybrid exhibited significantly improved extracellular reduction activity and was successfully used for treatment of high-concentration chromium -containing wastewater (Cr(VI), 80 mg/L) at satisfactory efficiency and stability. Its feasibility for bio-augmented treatment of real Cr(VI)-rich electroplating wastewater was also demonstrated, showing no obvious activity decline during 7-day operation. Overall, our work provides new insights into the environmental-responses of bio-hybrid self-assembly process, and may have important implications for optimized application of bio-hybrid for wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Xian-Zhong Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China; Department of Biomedical Sciences, City University of Hong Kong, 999077, Hong Kong, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Jian Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Shuo Cui
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Xue-Meng Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Yun-Jie Wang
- University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Hou-Qi Liu
- University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Xin Deng
- University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China; Department of Biomedical Sciences, City University of Hong Kong, 999077, Hong Kong, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China.
| |
Collapse
|
9
|
Liu JQ, Ma X, Liu DF, Yang CW, Li DB, Min D, Yu HQ. Multiple roles of released c-type cytochromes in tuning electron transport and physiological status of Geobacter sulfurreducens. Biotechnol Bioeng 2023; 120:1346-1356. [PMID: 36779277 DOI: 10.1002/bit.28351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Dissimilatory metal-reducing bacteria (DMRB) can transfer electrons to extracellular insoluble electron acceptors and play important roles in geochemical cycling, biocorrosion, environmental remediation, and bioenergy generation. c-type cytochromes (c-Cyts) are synthesized by DMRB and usually transported to the cell surface to form modularized electron transport conduits through protein assembly, while some of them are released as extracellularly free-moving electron carriers in growth to promote electron transport. However, the type of these released c-Cyts, the timing of their release, and the functions they perform have not been unrevealed yet. In this work, after characterizing the types of c-Cyts released by Geobacter sulfurreducens under a variety of cultivation conditions, we found that these c-Cyts accumulated up to micromolar concentrations in the surrounding medium and conserved their chemical activities. Further studies demonstrated that the presence of c-Cyts accelerated the process of microbial extracellular electron transfer and mediated long-distance electron transfer. In particular, the presence of c-Cyts promoted the microbial respiration and affected the physiological state of the microbial community. In addition, c-Cyts were observed to be adsorbed on the surface of insoluble electron acceptors and modify electron acceptors. These results reveal the overlooked multiple roles of the released c-Cyts in acting as public goods, delivering electrons, modifying electron acceptors, and even regulating bacterial community structure in natural and artificial environments.
Collapse
Affiliation(s)
- Jia-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Xin Ma
- School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Chuan-Wang Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Dao-Bo Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.,School of Life Sciences, University of Science & Technology of China, Hefei, China
| |
Collapse
|
10
|
Chen J, Liu Y, Diep P, Mahadevan R. Harnessing synthetic biology for sustainable biomining with Fe/S-oxidizing microbes. Front Bioeng Biotechnol 2022; 10:920639. [PMID: 36131722 PMCID: PMC9483119 DOI: 10.3389/fbioe.2022.920639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Biomining is a biotechnological approach where microorganisms are used to recover metals from ores and waste materials. While biomining applications are motivated by critical issues related to the climate crisis (e.g., habitat destruction due to mine effluent pollution, metal supply chains, increasing demands for cleantech-critical metals), its drawbacks hinder its widespread commercial applications: lengthy processing times, low recovery, and metal selectivity. Advances in synthetic biology provide an opportunity to engineer iron/sulfur-oxidizing microbes to address these limitations. In this forum, we review recent progress in synthetic biology-enhanced biomining with iron/sulfur-oxidizing microbes and delineate future research avenues.
Collapse
Affiliation(s)
- Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Call SN, Andrews LB. CRISPR-Based Approaches for Gene Regulation in Non-Model Bacteria. Front Genome Ed 2022; 4:892304. [PMID: 35813973 PMCID: PMC9260158 DOI: 10.3389/fgeed.2022.892304] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) have become ubiquitous approaches to control gene expression in bacteria due to their simple design and effectiveness. By regulating transcription of a target gene(s), CRISPRi/a can dynamically engineer cellular metabolism, implement transcriptional regulation circuitry, or elucidate genotype-phenotype relationships from smaller targeted libraries up to whole genome-wide libraries. While CRISPRi/a has been primarily established in the model bacteria Escherichia coli and Bacillus subtilis, a growing numbering of studies have demonstrated the extension of these tools to other species of bacteria (here broadly referred to as non-model bacteria). In this mini-review, we discuss the challenges that contribute to the slower creation of CRISPRi/a tools in diverse, non-model bacteria and summarize the current state of these approaches across bacterial phyla. We find that despite the potential difficulties in establishing novel CRISPRi/a in non-model microbes, over 190 recent examples across eight bacterial phyla have been reported in the literature. Most studies have focused on tool development or used these CRISPRi/a approaches to interrogate gene function, with fewer examples applying CRISPRi/a gene regulation for metabolic engineering or high-throughput screens and selections. To date, most CRISPRi/a reports have been developed for common strains of non-model bacterial species, suggesting barriers remain to establish these genetic tools in undomesticated bacteria. More efficient and generalizable methods will help realize the immense potential of programmable CRISPR-based transcriptional control in diverse bacteria.
