1
|
Wang C, Li T, Deng Q, Xie M, Ye Z. Stability challenges of transition metal-modified cathodes for electro-Fenton process: A mini-review. CHEMOSPHERE 2025; 373:144159. [PMID: 39889645 DOI: 10.1016/j.chemosphere.2025.144159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Electro-Fenton (EF) process with transition-metal (TM) modified cathode has been regarded as a green and promising technology for wastewater treatment. Recently, breakthroughs in boosting catalyst activity for both two-electron oxygen reduction reaction (2e- ORR) and Fenton's reaction have gained intensive attention. However, achieving long-term stability of catalysts remains challenging, but is decisive for large-scale applications. This minireview provides fundamental understanding on the activity-stability correlation and the deactivation mechanisms of TM-based catalysts in EF systems, focusing on physical and chemical evolution, metal dissolution, catalyst detachment and structure collapse during long-term electrolysis. Subsequently, ongoing efforts from catalyst design to electrode engineering to stabilize the metal active sites are highlighted. Finally, the challenges and future perspectives in developing active and durable TM-modified cathodes are discussed, serving as a roadmap towards the large-scale application of EF process for wastewater treatment.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Tongxu Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Qianyin Deng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Mengchu Xie
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Zhihong Ye
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
2
|
Yu C, Liu H, Wang C, Li L, Wang K, Sun Y, Wang J, An J, Wei K, Sun X, Bao R, Yang F, Li Y. Efficient generation of singlet oxygen ( 1O 2) by CoP/Ni 2P@NF for degradation of sulfamerazine through a heterogeneous electro-Fenton process at circumneutral pH. J Colloid Interface Sci 2025; 678:671-683. [PMID: 39265338 DOI: 10.1016/j.jcis.2024.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
In electro-Fenton (EF), the development of a catalytic material with wide pH application range and high interference resistance is more suitable for practical wastewater treatment. In this study, the nanoneedle-shaped CoP/Ni2P heterostructure loaded onto a nickel foam substrate (CoP/Ni2P@NF) was successfully fabricated, which was used as a cathode material for heterogeneous electro-Fenton (Hetero-EF) to degrade sulfamerazine (SMR) at circumneutral pH. The SMR degradation efficiency within 90 min went to 100% and 87% at initial pH of 6.8 and 11, respectively. Experiments and theoretical calculations demonstrated that the heterostructure of CoP/Ni2P redistributed the interfacial charge and accelerated the electron transfer, resulting in different two-electron oxygen reduction (2e-ORR) selectivity and activity than CoP and Ni2P. The ion interference and complex water quality experiment exhibited that the degradation performance remained almost unchanged, showing better anti-interference ability and complex water quality applications. Through quenching experiments and EPR tests, it is confirmed that singlet oxygen (1O2) was the major reactive oxygen species (ROS) and 1O2 was converted from hydroxyl radical (·OH) adsorbed on the catalyst surface. This study provides an efficient catalyst for the application of Hetero-EF to remove organic compounds in complex water at circumneutral pH.
Collapse
Affiliation(s)
- Chunhui Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Hongcheng Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Chenlin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Li Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Kuobo Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Yang Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Jianfeng Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Junpu An
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Kexin Wei
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Xinyang Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Ruoning Bao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Fan Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
3
|
Nawaz A, Khalid A, Qayyum W, Bibi R, Qamar MA, Zahid M, Farhan A, Rayaroth MP, Cichocki Ł, Boczkaj G. FeS-based nanocomposites: A promising approach for sustainable environmental remediation - Focus on adsorption and photocatalysis - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123530. [PMID: 39700919 DOI: 10.1016/j.jenvman.2024.123530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Population expansion, industrialization, urban development, and climate changes increased the water crisis in terms of drinking water availability. Among the various nanomaterials for nanoremediation towards water treatment, FeS-based nanocomposites have emerged as promising candidates in the adsorptive and photocatalytic removal of contaminants. This paper, therefore, evaluates the potential of FeS-based nanocomposites for environmental applications, more specifically the combined use of adsorption and photocatalysis. Pyrite and mackinawite structures outcompeted the other FeS configurations due to their large surface areas, numerous active sites, and enhanced conductivity, factors that enhance the adsorption and photovoltaic processes. To improve photocatalytic performance FeS requires modification with additional materials. Various fabrication strategies (including hydrothermal method, co-precipitation, electrochemical anodization, electrospinning, impregnation, green synthesis, mechanochemical approach/ball milling) of FeS-based composites and their efficacy and the mechanisms for removing organic and inorganic pollutants are reviewed in this paper. The structural characteristics of FeS scaffolds play a crucial role in the effective removal of heavy metals, such as Hg and Cr ions, primarily through ion exchange and surface complexation. Organic pollutants such as methylene blue and tetracycline were effectively degraded by advanced oxidation processes (AOPs). A large scale applications of FeS include industrial wastewater treatment, groundwater remediation towards trichloroethylene and other organic solvents removal, municipal wastewater, oil spills cleanup, pre-treatment for seawater desalination. Current challenges relate to catalysts stability, their removal after treatment stage, recycling, metals leaching and up-scaling as well as high effectiveness in real case-scenario and costs optimization. In summary, this review will help to advance research in the field of environmental remediation using FeS-based nanocomposites.
Collapse
Affiliation(s)
- Aqsa Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Aman Khalid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Wajeeha Qayyum
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Rabia Bibi
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan; Department of Chemistry, Sub-campus Burewala, University of Agriculture Faisalabad, Pakistan.
| | - Manoj P Rayaroth
- Department of Chemistry, School of Sciences, GITAM (Deemed to Be) University, Visakhapatnam, 530045, India
| | - Łukasz Cichocki
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Zhao Z, Zhou Z, Zhang X, Hou C, Wu D. Overlooked pyrite-mediated heterogeneous Fenton processes: Mechanisms of surface hydroxyl radical generation and associated decontamination performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175833. [PMID: 39214359 DOI: 10.1016/j.scitotenv.2024.175833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Pyrite-based Fenton-like processes have been extensively studied for wastewater decontamination; however, most relevant studies placed excessive emphasis on the homogeneous Fenton reaction mediated by aqueous Fe2+, resulting in the proposed technologies facing issues such as additional acid requirements for pH adjustment and excessive iron sludge production. Herein, through in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), custom dual-chamber reactor experiments, and a series of control experiments, significant hydroxyl radical generation was identified during the pyrite/H2O2 process, while the dominant reactive iron species was verified to the structural Fe sites on the pyrite surface, rather than structural Fe(II) in secondary iron minerals and surface adsorbed Fe2+. Consequently, even with significant suppression of the homogeneous Fenton pathway, the pyrite/H2O2 process exhibited significant degradation efficiency for sulfamethoxazole (SMX) at pH 4. Moreover, the pyrite/H2O2 process was found to selectively remove 50 μM of pollutants with high affinity for pyrite (bisphenol A, carbamazepine, nitrobenzene, and SMX), even in the presence of 50-100 mM methanol. Compared to the typical iron-based reductive catalyst (zero-valent iron, ZVI), pyrite mediated a Fenton process with greater potential for practical applications at pH 4, achieving a 43.75-fold reduction in iron sludge production and almost doubling the H2O2 utilization efficiency. Additionally, in contrast to ZVI, minimal iron oxide formed on the pyrite surface during the oxidation process. Thus, after seven cycles of degradation experiments, the decontamination efficiency of the pyrite/H2O2 process remained stable. These findings are crucial for understanding the complex environmental behavior of pyrite in both natural and engineering processes and provide a new perspective for the efficient utilization of pyrite resources as well.
Collapse
Affiliation(s)
- Zhenyu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhengwei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaomeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Chengsi Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
5
|
Jiang S, Sun B, Han Y, Yang C, Zhou T, Xiao K, Gong J. Low-toxicity natural pyrite on electro-Fenton catalytic reaction in a wide pH range. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175295. [PMID: 39111453 DOI: 10.1016/j.scitotenv.2024.175295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
The resource utilization of natural pyrite not only reduces secondary pollution but also brings certain environmental benefits. However, the green and efficient use of pyrite presents certain challenges. In this study, a novel electro-Fenton (EF) system was constructed utilizing copper modified graphite felt (GF/Cu) as cathode and natural pyrite (com-FeS2) as catalyst. The results demonstrated that the system exhibited a remarkable stability over an extensive pH range (3.0-10.0) and remained effective even under adverse environmental conditions, such as high salinity or elevated antibiotic concentration. After optimizing the reaction conditions, 0.2 mM sulfamerazine (SMZ) was almost completely degraded within 1.5 h. The results highlighted the catalytic role of Fe(II) on the com-FeS2 surface. Combined with quenching experiments and quantitative analysis of reactive oxygen species (ROS), the removal of SMZ was primarily attributed to the generation of •OH, ordered by 1O2 > •O2- > •OHads, a possible degradation pathway was proposed by HR-LC-MS. The biological toxicity after the reaction was detected, and the introduction of polyvinylpyrrolidone (PVP) was beneficial to reduce the biological toxicity of iron dissolution. This work provides new insights into the green and efficient resource utilization of natural pyrite and significantly expands the pH applicability range of the Fenton process, demonstrating the large-scale industrial application potential of pyrite.
Collapse
Affiliation(s)
- Shan Jiang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Benjian Sun
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yunuo Han
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Changzhu Yang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Tao Zhou
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Keke Xiao
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, 515063 Shantou, Guangdong, China
| | - Jianyu Gong
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
6
|
Liu F, Shen Y, Hou Y, Wu J, Ting Y, Nie C, Tong M. Elimination of representative antibiotic-resistant bacteria, antibiotic resistance genes and ciprofloxacin from water via photoactivation of periodate using FeS 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134982. [PMID: 38917629 DOI: 10.1016/j.jhazmat.2024.134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The propagation of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) induced by the release of antibiotics poses great threats to ecological safety and human health. In this study, periodate (PI)/FeS2/simulated sunlight (SSL) system was employed to remove representative ARB, ARGs and antibiotics in water. 1 × 107 CFU mL-1 of gentamycin-resistant Escherichia coli was effectively disinfected below limit of detection in PI/FeS2/SSL system under different water matrix and in real water samples. Sulfadiazine-resistant Pseudomonas and Gram-positive Bacillus subtilis could also be efficiently sterilized. Theoretical calculation showed that (110) facet was the most reactive facet on FeS2 to activate PI for the generation of reactive species (·OH, ·O2-, h+ and Fe(IV)=O) to damage cell membrane and intracellular enzyme defense system. Both intracellular and extracellular ARGs could be degraded and the expression levels of multidrug resistance-related genes were downregulated during the disinfection process. Thus, horizontal gene transfer (HGT) of ARB was inhibited. Moreover, PI/FeS2/SSL system could disinfect ARB in a continuous flow reactor and in an enlarged reactor under natural sunlight irradiation. PI/FeS2/SSL system could also effectively degrade the HGT-promoting antibiotic (ciprofloxacin) via hydroxylation and ring cleavage process. Overall, PI/FeS2/SSL exhibited great promise for the elimination of antibiotic resistance from water.
Collapse
Affiliation(s)
- Fuyang Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Yutao Shen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Jingfeng Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Yong Ting
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Chenyi Nie
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China.
| |
Collapse
|
7
|
Zhao L, Padilla JA, Xuriguera E, Cabot PL, Brillas E, Sirés I. Enhanced mineralization of pharmaceutical residues at circumneutral pH by heterogeneous electro-Fenton-like process with Cu/C catalyst. CHEMOSPHERE 2024; 364:143249. [PMID: 39233296 DOI: 10.1016/j.chemosphere.2024.143249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Conventional electro-Fenton (EF) process at acidic pH ∼3 is recognized as a highly effective strategy to degrade organic pollutants; however, homogeneous metal catalysts cannot be employed in more alkaline media. To overcome this limitation, pyrolytic derivatives from metal-organic frameworks (MOFs) have emerged as promising heterogeneous catalysts. Cu-based MOFs were prepared using trimesic acid as the organic ligand and different pyrolysis conditions, yielding a set of nano-Cu/C catalysts that were analyzed by conventional methods. Among them, XPS revealed the surface of the Cu/C-A2-Ar/H2 catalyst was slightly oxidized to Cu(I) and, combined with XRD and HRTEM data, it can be concluded that the catalyst presents a core-shell structure where metallic copper is embedded in a carbon layer. The antihistamine diphenhydramine (DPH), spiked into either synthetic Na2SO4 solutions or actual urban wastewater, was treated in an undivided electrolytic cell equipped with a DSA-Cl2 anode and a commercial air-diffusion cathode able to electrogenerate H2O2. Using Cu/C as suspended catalyst, DPH was completely degraded in both media at pH 6-8, outperforming the EF process with Fe2+ catalyst at pH 3 in terms of degradation rate and mineralization degree thanks to the absence of refractory Fe(III)-carboxylate complexes that typically decelerate the TOC abatement. From the by-products detected by GC/MS, a reaction sequence for DPH mineralization is proposed.
Collapse
Affiliation(s)
- Lele Zhao
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - José A Padilla
- DIOPMA, Departament de Ciència de Materials i Química Física, Secció de Ciència de Materials, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain; Grup de Recerca en Tecnologies de Fabricació, Departament d'Enginyeria Mecànica, Escola Tècnica Superior d'Enginyeria Industrial de Barcelona, Av. Diagonal 647, 08028, Barcelona, Spain
| | - Elena Xuriguera
- DIOPMA, Departament de Ciència de Materials i Química Física, Secció de Ciència de Materials, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Pere L Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
8
|
Zhou Y, Wang J. Electro-Fenton degradation of pefloxacin using MOFs derived Cu, N co-doped carbon as a nanocomposite catalyst. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124198. [PMID: 38782161 DOI: 10.1016/j.envpol.2024.124198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Electro-Fenton (EF) can in-situ produce H2O2 and effectively activate H2O2 to generate powerful reactive species for the destruction of contaminants under acidic conditions, however, the production of iron-containing sludge and requirement of low working pH significantly hinder its practical application. Herein, a novel Cu, N co-doped carbon (Cu-N@C) with metal organic framework (MOF) as a precursor was constructed and adopted for the elimination of pefloxacin (PEF) in the heterogeneous electro-Fenton (HEF) process. PEF could be almost completely removed within 1 h and total organic carbon (TOC) removal efficiency was 48.57% within 6 h. Meanwhile, Cu-N@C had good repeatability and environmental adaptability, it can still maintain excellent catalytic performance after 10 cycles, and it exhibited satisfactory remediation performance in simulated water matrix. In addition, the HEF process catalyzed by Cu-N@C also showed satisfactory degradation effect on other organic pollutants including atrazine, methylene blue, and chlorotetracycline. Under the action of impressed current, the HEF system could generate H2O2 in-situ, and the active species could be generated in the redox cycle of Cu0/Cu1+/Cu2+. Electron paramagnetic resonance and quenching experiments confirmed that •OH was the dominant active species in the degradation of organic compounds. The degradation process of PEF was studied by mass spectrometry analysis of intermediate products. This study provided a simple method to prepare MOF-based electrocatalyst, which exhibits promising application potential for treatment wastewater.
Collapse
Affiliation(s)
- Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
9
|
Chen Y, Cheng M, Jin L, Yang H, Ma S, Lin Z, Dai G, Liu X. Heterogeneous activation of self-generated H 2O 2 by Pd@UiO-66(Zr) for trimethoprim degradation: Efficiency and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121868. [PMID: 39032257 DOI: 10.1016/j.jenvman.2024.121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The Fenton reaction is recognized as an effective technique for degrading persistent organic pollutants, such as the emerging pollutant trimethoprim (TMP). Recently, due to the excellent reducibility of active hydrogen ([H]), Pd-H2 has been preferred for Fenton-like reactions and the specific H2 activation of Pd-based catalysts. Herein, a heterogeneous Fenton catalyst named the hydrogen-accelerated oxygen reduction Fenton (MHORF@UiO-66(Zr)) system was prepared through the strategy of building ships in the bottle. The [H] has been used for the acceleration of the reduction of Fe(III) and self-generate H2O2. The systematic characterization demonstrated that the nano Pd0 particle was highly dispersed into the UiO-66(Zr). The results found that 20 mg L-1 of TMP was thoroughly degraded within 90 min in the MHORF@UiO-66(Zr) system under conditions of initial pH 3, 30 mL min-1 H2, 2 g L-1 Pd@UiO-66(Zr) and 25 μM Fe2+. The hydroxyl radical as well as the singlet oxygen were evidenced to be the main reactive oxygen species by scavenging experiments and electron spin resonance. In addition, both reducing Fe(III) and self-generating H2O2 could be achieved due to the strong metal-support interaction (SMSI) between the nano Pd0 particles and UiO-66(Zr) confirmed by the correlation results of XPS and calculation of density functional theory. Finally, the working mechanism of the MHORF@UiO-66(Zr) system and the possible degradation pathway of the TMP have been proposed. The novel system exhibited excellent reusability and stability after six cyclic reaction processes.
Collapse
Affiliation(s)
- Yijun Chen
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Meina Cheng
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Long Jin
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Meixin Environmental Technology Co., Ltd., Suzhou, 215500, Jiangsu Province, China.
| | - Hailiang Yang
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, 215156, Jiangsu Province, China
| | - Sanjian Ma
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, 215156, Jiangsu Province, China
| | - Zixia Lin
- Testing Center, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Guoliang Dai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Xin Liu
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China.
| |
Collapse
|
10
|
Liu J, Hu Y, Li X, Xiao C, Yuan B, Cheng J, Chen Y, Zhu X, Wang G, Xie J. Efficient simultaneous removal enrofloxacin and Cr(VI) via activation of peroxymonosulfate over defect-rich C-MoS2-Fe. APPLIED CATALYSIS B: ENVIRONMENT AND ENERGY 2024; 348:123818. [DOI: 10.1016/j.apcatb.2024.123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
11
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
12
|
Niu Y, Zhang Q, Wang L, Guo F, Zhang Y, Wu J. Synthesis of Fe-N doped porous carbon/silicate composites regulated by minerals in coal gasification fine slag for synergistic electrocatalytic treatment of phenolic wastewater. ENVIRONMENTAL RESEARCH 2024; 251:118643. [PMID: 38458590 DOI: 10.1016/j.envres.2024.118643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Coal gasification fine slag (CGFS), as a difficult-to-dispose solid waste in the coal chemical industry, consists of minerals and residual carbon. Due to the aggregate structure of minerals blocking pores and encapsulating active substances, the high-value utilization of CGFS still remains a challenge. Based on the intrinsic characteristics of CGFS, this study synthesized Fe-N doped porous carbon/silicate composites (Fe-NC) by alkali activation and pyrolysis for electrocatalytic degradation of phenolic wastewater. Meanwhile, minerals were utilized to regulate the surface chemical and pore structure, turning their disadvantages into advantages, which caused a sharp increase in m-cresol mineralization. The positive effect of minerals on composite properties was investigated by characterization techniques, electrochemical analyses and density functional theory (DFT) calculations. It was found that the mesoporous structure of the mineral-regulated composites was further developed, with more carbon defects and reactive substances on its surface. Most importantly, silicate mediated iron conversion through strong interaction with H2O2, high work function gradient with electroactive iron, and excellent superoxide radical (•O2-) production capacity. It effectively improved the reversibility and kinetics of the entire electrocatalytic reaction. Within the Fe-NC311 electrocatalytic system, the m-cresol removal rate reached 99.55 ± 1.24%, surpassing most reported Fe-N-doped electrocatalysts. In addition, the adsorption and electrooxidation experiment confirmed that the synergistic effect of Fe-N doped porous carbon and silicate simultaneously promoted the capture of pollutants and the transformation of electroactive molecules, and hence effectively shortened the diffusion path of short-lived radicals, which was further supported by molecular dynamics simulation. Therefore, this research provides new insights into the problem of mineral limitations and opens an innovative approach for CGFS recycling and environmental remediation.