Collapse
Affiliation(s)
- Stephanie N. Call
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lauren B. Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
12
|
Chen Z, Zhang J, Lyu Q, Wang H, Ji X, Yan Z, Chen F, Dahlgren RA, Zhang M. Modular configurations of living biomaterials incorporating nano-based artificial mediators and synthetic biology to improve bioelectrocatalytic performance: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153857. [PMID: 35176368 DOI: 10.1016/j.scitotenv.2022.153857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Currently, the industrial application of bioelectrochemical systems (BESs) that are incubated with natural electrochemically active microbes (EABs) is limited due to inefficient extracellular electron transfer (EET) by natural EABs. Notably, recent studies have identified several novel living biomaterials comprising highly efficient electron transfer systems allowing unparalleled proficiency of energy conversion. Introduction of these biomaterials into BESs could fundamentally increase their utilization for a wide range of applications. This review provides a comprehensive assessment of recent advancements in the design of living biomaterials that can be exploited to enhance bioelectrocatalytic performance. Further, modular configurations of abiotic and biotic components promise a powerful enhancement through integration of nano-based artificial mediators and synthetic biology. Herein, recent advancements in BESs are synthesized and assessed, including heterojunctions between conductive nanomaterials and EABs, in-situ hybrid self-assembly of EABs and nano-sized semiconductors, cytoprotection in biohybrids, synthetic biological modifications of EABs and electroactive biofilms. Since living biomaterials comprise a broad range of disciplines, such as molecular biology, electrochemistry and material sciences, full integration of technological advances applied in an interdisciplinary framework will greatly enhance/advance the utility and novelty of BESs. Overall, emerging fundamental knowledge concerning living biomaterials provides a powerful opportunity to markedly boost EET efficiency and facilitate the industrial application of BESs to meet global sustainability challenges/goals.
Collapse
Affiliation(s)
- Zheng Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China; Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, People's Republic of China.
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China
| | - Xiaoliang Ji
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Fang Chen
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, People's Republic of China
| | - Randy A Dahlgren
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Minghua Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Cai P, Han M, Zhang R, Ding S, Zhang D, Liu D, Liu S, Hu QN. SynBioStrainFinder: A microbial strain database of manually curated CRISPR/Cas genetic manipulation system information for biomanufacturing. Microb Cell Fact 2022; 21:87. [PMID: 35568950 PMCID: PMC9107733 DOI: 10.1186/s12934-022-01813-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Microbial strain information databases provide valuable data for microbial basic research and applications. However, they rarely contain information on the genetic operating system of microbial strains. RESULTS We established a comprehensive microbial strain database, SynBioStrainFinder, by integrating CRISPR/Cas gene-editing system information with cultivation methods, genome sequence data, and compound-related information. It is presented through three modules, Strain2Gms/PredStrain2Gms, Strain2BasicInfo, and Strain2Compd, which combine to form a rapid strain information query system conveniently curated, integrated, and accessible on a single platform. To date, 1426 CRISPR/Cas gene-editing records of 157 microbial strains have been manually extracted from the literature in the Strain2Gms module. For strains without established CRISPR/Cas systems, the PredStrain2Gms module recommends the system of the most closely related strain as a reference to facilitate the construction of a new CRISPR/Cas gene-editing system. The database contains 139,499 records of strain cultivation and genome sequences, and 773,298 records of strain-related compounds. To facilitate simple and intuitive data application, all microbial strains are also labeled with stars based on the order and availability of strain information. SynBioStrainFinder provides a user-friendly interface for querying, browsing, and visualizing detailed information on microbial strains, and it is publicly available at http://design.rxnfinder.org/biosynstrain/ . CONCLUSION SynBioStrainFinder is the first microbial strain database with manually curated information on the strain CRISPR/Cas system as well as other microbial strain information. It also provides reference information for the construction of new CRISPR/Cas systems. SynBioStrainFinder will serve as a useful resource to extend microbial strain research and application for biomanufacturing.