Collapse
Affiliation(s)
- Yanjie Niu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Qiqi Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Li Wang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Fanhui Guo
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Yixin Zhang
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Jianjun Wu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, PR China.
| |
Collapse
|
13
|
Jiang S, Han Y, Sun B, Zeng L, Gong J. Reduced sulfur accelerates Fe(III)/Fe(II) recycling in FeS 2 surface for enhanced electro-Fenton reaction. CHEMOSPHERE 2024; 353:141588. [PMID: 38430939 DOI: 10.1016/j.chemosphere.2024.141588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
FeS2 is well-known for its role in redox reactions. However, the mechanism within heterogeneous electron-Fenton (Hetero-EF) systems remains unclear. In this study, a novel FeS2 based three-dimensional system (GF/Cu-FeS2) with self-generation of H2O2 was investigated for Hetero-EF degradation of sulfamethazine (SMZ). The results revealed that SMZ could be completely removed in 1.5 h, accompanying with the mineralization efficiency of 96% within 4 h. This system performed excellent stability, evidenced by consistently eliminated 100% of SMZ within 2 h over 4 cycles. The generated Reactive Oxygen Species (ROS) of •OH and •O2- in every degradation cycle were quantitatively measured to confirm the stability of the GF/Cu-FeS2 system. Additionally, the redox reaction mechanism on the surface of FeS2 was thoroughly analyzed in detail. The accelerated reduction of Fe(III) to Fe(II), triggered by S22- on the surface of FeS2, promoted the iron cycling, thereby quickening the Fenton process. Density Functional Theory (DFT) results illustrated the process of S22- to be oxidized to in detail. Therefore, this work provides deeper insight into the mechanistic role of S22- in FeS2 for environmental remediation.
Collapse
Affiliation(s)
- Shan Jiang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Yunuo Han
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Benjian Sun
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Lingyu Zeng
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Jianyu Gong
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China.
| |
Collapse
|
14
|
Zhu S, Yang K, Wang T, He S, Ma X, Deng J, Shao P, Li X, Ma X. Sulfidated nanoscale zero-valent iron derived from iron sludge for tetracycline removal: Role of sulfur and iron in reactivity and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123305. [PMID: 38195022 DOI: 10.1016/j.envpol.2024.123305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Iron sludge, produced during the drinking water treatment process, can be recycled as potential iron resource to create environmental functional material. In this study, sulfur-iron composites derived from iron sludge (S-Fe composites) was synthesized through sulfidation and carbonization, and used for the tetracycline (TC) removal under aerobic and anoxic conditions. The reactivities of these as-prepared products were strongly depended on pyrolysis temperatures. In particular, sulfidated nanoscale zero-valent iron loaded on carbon (S-nFe0@CIS) carbonized at 800 °C exhibited the highest TC removal efficiency with 86.6% within 30 min at circumneutral pH compared with other S-Fe composites. The crystalline structure of α-Fe0, FeSx and S0 as main active sites in S-nFe0@CIS promoted the degradation of TC. Moreover, the Fe/S molar ratios significantly affected the TC removal rates, which reached the best value as the optimal S/Fe of 0.27. The results illustrated that the optimized extent of sulfidation could facilitate electron transfer from nFe0 towards contaminants and accelerate Fe(III)/Fe(II) cycle in reaction system compared to bared nFe0@CIS. We revealed that removal of TC by S-nFe0@CIS in the presence of dissolved oxygen (DO) is mainly attributed to oxidation, adsorption and reduction pathways. Their contribution to TC removal were 31.6%, 25.2% and 28.8%, respectively. Furthermore, this adsorption-oxygenation with the formation of S-nFe0@CIS-TC* complexes was a surface-mediated process, in which DO was transformed by the structural FeSx on complex surface to •OH with the generation of H2O2 intermediate. The intermediates of TC and toxicity analysis indicate that less toxicity products generated through degradation process. This study provides a new reclamation of iron sludge and offers a new insight into the TC removal by S-nFe0@CIS under aerobic conditions.
Collapse
Affiliation(s)
- Shijun Zhu
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou, 310023, China; Mizuda Group Co. LTD, Huzhou, 313000, China
| | - Kaida Yang
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Tenghui Wang
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Sijia He
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xin Ma
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou, 310023, China.
| |
Collapse
|
15
|
Xie X, Xiao F, Zhan S, Zhu M, Xiang Y, Zhong H, Huang H. Deep Oxidation of Chlorinated VOCs by Efficient Catalytic Peroxide Activation over Nanoconfined Co@NCNT Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1625-1635. [PMID: 38207092 DOI: 10.1021/acs.est.3c08329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The catalytic removal of chlorinated VOCs (CVOCs) in gas-solid reactions usually suffers from chlorine-containing byproduct formation and catalyst deactivation. AOP wet scrubber has recently attracted ever-increasing interest in VOC treatment due to its advantages of high efficiency and no gaseous byproduct emission. Herein, the low-valence Co nanoparticles (NPs) confined in a N-doped carbon nanotube (Co@NCNT) were studied to activate peroxymonosulfate (PMS) for efficient CVOC removal in a wet scrubber. Co@NCNT exhibited unprecedented catalytic activity, recyclability, and low Co ion leakage (0.19 mg L-1) for chlorobenzene degradation in a very wide pH range (3-11). The chlorobenzene removal efficiency was kept stable above 90% over Co@NCNT, much higher than that of nonconfined Co@NCNS (45%). The low-valence Co NPs achieved a continuous electron redox cycling (Co0/Co2+ → Co3+ → Co0/Co2+) and greatly promoted the O-O bond dissociation of PMS with the least energy (0.83 eV) inside the channel of Co@NCNT to form abundant HO• and SO4•-. Thus, the deep oxidation of chlorobenzene was achieved without any biphenyl byproducts from the coupling reaction. This study provided a new avenue for designing novel nanoconfined catalysts with outstanding activity, paving the way for the deep oxidation of CVOC waste gas via AOP wet scrubber.
Collapse
Affiliation(s)
- Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, P. R. China
| | - Fei Xiao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Mingshan Zhu
- School of Environment, Jinan University, Guangzhou 510006, P. R. China
| | - Yongjie Xiang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Huanran Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
16
|
Jiang W, Haider MR, Duan Y, Han J, Ding Y, Mi B, Wang A. Metal-free electrified membranes for contaminants oxidation: Synergy effect between membrane rejection and nanoconfinement. WATER RESEARCH 2024; 248:120862. [PMID: 37976953 DOI: 10.1016/j.watres.2023.120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Electro-Fenton processes are frequently impeded by depletion of metal catalysts, unbalance between H2O2 generation and activation, and low concentration of reactive species (e.g., •OH) in the bulk solution. A metal-free electro-Fenton membrane was fabricated with nitrogen-doped carbon nanotube (N-CNT) and reduced graphene oxide (RGO). N-CNT acted as a catalyst for both H2O2 generation and activation, while the incorporated RGO served as the second catalyst for H2O2 generation and improved the performance of membrane rejection. The electrified membrane was optimized in terms of nitrogen precursors selection and composition of N-CNT and RGO to achieve optimal coupling between H2O2 generation and activation. The membrane fabricated with 67% mass of N-CNT with urea as the precursor achieved over 95% removal of the target contaminants in a single pass through the membrane with a water flux of 63 L m-2 h-1. This membrane also exhibited efficient transformation of various concentrations of contaminants (i.e., 1-10 mg L-1) over a broad range of pH (i.e., 3-9). Due to its good durability and low energy consumption, the metal-free electro-Fenton membrane holds promise for practical water treatment application. The concentration-catalytic oxidation model elucidated that the elevated contaminant concentration near the membrane surface enhanced the transformation rate by 40%. The nanoconfinement enhanced the transformation rate constant inside the membrane by a factor of 105 because of elevated •OH concentration inside the nanopores. Based on the prediction of this model, the configuration of the membrane reactor has been optimized.
Collapse
Affiliation(s)
- Wenli Jiang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Muhammad Rizwan Haider
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yanghua Duan
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States
| | - Jinglong Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Baoxia Mi
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States.
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
17
|
Jiang H, Chen H, Wei K, Liu L, Sun M, Zhou M. Comprehensive analysis of research trends and prospects in electrochemical advanced oxidation processes (EAOPs) for wastewater treatment. CHEMOSPHERE 2023; 341:140083. [PMID: 37696481 DOI: 10.1016/j.chemosphere.2023.140083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) have emerged as a promising approach for efficient wastewater treatment. However, despite their promising potential, there is a lack of comprehensive analysis regarding the research trends, bibliometric data, and research frontiers of EAOPs. To address this gap, this study conducted a thorough and comprehensive analysis of 2347 related articles in the Web of Science Core Collection Database from 2012 to 2022. The analysis included information on countries, authors, institutions, and more, with a focus on summarizing trends and cutting-edge research hotspots in the field. The University of Barcelona in Spain is the most effective institution. Brillas E. is the most productive author in the world. Research hotspots in EAOPs have evolved from traditional anodic oxidation (AO) to novel electro-Fenton (EF) technology, which focuses on efficient generation of H2O2 and the use of metal-organic frameworks to enhance performance and efficiency. Through systematic research hotspot analysis, the importance of performance comparison of different types of EAOPs, development of new materials, optimization of device parameters, and toxicity assessment of byproducts is highlighted. Concurrently, the rise and mechanisms of emerging EAOPs are predicted and analyzed. Finally, future research on EAOPs technologies should focus on technological coupling, development of new materials, reduction of energy consumption and cost, evaluation and minimization of toxicity, and exploration of green renewable energy sources for larger-scale applications in wastewater treatment pilot plants. In this way, these technologies can contribute to the sustainability of larger industrial wastewater treatment applications and make an important contribution to environmental protection and scientific and technological progress.
Collapse
Affiliation(s)
- Hanfeng Jiang
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haoming Chen
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kajia Wei
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Lufan Liu
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingdi Sun
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
18
|
Qin J, Yang J, Huang H, Fu M, Ye D, Hu Y. Tuning the Hierarchical Pore Structure and the Metal Site in a Metal-Organic Framework Derivative to Unravel the Mechanism for the Adsorption of Different Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15703-15714. [PMID: 37796655 DOI: 10.1021/acs.est.3c03467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Volatile organic compounds (VOCs) are one of the main classes of air pollutants, and it is important to develop efficient adsorbents to remove them from the atmosphere. To do this most efficiently, we need to understand the mechanism of VOC adsorption. In this work, we described how the metal organic framework (MOF), ZIF-8, was used as a precursor to generate MOF derivatives (Zn-GC) through temperature-controlled calcination, which had adjustable metal sites and hierarchical pore structure. It was used as a model adsorbent to study the adsorption and desorption characteristics of different VOCs. Zn-GC-850 with developed pores exhibited higher adsorption performance for the benzene series, whereas Zn-GC-650 with more metal sites had a better adsorption capacity for oxygen-containing VOCs. By tuning the molecular structure of the VOCs, we revealed the adsorption mechanism of different VOCs at the molecular level. The more developed hierarchical pore structure obtained at the higher temperature facilitates the diffusion of the benzene series, and the noncovalent interaction between their methyl group(s) and the carbonized MOF derivatives improves the adsorption affinity; while the higher exposure of Zn sites obtained at lower temperature favors the adsorption of oxygen-containing VOCs by Zn-O bonds. The mass transfers of VOCs and the role of the adsorbent were simulated by multiple theoretical models. This study strengthens the basis for the design and optimization of the adsorbent and catalyst for VOCs treatment.
Collapse
Affiliation(s)
- Junxian Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Junjie Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Haomin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, P. R. China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, P. R. China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, P. R. China
| | - Yun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, P. R. China
| |
Collapse
|
19
|
Chen X, Wang L, Sun W, Yang Z, Jin J, Huang Y, Liu G. Boron Bifunctional Catalysts for Rapid Degradation of Persistent Organic Pollutants in a Metal-Free Electro-Fenton Process: O 2 and H 2O 2 Activation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15693-15702. [PMID: 37791801 DOI: 10.1021/acs.est.3c02877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Metals usually served as the active sites of the heterogeneous bifunctional electro-Fenton reaction, which faced the challenge of poor stability under acidic or even neutral conditions. Exploring a metal-free heterogeneous bifunctional electro-Fenton catalyst can effectively solve the above problems. In this work, a stable metal-free heterogeneous bifunctional boron-modified porous carbon catalyst (BTA-1000) was synthesized. For the BTA-1000 catalyst, the yield of H2O2 (294 mg/L) significantly increased. The degradation rate of phenol by BTA-1000 (0.242 min-1) increased by an order of magnitude, compared with the porous carbon catalyst (0.0105 min-1). The BTA catalyst could rapidly degrade industrial dye wastewater, and its specific energy consumption was 5.52 kW h kg-1 COD-1, lower than that in previous reports (6.38-7.4 kW h kg-1 COD-1). DFT and XPS revealed that C═O and -BC2O groups jointly promoted the generation of H2O2, and the -BCO2 group played dominant roles in the generation of •OH because the oxygen atom near the electron-giving groups (-BCO2 group) facilitated the formation of hydrogen bond and H2O2 adsorption. This work gained deep insights into the reaction mechanism of the boron-modified porous carbon catalyst, which helped to guide the development of metal-free heterogeneous bifunctional electro-Fenton catalysts.
Collapse
Affiliation(s)
- Xu Chen
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Lida Wang
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
- Dalian Key Laboratory of Flue Gas Purification and Waste Heat Utilization, Dalian 116024, China
| | - Wen Sun
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
- Dalian Key Laboratory of Flue Gas Purification and Waste Heat Utilization, Dalian 116024, China
| | - Zhengqing Yang
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Jingjing Jin
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - YaPeng Huang
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Guichang Liu
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
- Dalian Key Laboratory of Flue Gas Purification and Waste Heat Utilization, Dalian 116024, China
| |
Collapse
|
20
|
Ehsani A, Nejatbakhsh S, Soodmand AM, Farshchi ME, Aghdasinia H. High-performance catalytic reduction of 4-nitrophenol to 4-aminophenol using M-BDC (M = Ag, Co, Cr, Mn, and Zr) metal-organic frameworks. ENVIRONMENTAL RESEARCH 2023; 227:115736. [PMID: 36963712 DOI: 10.1016/j.envres.2023.115736] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
The catalytic activity of pure metal nanoparticles is always limited by aggregation during the reaction. Therefore, promising candidates such as metal-organic frameworks possess benefits due to their 3D porous structures, high stability, and high specific surface area. In this study, effective and reusable catalysts based on M-BDC metal-organic frameworks were synthesized utilizing five different coordinating metal ions (M = Ag, Co, Cr, Mn, and Zr) as metal nodes and 1-4-benzene dicarboxylic acid (BDC) as an organic linker and used in catalytic reduction of 4-Nitrophenol (4-NP) to 4-Aminophenol (4-AP) for the first time. The as-prepared catalysts were characterized using SEM, EDX, XRD, and FTIR techniques. Based on catalytic performance, Co-BDC showed the best catalytic efficiency compared to the other M-BDC MOF catalysts with a conversion yield of about 99.25 in 2 min. All of the catalysts could catalyze the complete reduction of 4-NP to 4-AP at different reaction times (2-10); however, Mn-BDC could not finish the catalytic reduction reaction even after 20 min. The two more efficient catalysts including Co-BDC and Cr-BDC demonstrated high stability and reusability (more than 85% catalytic efficiency) even after 5 cycles.
Collapse
Affiliation(s)
- Atefeh Ehsani
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Siyamak Nejatbakhsh
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Ahmadreza Mohammadian Soodmand
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Mahdi Ebrahimi Farshchi
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Hassan Aghdasinia
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
21
|
Shang D, Zheng W, Zhao P, Li Y, Xie L, Zhang J, Zhan S, Hu W. Investigation on the reaction kinetic mechanism of polydopamine-loaded copper as dual-functional catalyst in heterogeneous electro-Fenton process. CHEMOSPHERE 2023; 325:138339. [PMID: 36893871 DOI: 10.1016/j.chemosphere.2023.138339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Heterogeneous electro-Fenton (HEF) process has been regarded as a promising method in environmental remediation. However, the reaction kinetic mechanism of the HEF catalyst for simultaneous production and activation of H2O2 remained confounded. Herein, the copper supported on polydopamine (Cu/C) was synthesized by a facile method and employed as a bifunctional HEFcatalyst, and the catalytic kinetic pathways were deeply investigated by using rotating ring-disk electrode (RRDE) voltammetry based on the Damjanovic model. Experimental results substantiated that a two-electron oxygen reduction reaction (2e- ORR) and a sequential Fenton oxidation reaction were proceeded on 1.0-Cu/C, where metallic copper played a crucial role in the fabrication of 2e- active sites as well as utmost H2O2 activation to produce highly reactive oxygen species (ROS), resulting in the high H2O2 productivity (52.2%) and the almost complete removal of contaminant ciprofloxacin (CIP) after 90 min. The work not only expanded the idea of reaction mechanism on Cu-based catalyst in HEF process but also provided a promising catalyst for pollutants degradation in wastewater treatment.