Collapse
Affiliation(s)
- Pengli Cai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengying Han
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rui Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Dachuan Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dongliang Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sheng Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qian-Nan Hu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
14
|
Qu L, Xiu X, Sun G, Zhang C, Yang H, Liu Y, Li J, Du G, Lv X, Liu L. Engineered yeast for efficient de novo synthesis of 7‐dehydrocholesterol. Biotechnol Bioeng 2022; 119:1278-1289. [DOI: 10.1002/bit.28055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Lisha Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Xiang Xiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Guoyun Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Chenyang Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Haiquan Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| |
Collapse
|
15
|
Wu J, Liu DF, Li HH, Min D, Liu JQ, Xu P, Li WW, Yu HQ, Zhu YG. Controlling pathogenic risks of water treatment biotechnologies at the source by genetic editing means. Environ Microbiol 2021; 23:7578-7590. [PMID: 34837302 DOI: 10.1111/1462-2920.15851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022]
Abstract
Antimicrobial-resistant pathogens in the environment and wastewater treatment systems, many of which are also important pollutant degraders and are difficult to control by traditional disinfection approaches, have become an unprecedented treat to ecological security and human health. Here, we propose the adoption of genetic editing techniques as a highly targeted, efficient and simple tool to control the risks of environmental pathogens at the source. An 'all-in-one' plasmid system was constructed in Aeromonas hydrophila to accurately identify and selectively inactivate multiple key virulence factor genes and antibiotic resistance genes via base editing, enabling significantly suppressed bacterial virulence and resistance without impairing their normal phenotype and pollutant-degradation functions. Its safe application for bioaugmented treatment of synthetic textile wastewater was also demonstrated. This genetic-editing technique may offer a promising solution to control the health risks of environmental microorganisms via targeted gene inactivation, thereby facilitating safer application of water treatment biotechnologies.
Collapse
Affiliation(s)
- Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou, 215123, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,Anhui Key Laboratory of Sewage Purification and Ecological Rehabilitation Materials, Hefei, 230601, China
| | - Hui-Hui Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jia-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou, 215123, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yong-Guan Zhu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Wu C, Li F, Yi S, Ge F. Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: Advances and ecological risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113185. [PMID: 34243092 DOI: 10.1016/j.jenvman.2021.113185] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Soils contaminated with heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) have been becoming a worldwide concerned environmental problem because of threatening public healthy via food chain exposure. Thus soils polluted by HMs and PAHs need to be remediated urgently. Physical and chemical remediation methods usually have some disadvantages, e.g., cost-expensiveness and incomplete removal, easily causing secondary pollution, which are hence not environmental-friendly. Conventional microbial approaches are mostly used to treat a single contaminant in soils and lack high efficiency and specificity for combined contaminants. Genetically engineered microorganisms (GEMs) have emerged as a desired requirement of higher bioremediation efficiency for soils polluted with HMs and PAHs and environmental sustainability, which can provide a more eco-friendly and cost-effective strategy in comparison with some conventional techniques. This review comments the recent advances about successful bioremediation techniques and approaches for soil contaminated with HMs and/or PAHs by GEMs, and discusses some challenges in the simultaneous removal of HMs and PAHs from soil by designing multi-functional genetic engineering microorganisms (MFGEMs), such as improvement of higher efficiency, strict environmental conditions, and possible ecological risks. Also, the modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade combined contaminants at a faster rate are introduced, such as reasonable gene editing, metabolic pathway modification, and protoplast fusion. Although MFGEMs are more potent than the native microbes and can quickly adapt to combined contaminants in soils, the ecological risk of MFGEMs needs to be evaluated under a regulatory, safety, or costs benefit-driving system in a way of stratified regulation. Nevertheless, the innovation of genetic engineering to produce MFGEMs should be inspired for the welfare of successful bioremediation for soils contaminated with HMs and PAHs but it must be supervised by the public, authorities, and laws.
Collapse
Affiliation(s)
- Chen Wu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China.
| | - Shengwei Yi
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| | - Fei Ge
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| |
Collapse
|
17
|
Min D, Liu DF, Wu J, Cheng L, Zhang F, Cheng ZH, Li WW, Yu HQ. Extracellular electron transfer via multiple electron shuttles in waterborne Aeromonas hydrophila for bioreduction of pollutants. Biotechnol Bioeng 2021; 118:4760-4770. [PMID: 34546573 DOI: 10.1002/bit.27940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila, a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr-like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment.