Collapse
Affiliation(s)
- Denghui Shang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenwen Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Peng Zhao
- China National Offshore Oil Corporation, Tianjin Branch, Tianjin, 300452, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China.
| | - Liangbo Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jinlong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
22
|
Du X, Fu W, Su P, Zhang Q, Zhou M. FeMo@porous carbon derived from MIL-53(Fe)@MoO 3 as excellent heterogeneous electro-Fenton catalyst: Co-catalysis of Mo. J Environ Sci (China) 2023; 127:652-666. [PMID: 36522094 DOI: 10.1016/j.jes.2022.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/17/2023]
Abstract
An ultra-efficient electro-Fenton catalyst with porous carbon coated Fe-Mo metal (FeMo@PC), was prepared by calcining MIL-53(Fe)@MoO3. This FeMo@PC-2 exhibited impressive catalytic performance for sulfamethazine (SMT) degradation with a high turnover frequency value (7.89 L/(g·min)), much better than most of reported catalysts. The mineralization current efficiency and electric energy consumption were 83.2% and 0.03 kWh/gTOC, respectively, at low current (5 mA) and small dosage of catalyst (25.0 mg/L). The removal rate of heterogeneous electro-Fenton (Hetero-EF) process catalyzed by FeMo@PC-2 was 4.58 times that of Fe@PC/Hetero-EF process. Because the internal-micro-electrolysis occurred between PC and Fe0, while the co-catalysis of Mo accelerated the rate-limiting step of the Fe3+/Fe2+ cycle and greatly improved the H2O2 utilization efficiency. The results of radical scavenger experiments and electron paramagnetic resonance confirmed the main role of surface-bound hydroxyl radical oxidation. This process was feasible to remove diverse organic contaminants such as phenol, 2,4-dichlorophenoxyacetic acid, carbamazepine and SMT. This paper enlightened the importance of the doped Mo, which could greatly improve the activity of the iron-carbon heterogeneous catalyst derived from metal-organic frameworks in EF process for efficient removal of organic contaminants.
Collapse
Affiliation(s)
- Xuedong Du
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenyang Fu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Pei Su
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qizhan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
23
|
Khan S, Cho WC, Sepahvand A, Haji Hosseinali S, Hussain A, Nejadi Babadaei MM, Sharifi M, Falahati M, Jaragh-Alhadad LA, ten Hagen TLM, Li X. Electrochemical aptasensor based on the engineered core-shell MOF nanostructures for the detection of tumor antigens. J Nanobiotechnology 2023; 21:136. [PMID: 37101280 PMCID: PMC10131368 DOI: 10.1186/s12951-023-01884-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
It is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development of sensing platforms, metal-organic frameworks (MOFs) have received considerable attention as potential porous crystalline nanostructures. Core-shell MOF nanoparticles (NPs) have shown different diversities, complexities, and biological functionalities, as well as significant electrochemical (EC) properties and potential bio-affinity to aptamers. As a result, the developed core-shell MOF-based aptasensors serve as highly sensitive platforms for sensing cancer biomarkers with an extremely low limit of detection (LOD). This paper aimed to provide an overview of different strategies for improving selectivity, sensitivity, and signal strength of MOF nanostructures. Then, aptamers and aptamers-modified core-shell MOFs were reviewed to address their functionalization and application in biosensing platforms. Additionally, the application of core-shell MOF-assisted EC aptasensors for detection of several tumor antigens such as prostate-specific antigen (PSA), carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA-125), cytokeratin 19 fragment (CYFRA21-1), and other tumor markers were discussed. In conclusion, the present article reviews the advancement of potential biosensing platforms toward the detection of specific cancer biomarkers through the development of core-shell MOFs-based EC aptasensors.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| | - Afrooz Sepahvand
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Haji Hosseinali
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands
| | | | - Timo L. M. ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands
| | - Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Song Y, Wang A, Ren S, Zhang Y, Zhang Z. Flow-through heterogeneous electro-Fenton system using a bifunctional FeOCl/carbon cloth/activated carbon fiber cathode for efficient degradation of trimethoprim at neutral pH. ENVIRONMENTAL RESEARCH 2023; 222:115303. [PMID: 36642126 DOI: 10.1016/j.envres.2023.115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The synthesis of multifunctional cathode with high-efficiency and stable catalytic activity for simultaneously producing and activating H2O2 is an effective way for promoting the performance of heterogeneous electro-Fenton process (HEF). In addition, accelerating mass transfer by adopting a flow-through reactor is also great importance because of its better utilization of catalysts and adequate contact of the contaminant with the oxidants generated on the electrode surface. Herein, a novel flow-through HEF (FHEF) system was designed for the degradation of trimethoprim (TMP) using bifunctional cathode with a sandwich structure FeOCl nanosheets loaded onto carbon cloth (CC) and activated carbon fiber (ACF) (FeOCl/CC/ACF). The cathode exhibited excellent performance in activating H2O2 for the in-situ generation of hydroxyl radicals (•OH). The electron spin resonance (ESR) measurements and radical quenching tests proved that the high production of •OH in the FHEF process was favorable to the high catalytic efficiency. 25 mg L-1 TMP was entirely degraded after 60 min, with the TOC removal of 62.6% (180 min) at pH 6.8, 9.0 mA cm-2, and flux rate 210 mL min-1. Moreover, the degradation rate still could reach 83% (60 min) after 10 cycles without obvious valence and crystal phase changes. Simultaneously, the current utilization rate has also been greatly enhanced, with an average current efficiency of 69.9% and a low energy consumption of 0.28 kWh kg-1. The reasonable degradation pathways for TMP were proposed based on the UPLC-QTOF-MS/MS results. Finally, the results of toxicological simulation showed a declining trend in the toxicity of the samples during TMP degradation. These results claim that the FeOCl/CC/ACF-FHEF system is an efficient and economical technology for the treatment of organic contaminants in effluents.
Collapse
Affiliation(s)
- Yongjun Song
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Aimin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Songyu Ren
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yanyu Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, China
| |
Collapse
|
25
|
Shokri A, Nasernejad B, Sanavi Fard M. Challenges and Future Roadmaps in Heterogeneous Electro-Fenton Process for Wastewater Treatment. WATER, AIR, AND SOIL POLLUTION 2023; 234:153. [PMID: 36844633 PMCID: PMC9942065 DOI: 10.1007/s11270-023-06139-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/26/2023] [Indexed: 06/10/2023]
Abstract
The efficiency of heterogeneous electro-Fenton technology on the degradation of recalcitrant organic pollutants in wastewater is glaringly obvious. This green technology can be effectively harnessed for addressing ever-increasing water-related challenges. Due to its outstanding performance, eco-friendliness, easy automation, and operability over a wide range of pH, it has garnered significant attention from different wastewater treatment research communities. This review paper briefly discusses the principal mechanism of the electro-Fenton process, the crucial properties of a highly efficient heterogeneous catalyst, the heterogeneous electro-Fenton system enabled with Fe-functionalized cathodic materials, and its essential operating parameters. Moreover, the authors comprehensively explored the major challenges that prevent the commercialization of the electro-Fenton process and propose future research pathways to countervail those disconcerting challenges. Synthesizing heterogeneous catalysts by application of advanced materials for maximizing their reusability and stability, the full realization of H2O2 activation mechanism, conduction of life-cycle assessment to explore environmental footprints and potential adverse effects of side-products, scale-up from lab-scale to industrial scale, and better reactor design, fabrication of electrodes with state-of-the-art technologies, using the electro-Fenton process for treatment of biological contaminants, application of different effective cells in the electro-Fenton process, hybridization of the electro-Fenton with other wastewater treatments technologies and full-scale analysis of economic costs are key recommendations which deserve considerable scholarly attention. Finally, it concludes that by implementing all the abovementioned gaps, the commercialization of electro-Fenton technology would be a realistic goal. Graphical Abstract
Collapse
Affiliation(s)
- Aref Shokri
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413 Iran
- Jundi-Shapur Research Institute, Jundishapur University of Technology, Dezful, Iran
| | - Bahram Nasernejad
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413 Iran
| | - Mahdi Sanavi Fard
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
26
|
Recent advances in application of heterogeneous electro-Fenton catalysts for degrading organic contaminants in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39431-39450. [PMID: 36763272 DOI: 10.1007/s11356-023-25726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Over the last decades, advanced oxidation processes (AOPs) have been widely used in surface and ground water pollution control. The heterogeneous electro-Fenton (EF) process has gained much attention due to its properties of high catalytic performance, no generation of iron sludge, and good recyclability of catalyst. As of October 2022, the cited papers and publications of EF are around 1.3 × 10-5 and 3.4 × 10-3 in web of science. Among the AOP techniques, the contaminant removal efficiencies by EF process are above 90% in most studies. Current reviews mainly focused on the mechanism of EF and few reviews comprehensively summarized heterogeneous catalysts and their applications in wastewater treatment. Thus, this review focuses on the current studies covering the period 2012-2022, and applications of heterogeneous catalysts in EF process. Two kinds of typical heterogeneous EF systems (the addition of solid catalysts and the functionalized cathode catalysts) and their applications for organic contaminants degradation in water are reviewed. In detail, solid catalysts, including iron minerals, iron oxide-based composites, and iron-free catalysts, are systematically described. Different functionalized cathode materials, containing Fe-based cathodes, carbonaceous-based cathodes, and heteroatom-doped cathodes, are also reviewed. Finally, emphasis and outlook are made on the future prospects and challenges of heterogeneous EF catalyst for wastewater treatments.
Collapse
|
27
|
Zheng Y, Du X, Song G, Gu J, Guo J, Zhou M. Degradation of carbamazepine over MOFs derived FeMn@C bimetallic heterogeneous electro-Fenton catalyst. CHEMOSPHERE 2023; 312:137353. [PMID: 36423717 DOI: 10.1016/j.chemosphere.2022.137353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/23/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
A highly efficient heterogeneous electro-Fenton (Hetero-EF) catalyst with core-shell structure was successfully prepared by calcination of Mn-doped Mil-53 (Fe) precursor at high temperature. FeMn@C-800/2 prepared at pyrolysis temperature of 800 °C and Fe:Mn molar doping ratio of 2:1 showed the best catalytic performance for the degradation of carbamazepine (CBZ). The characterization, properties and stability of FeMn@C-800/2 were systematically investigated, obtaining the apparent first-order reaction rate of Hetero-EF was 8.9 and 17.8 times higher than that on Fe@C-800 and Mn@C-800 at the optimized conditions of current density 10 mA cm-2, catalyst dosage of 50 mg L-1 and initial pH 4.0, respectively. The incorporation of Mn promoted the generation of more Fe0 and Fe3C during the pyrolysis process, and enhanced the internal micro-electrolysis between Fe0 and carbon shell. At the same time, the presence of Mn0 also promoted the regeneration of Fe2+, and improved the activity of iron-carbon heterogeneous catalysis in the EF process, so as to degrade organic pollutants more effectively. This work would help to gain insight into the design of MOFs derived Fe-Mn bimetal catalyst and its mechanism for enhanced heterogeneous electro-Fenton.
Collapse
Affiliation(s)
- Yang Zheng
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xuedong Du
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ge Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jinyu Gu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jieru Guo
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
28
|
Yongchao Z, Lei T, Wenming Z, Yiping Z, Lei F, Tuqiao Z. Iron carbon particle dosing for odor control in sewers: Laboratory tests. ENVIRONMENTAL RESEARCH 2023; 216:114476. [PMID: 36202246 DOI: 10.1016/j.envres.2022.114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Treatment of malodor in the sewer system is a priority in many municipalities for human health concerns, sewer pipe corrosion prevention. In this study, the removal effects of iron-carbon (Fe-C) particles on the inhibition of sulfide in the liquid phase, as well as hydrogen sulfide (H2S) and methyl mercaptan (MeSH) in the headspace were investigated using laboratory-scale reactors simulating gravity-flow sewer system. The results indicated that the sulfide in the liquid phase can be reduced from 15.1 to 16.5 mg S/L to 0.05 and 0.14 mg S/L after 70 g/L and 50 g/L Fe-C particles dosing. The flux of H2S and MeSH in the headspace was also inhibited, and its flux decreased by up to 99%. Meanwhile, the microbial community structures of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) in the sediment surface and water were also analyzed, and the results revealed that the relative abundance of SRB in the water and sediment surface was inhibited greatly after adding Fe-C particles, especially for Sulfurospirillum, Clostridium, and Desulfovibrio, while Fe-C particles promoted the growth of SOB. Moreover, the surface deposition was collected and analyzed through X-ray photoelectron spectroscopy (XPS), and the results indicated that sulfide can be removed by co-precipitation with ferrous ions formed through micro-electrolysis of Fe-C. This study provides a new approach to control the in-situ odor pollution for sewage systems.
Collapse
Affiliation(s)
- Zhou Yongchao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Tang Lei
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Zhang Wenming
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Zhang Yiping
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Fang Lei
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China.
| | - Zhang Tuqiao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
29
|
Jiang L, Rastgar M, Wang C, Ke S, He L, Chen X, Song Y, He C, Wang J, Sadrzadeh M. Robust PANI-entangled CNTs Electro-responsive membranes for enhanced In-situ generation of H2O2 and effective separation of charged contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Zhao F, Xiao J, Geng S, Wang Y, Tsiakaras P, Song S. Novel Fe7S8/C nanocomposites with accelerating iron cycle for enhanced heterogeneous electro-Fenton degradation of dyes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Zhang J, Wang D, Zhao F, Feng J, Feng H, Luo J, Tang W. Ferrate modified carbon felt as excellent heterogeneous electro-Fenton cathode for chloramphenicol degradation. WATER RESEARCH 2022; 227:119324. [PMID: 36368084 DOI: 10.1016/j.watres.2022.119324] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
In this study, a novel and efficient heterogeneous electro-Fenton (EF) process with a potassium ferrate (K2FeO4) modified carbon felt (Fe-CF) cathode was developed for chloramphenicol (CAP) removal. The catalytic activity was assessed by the comparison of different systems and the effects of multiple operating parameters (K2FeO4 dosage, initial solution pH, applied current) and co-existing constituents. Results indicated that the Fe-CF cathode exhibited excellent performance for CAP degradation (almost 100% removal efficiency within 60 min) over a wide range of pH (pH 3-9) during heterogeneous EF ascribed to the synergistic effect of embedded iron species and porous graphitic carbon structure and effective utilization of the in-situ generated H2O2. Moreover, the Fe-CF cathode possessed good recyclability with low metal leaching (98.2% CAP removal efficiency after reused for 5 times) and outstanding real water application performance. The ∙OH and O2∙- were responsible for CAP degradation, while ∙OH played a main role. Moreover, the toxicity evaluation by E. coli growth experiments demonstrated an efficient toxicity reduction in this system. Overall, a novel heterogeneous EF functional cathode with superior performance was fabricated via a green, low-cost one-step method, which shows promising application potential for actual wastewater treatment.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jing Feng
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410014, PR China
| | - Haopeng Feng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jun Luo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
32
|
Wang Z, Xiao F, Shen X, Zhang D, Chu W, Zhao H, Zhao G. Electronic Control of Traditional Iron-Carbon Electrodes to Regulate the Oxygen Reduction Route to Scale Up Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13740-13750. [PMID: 36130282 DOI: 10.1021/acs.est.2c03673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shifting four-electron (4e-) oxygen reduction in fuel cell technology to a two-electron (2e-) pathway with traditional iron-carbon electrodes is a critical step for hydroxyl radical (HO•) generation. Here, we fabricated iron-carbon aerogels with desired dimensions (e.g., 40 cm × 40 cm) as working electrodes containing atomic Fe sites and Fe3C subnanoclusters. Electron-donating Fe3C provides electrons to FeN4 through long-range activation for achieving the ideal electronic configuration, thereby optimizing the binding energy of the *OOH intermediate. With an iron-carbon aerogel benefiting from finely tuned electronic density, the selectivity of 2e- oxygen reduction increased from 10 to 90%. The resultant electrode exhibited unexpectedly efficient HO• production and fast elimination of organics. Notably, the kinetic constant kM for sulfamethoxazole (SMX) removal is 60 times higher than that in a traditional iron-carbon electrode. A flow-through pilot device with the iron-carbon aerogel (SA-Fe0.4NCA) was built to scale up micropolluted water decontamination. The initial total organic carbon (TOC) value of micropolluted water was 4.02 mg L-1, and it declined and maintained at 2.14 mg L-1, meeting the standards for drinking water quality in China. Meanwhile, the generation of emerging aromatic nitrogenous disinfection byproducts (chlorophenylacetonitriles) declined by 99.2%, satisfying the public safety of domestic water. This work provides guidance for developing electrochemical technologies to satisfy the flexible and economic demand for water purification, especially in water-scarce areas.
Collapse
Affiliation(s)
- Zining Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Fan Xiao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuqian Shen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hongying Zhao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
33
|
Unveiling a MnxCo1−xSe Fenton-like catalyst for organic pollutant degradation: A key role of ternary redox cycle and Se vacancy. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Min X, Zhang T, Xie M, Zhang K, Chai L, Lin Z, Ding C, Shi Y. Functionalized Lignin for Fabrication of FeCoNi Nanoparticles Enriched 3D Carbon Hybrid: From Waste to a High Performance Oxygen Evolution Reaction Catalyst. ChemElectroChem 2022. [DOI: 10.1002/celc.202200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoye Min
- Central South University School of Metallurgy and Environment CHINA
| | - Tingzheng Zhang
- Central South University School of Metallurgy and Environment CHINA
| | - Mingbo Xie
- Central South University School of Metallurgy and Environment CHINA
| | - Kejing Zhang
- Central South University School of Metallurgy and Environment CHINA
| | - Liyuan Chai
- Central South University School of Metallurgy and Environment CHINA
| | - Zhang Lin
- Central South University School of Metallurgy and Environment CHINA
| | - Chunlian Ding
- Central South University School of Metallurgy and Environment CHINA
| | - Yan Shi
- Central South University School of Metallurgy and Environment No.932, Lushannan Road, Yuelu District 410083 Changsha CHINA
| |
Collapse
|
35
|
An J, Feng Y, Wang N, Zhao Q, Wang X, Li N. Amplifying anti-flooding electrode to fabricate modular electro-fenton system for degradation of antiviral drug lamivudine in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128185. [PMID: 35032957 DOI: 10.1016/j.jhazmat.2021.128185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The advanced oxidation based on in-situ hydrogen peroxide production using carbon air cathode is very potential for wastewater treatment. However, catalyst flooding and complex assembly patterns are the bottleneck limiting the air cathode to the long-term and large-scale application. In this work, a novel anti-flooding air-breathing cathode (ABC) was prepared by a simple rolling-spraying method with relatively low price commercial materials. The novel method changed the morphology of gas diffusion layer as well as adjusted the hydrophobicity of air side of the catalyst layer. As a result, water-air distribution management was achieved and TPI disequilibrium was prevented. Compare with traditional ABC, the H2O2 yield and current efficiency (CE) of optimized anti-flooding ABC (ABC0.9) increased by 13.5% (941 ± 10 mg·L-1·h-1 with CE of 84% at 30 mA·cm-2), the material cost and fabrication time decreased by 10.1% (2.32 ¥·dm-2, ~0.36 $·dm-2) and 40%. Amplified ABC coupled with Ti/IrO2 anodes were integrated into a modular electrode used for H2O2generation. When the current density (j) increased from 10 to 30 mA·cm-2, the energy cost increased from 0.19 to 0.43 ¥·mol-1 H2O2 (from 0.03 to 0.07 $·mol-1 H2O2). The modular electrode was utilized in a 2 L pre-pilot scale reactor for antiviral drug lamivudine degradation by electro-Fenton (EF) process. 100% of lamivudine and 78.1% of total organic carbon (TOC) were removed within 60 min at 20 mA·cm-2. The susceptible sites on the lamivudine toward hydroxyl radicals were investigated and transformation products (TP) as well as degradation pathway were studied.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
36
|
Du X, Wang S, Ye F, Qingrui Z. Derivatives of metal-organic frameworks for heterogeneous Fenton-like processes: From preparation to performance and mechanisms in wastewater purification - A mini review. ENVIRONMENTAL RESEARCH 2022; 206:112414. [PMID: 34808127 DOI: 10.1016/j.envres.2021.112414] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Organic pollution is an ever-growing issue in aquatic environment, Fenton-like processes have gained widespread acceptance due to their high oxidative potential and environmental compatibility. Derivatives of metal-organic frameworks (MOFs) are emerging heterogeneous Fenton-like catalysts, which have advantages of large surface area, diversity of structures, and abundant active sites. This work focuses on the recent advances in MOFs derivatives including metal compounds and metal incorporated carbons for Fenton-like processes. First, preparation strategies, structures and compositions are introduced. And then, the removal of organic pollutant in Fenton, electro-Fenton, and photo-Fenton process catalyzed by MOFs derivative is summarized, respectively. The contents particularly devote efforts to build connections among preparation, structures, compositions, and performance. Furthermore, the mechanisms of improving performance are discussed in detail. Finally, the perspectives of MOFs derivatives toward Fenton-like applications are proposed.