Collapse
Affiliation(s)
- Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Lei Cheng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Zhou-Hua Cheng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
18
|
Yadav N, Narang J, Chhillar AK, Rana JS. CRISPR: A new paradigm of theranostics. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 33:102350. [PMID: 33359413 PMCID: PMC7831819 DOI: 10.1016/j.nano.2020.102350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
Infectious and hereditary diseases are the primary cause of human mortality globally. Applications of conventional techniques require significant improvement in sensitivity and specificity in therapeutics. However, clustered regularly interspaced short palindromic repeats (CRISPRs) is an innovative genome editing technology which has provided a significant therapeutic tool exhibiting high sensitivity, fast and precise investigation of distinct pathogens in an epidemic. CRISPR technology has also facilitated the understanding of the biology and therapeutic mechanism of cancer and several other hereditary diseases. Researchers have used the CRISPR technology as a theranostic approach for a wide range of diseases causing pathogens including distinct bacteria, viruses, fungi and parasites and genetic mutations as well. In this review article, besides various therapeutic applications of infectious and hereditary diseases we have also explained the structure and mechanism of CRISPR tools and role of CRISPR integrated biosensing technology in provoking diagnostic applications.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana.
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India.
| | | | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat.
| |
Collapse
|
19
|
Dong G, Wang H, Yan Z, Zhang J, Ji X, Lin M, Dahlgren RA, Shang X, Zhang M, Chen Z. Cadmium sulfide nanoparticles-assisted intimate coupling of microbial and photoelectrochemical processes: Mechanisms and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140080. [PMID: 32562993 DOI: 10.1016/j.scitotenv.2020.140080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Intimate coupling of microbial extracellular electron transfer (EET) and photoelectrochemical processes is an emerging research area with great potential to circumvent many disadvantages associated with traditional techniques that depend on independent microbial or photocatalysis treatment. Microbial EET processes involve microorganism oxidation of extracellular electron donors for respiration and synchronous reduction of extracellular electron acceptors to form an integrated respiratory chain. Coupled microbial EET-photoelectrochemical technologies greatly improve energy conversion efficiency providing both economic and environmental benefits. Among substitutes for semiconductor photocatalysts, cadmium sulfide nanoparticles (CdS NPs) possess several attractive properties. Specifically, CdS NPs have suitable electrical conductivity, large specific surface area, visible light-driven photocatalysis capability and robust biocompatibility, enabling them to promote hybrid microbial-photoelectrochemical processes. This review highlights recent advances in intimately coupled CdS NPs-microbial extracellular electron transfer systems and examines the mechanistic pathways involved in photoelectrochemical transformations. Finally, the prospects for emerging applications utilizing hybrid CdS NPs-based microbial-photoelectrochemical technologies are assessed. As such, this review provides a rigorous fundamental analysis of electron transport dynamics for hybrid CdS NPs-microbial photoelectrochemical processes and explores the applicability of engineered CdS NPs-biohybrids for future applications, such as in environmental remediation and clean-energy production.
Collapse
Affiliation(s)
- Guowen Dong
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China; Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Fujian Provincial Key Laboratory of Resource and Environment Monitoring & Sustainable Management and Utilization, College of Resources and Chemical Engineering, Sanming University, Sanming 365000, People's Republic of China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China
| | - Zhiying Yan
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China
| | - Xiaoliang Ji
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Maozi Lin
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, People's Republic of China
| | - Randy A Dahlgren
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Xu Shang
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Minghua Zhang
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Zheng Chen
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China.
| |
Collapse
|
20
|
Liu DF, Li WW. Potential-dependent extracellular electron transfer pathways of exoelectrogens. Curr Opin Chem Biol 2020; 59:140-146. [PMID: 32769012 DOI: 10.1016/j.cbpa.2020.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 10/23/2022]
Abstract
Exoelectrogens are distinct from other bacteria owing to their unique extracellular electron transfer (EET) abilities that allow for anaerobic respiration with various external redox-active surfaces, including electrode and metal oxides. Although the EET process is known to trigger diverse extracellular redox reactions, the reverse impact has been long overlooked. Recent evidences show that exoelectrogens can sense the potential changes of external surfaces and alter their EET strategies accordingly, which imparts them remarkable abilities in adapting to diverse and redox-variable environment. This mini-review provides a condensed overview and critical analysis about the recent discoveries on redox-dependent EET pathways of exoelectrogens, with focus on Geobacter sulfurreducens and Shewanella oneidensis. We summarize the detailed responses of various EET components, analyze the drives and mechanisms of such responses, highlight the diversity of EET dynamics among different bacterial species and under integrated effects of redox potential and surface chemistry, and discusses the future research needs.
Collapse
Affiliation(s)
- Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; USTC-City U Joint Advanced Research Center, Suzhou 215123, China.
| |
Collapse
|