Collapse
Affiliation(s)
- Xuedong Du
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Shuo Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Fei Ye
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Zhang Qingrui
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, PR China; Qinhuangdao Tianda Environmental Protection Research Institute Co., China.
| |
Collapse
|
37
|
Chu L, Cang L, Fang G, Sun Z, Wang X, Zhou D, Gao J. A novel electrokinetic remediation with in-situ generation of H 2O 2 for soil PAHs removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128273. [PMID: 35051774 DOI: 10.1016/j.jhazmat.2022.128273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Electrokinetic-Fenton (EK-Fenton) technology requires a high dose of H2O2 to produce •OH radicals, which adds a high cost to the remediation process and raises safety concerns during transportation and storage of H2O2. Moreover, the remediation efficiency of the conventional EK-Fenton process is low due to the meaningless consumption of H2O2 on the electrodes and the alkaline environment near the cathode. In this work, a modified CMK3-gas diffusion electrode (CMK3-GDE) is fabricated. This cathode can continuously generate H2O2, and the cumulative H2O2 concentration can reach 0.23 M during 10 days of the test. The utilization of cation exchange membranes (CEMs) efficiently restricts the decomposition of H2O2 on the electrodes and prevents the alkalization of the soil near the cathode, resulting in a 13.7-43.2% increase of the removal efficiency of polycyclic aromatic hydrocarbons (PAHs). In this new treatment process, PAHs are mainly oxidized into quinones, ketones, alcohols, and small molecule acids, and all these products have lower toxicities than PAHs. The EK-Fenton/CMK3-GDE-CEM system exhibits excellent remediation efficiency for treating PAHs polluted soil, which could be a sustainable, eco-friendly, and low-cost strategy for soil remediation.
Collapse
Affiliation(s)
- Longgang Chu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Cang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhaoyue Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinghao Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
38
|
High 1T phase and sulfur vacancies in C-MoS2@Fe induced by ascorbic acid for synergistically enhanced contaminants degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Lin R, Li Y, Yong T, Cao W, Wu J, Shen Y. Synergistic effects of oxidation, coagulation and adsorption in the integrated fenton-based process for wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114460. [PMID: 35026715 DOI: 10.1016/j.jenvman.2022.114460] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Fenton process is the most popular for wastewater treatment among all available advanced oxidation processes (AOPs). Numerous endeavors have been devoted to improving the oxidation efficiency of Fenton reaction in terms of promoting ·OH generation, accelerating iron redox cycle and extending applicable pH range. However, in addition to oxidation, coagulation and adsorption also simultaneously occur in the Fenton process, which play important role in the removal of pollutants. Rapid progress has revealed the synergistic effects of oxidation, coagulation and adsorption in the Fenton process, providing new ideas for the treatment of complex and refractory wastewater. Based on available studies, this review is the first to systematically summarize the research progress regarding the synergistic effects of oxidation, coagulation and adsorption in the integrated Fenton-based processes for wastewater treatment. The involved mechanism of the synergistic effects in different Fenton processes (homogeneous Fenton, heterogeneous Fenton and physical field-assistant Fenton coupling process) are critically reviewed. Furthermore, special attention has been paid to the representative applications of the synergistic effects in wastewater treatment (such as industrial organic wastewater, landfill leachate and heavy metal-organic complexes, etc.), particularly focusing on the operation parameters and removal performance. Finally, a conclusion of the review and subsequently, perspectives are given for possible research directions. We believe this review can provide useful information for researchers and end-users involved in the development and application of the Fenton process in wastewater treatment.
Collapse
Affiliation(s)
- Ruoyun Lin
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Yang Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| | - Tianzhi Yong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Wenxing Cao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Junsheng Wu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Yafei Shen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| |
Collapse
|
40
|
Li Y, Lin R, Lv F, Zhao X, Yong T, Zuo X. Tannic acid-Fe complex derivative-modified electrode with pH regulating function for environmental remediation by electro-Fenton process. ENVIRONMENTAL RESEARCH 2022; 204:111994. [PMID: 34487696 DOI: 10.1016/j.envres.2021.111994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
A heterogeneous electro-Fenton (hetero-EF) system can effectively broaden the applicable pH range, although the decreased electrogeneration efficiency of H2O2 at elevated pH (especially neutral conditions) is unfavorable for the efficient removal of organic pollutants. Herein, a tannic acid-Fe complex derivative-modified carbon felt (TFD@CF) cathode was prepared for hetero-EF treatment of organic pollutants over a wide pH range. Interestingly, the as-prepared hetero-EF cathode could act as a pH regulator that acidified the solution over a wide pH range. As expected, the TFD@CF cathode exhibited excellent hetero-EF activity for the removal of diverse organic pollutants (such as methyl orange, methylene blue, sulfamerazine, bisphenol A and 2,4-dichlorophenoxyacetic acid) at neutral and even alkaline pH (removal efficiency >90 %). A total of 2.98 kWh kg-1 COD-1 with 83.2 % COD removal could be achieved by the TFD@CF cathode for the treatment of actual textile dyeing secondary wastewater. Electrochemical characterizations proved that the TFD@CF cathode had excellent electrochemical properties with improved electron transfer ability and a well-pronounced Fe(III) electroreductive response. Meanwhile, more acidic groups were newly generated during the electrochemical reaction (an increase of 30.1 %), thus dissociating more H+ into solution. The identification of reactive oxygen species suggested that OH and 1O2 could be responsible for the removal of organic pollutants in the TFD@CF EF system. These interesting findings may provide new insights into the design of multifunctional hetero-EF cathodes for the removal of refractory organic pollutants.
Collapse
Affiliation(s)
- Yang Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| | - Ruoyun Lin
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Fangjie Lv
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Xiaoyu Zhao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Tianzhi Yong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Xiaojun Zuo
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| |
Collapse
|
41
|
Dai Y, Yao Y, Li M, Fang X, Shen C, Li F, Liu Y. Carbon nanotube filter functionalized with MIL-101(Fe) for enhanced flow-through electro-Fenton. ENVIRONMENTAL RESEARCH 2022; 204:112117. [PMID: 34571037 DOI: 10.1016/j.envres.2021.112117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Herein, an electrochemical carbon nanotubes (CNT) filter modified with MIL-101(Fe) has been designed for the electro-Fenton applications by serving as a functional flow-through electrode. Under an electric field, the hybrid filter enabled the in situ generation of H2O2via the two-electron oxygen reduction reaction, which promoted the production of HO by the accelerated Fe2+/Fe3+ cycling of MIL-101(Fe). It was observed that 93.2 ± 1.2% tetracycline and 69.0 ± 0.8% total organic carbon (TOC) were removed in 2 h under the optimized conditions. The electron paramagnetic resonance (EPR) analysis and radical scavenging experiments revealed that HO predominated the tetracycline degradation. As compared to the batch reactor, the performance of the proposed system was improved by 5.6 times owing to the convection-enhanced mass transport. The plausible working mechanism and degradation pathway were also subsequently proposed. The findings reported in this study provide a promising insight for the environmental remediation by integrating nanotechnology and Fenton chemistry.
Collapse
Affiliation(s)
- Yuling Dai
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yuan Yao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China.
| | - Mohua Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaofeng Fang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
42
|
Du X, Fu W, Su P, Zhang Q, Zhou M. S-doped MIL-53 as efficient heterogeneous electro-Fenton catalyst for degradation of sulfamethazine at circumneutral pH. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127674. [PMID: 34763926 DOI: 10.1016/j.jhazmat.2021.127674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The reduced S-modified MIL-53(Fe) was prepared by sulfurizing MIL-53(Fe) at low temperature, which was an efficient electro-Fenton catalyst at wide pH range (3-9) for sulfamethazine (SMT) degradation. The best temperature and MIL-53(Fe)/S ratio were 350 °C and 1:2, at which the BET surface area was much enlarged. The MIL-53(Fe) surface was etched by S to many 2D nanosheets with the thickness of ~50 nm, while S2-2 replaced OH- to coordinate with Fe2+ and increased the Fe2+ content, which improved the catalytic performance. Even at initial pH of 7.0, the SMT removal was 95.8%, and the rate constant (k) in the Hetero-EF process was 16-folds of that in the Homo-EF process. The turnover frequency (TOFd) value of MIL-53(Fe)/S(1:2)-350 was 0.48 L g-1 min-1, which was 6.8 times that of commercial FeS2. The S2-2in catalyst adjusted the pH superfast, and promoted the generation of Fe2+ and thus efficiently activating H2O2 to form surface ·OH, which was verified to be the main radical by EPR and radical scavenger experiments. This catalyst showed promising prospect for environmental application and could be regenerated by sulfidation method. S-doped MIL-53(Fe) was an excellent pH regulator, thus promoting promising application in Hetero-EF processes.
Collapse
Affiliation(s)
- Xuedong Du
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenyang Fu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Pei Su
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qizhan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
43
|
Yao Y, Hu H, Yin H, Ma Z, Tao Z, Qiu Y, Wang S. Pyrite-embedded porous carbon nanocatalysts assembled in polyvinylidene difluoride membrane for organic pollutant oxidation. J Colloid Interface Sci 2022; 608:2942-2954. [PMID: 34839917 DOI: 10.1016/j.jcis.2021.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
FeS2-embedded in porous carbon (FeS2/C) was prepared by simultaneous sulfidation and carbonization of an iron-based metal-organic framework precursor, and subsequently immobilized in polyvinylidene fluoride membranes (FeS2/C@PVDF) for organics removal via peroxymonosulfate (PMS) activation. The composition, structure, and morphology of the FeS2/C@PVDF membrane were extensively characterized. Scanning electron microscopy images manifest that the FeS2/C nanoparticles with an average diameter of 40 nm are assembled on the external and internal membrane surface. The as-prepared FeS2/C@PVDF membrane exhibits excellent performances over a wide pH range of 1.53-9.50, exceeding carbon-free syn-FeS2@PVDF. The effective degradation could be improved by inner pyrite FeS2 cores and thus enhanced the electron transfer between carbon shell and PMS. Electron paramagnetic resonance and quenching experiments elucidated that radical (HO∙, SO4∙-) and nonradical (1O2) species were the predominant reactive oxidants. In addition, FeS2/C@PVDF exhibited high stability with low Fe leaching (0.377 mg/L) owing to the effective protection of the outer carbon skeleton. Plentiful porosity of PVDF membranes not only affords a controlled size and confined uniform distribution of the immobilized FeS2/C nanoparticles, but also enables a persistent exposure of active sites and enhanced mass transfer efficiency. Our findings demonstrate a promise for utilizing the novel FeS2/C@PVDF membrane as an efficient catalyst for the environmental cleanup.
Collapse
Affiliation(s)
- Yunjin Yao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China.
| | - Hongwei Hu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Hongyu Yin
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Zhenshan Ma
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Zhongming Tao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Yongjie Qiu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
44
|
Zhang Y, Daniel G, Lanzalaco S, Isse AA, Facchin A, Wang A, Brillas E, Durante C, Sirés I. H 2O 2 production at gas-diffusion cathodes made from agarose-derived carbons with different textural properties for acebutolol degradation in chloride media. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127005. [PMID: 34479080 DOI: 10.1016/j.jhazmat.2021.127005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The excessive cost, unsustainability or complex production of new highly selective electrocatalysts for H2O2 production, especially noble-metal-based ones, is prohibitive in the water treatment sector. To solve this conundrum, biomass-derived carbons with adequate textural properties were synthesized via agarose double-step pyrolysis followed by steam activation. A longer steam treatment enhanced the graphitization and porosity, even surpassing commercial carbon black. Steam treatment for 20 min yielded the greatest surface area (1248 m2 g-1), enhanced the mesopore/micropore volume distribution and increased the activity (E1/2 = 0.609 V) and yield of H2O2 (40%) as determined by RRDE. The upgraded textural properties had very positive impact on the ability of the corresponding gas-diffusion electrodes (GDEs) to accumulate H2O2, reaching Faradaic current efficiencies of ~95% at 30 min. Acidic solutions of β-blocker acebutolol were treated by photoelectro-Fenton (PEF) process in synthetic media with and without chloride. In urban wastewater, total drug disappearance was reached at 60 min with almost 50% mineralization after 360 min at only 10 mA cm-2. Up to 14 degradation products were identified in the Cl--containing medium.
Collapse
Affiliation(s)
- Yanyu Zhang
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Giorgia Daniel
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Sonia Lanzalaco
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Alessandro Facchin
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Aimin Wang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Christian Durante
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy.
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
45
|
Wang Y, Li S, Hou C, Jing L, Ren R, Ma L, Wang X, Wang J. Biomass-based carbon fiber/MOFs composite electrode for electro-Fenton degradation of TBBPA. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Recent advances and trends of heterogeneous electro-Fenton process for wastewater treatment-review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Li X, Wu D, Hua T, Lan X, Han S, Cheng J, Du KS, Hu Y, Chen Y. Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: Opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150096. [PMID: 34798724 DOI: 10.1016/j.scitotenv.2021.150096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 05/24/2023]
Abstract
Advanced oxidation processes (AOPs) have demonstrated an effective wastewater treatment method. But the application of AOPs using nanomaterials as catalysts is challenged with a series of problems, including limited mass transfer, surface fouling, poor stability, and difficult recycling. Recently, metal-organic frameworks (MOFs) with high tunability and ultrahigh porosity are emerging as excellent precursors for the delicate design of the structure/composition of catalysts and many MOF-derived catalysts with distinct physicochemical characteristics have shown optimized performance in various AOPs. Herein, to elucidate the structure-composition-performance relationship, a review on the performance optimization of MOF-derived catalysts to overcome the existing problems in AOPs by micro/macrostructure and multicomponent design is given. Impressively, MOF-derived strategy for the design of catalyst materials from the aspects of microstructure, macrostructure, and multicomponent (polymetallic, heteroatom doping, M/C hybrids, etc.) is firstly presented. Moreover, important advances of MOF-derived catalysts in the application of various AOPs (Fenton, persulfate-based AOPs, photocatalysis, electrochemical processes, hybrid AOPs) are summarized. The relationship between the unique micro/macrostructure and/or multicomponent features and performance optimization in mass transfer, catalytic efficiency, stability, and recyclability is clarified. Furthermore, the challenges and future work directions for the practical application of MOF-derived catalysts in AOPs for wastewater treatment are provided.
Collapse
Affiliation(s)
- Xiaoman Li
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Danhui Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tao Hua
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiuquan Lan
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shuaipeng Han
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Cheng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; South China Institute of Collaborative Innovation, Dongguan 523808, China.
| | - Ke-Si Du
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
48
|
Selihin NM, Tay MG. A review on future wastewater treatment technologies: micro-nanobubbles, hybrid electro-Fenton processes, photocatalytic fuel cells, and microbial fuel cells. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:319-341. [PMID: 35050886 DOI: 10.2166/wst.2021.618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The future prospect in wastewater treatment technologies mostly emphasizes processing efficiency and the economic benefits. Undeniably, the use of advanced oxidation processes in physical and chemical treatments has played a vital role in helping the technologies to remove the organic pollutants efficiently and reduce the energy consumption or even harvesting the electrons movements in the oxidation process to produce electrical energy. In the present paper, we review several types of wastewater treatment technologies, namely micro-nanobubbles, hybrid electro-Fenton processes, photocatalytic fuel cells, and microbial fuel cells. The aims are to explore the interaction of hydroxyl radicals with pollutants using these wastewater technologies, including their removal efficiencies, optimal conditions, reactor setup, and energy generation. Despite these technologies recording high removal efficiency of organic pollutants, the selection of the technologies is dependent on the characteristics of the wastewater and the daily production volume. Hence the review paper also provides comparisons between technologies as the guidance in technology selection.
Collapse
Affiliation(s)
- Nurhafizah Mohd Selihin
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Meng Guan Tay
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia E-mail:
| |
Collapse
|
49
|
Hu T, Tang L, Feng H, Zhang J, Li X, Zuo Y, Lu Z, Tang W. Metal-organic frameworks (MOFs) and their derivatives as emerging catalysts for electro-Fenton process in water purification. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214277] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Yang W, Zhou M, Mai L, Ou H, Oturan N, Oturan MA, Zeng EY. Generation of hydroxyl radicals by metal-free bifunctional electrocatalysts for enhanced organics removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148107. [PMID: 34118668 DOI: 10.1016/j.scitotenv.2021.148107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Low yields of H2O2 and a narrow range of appropriate pH values have been two major drawbacks for electro-Fenton (EF) process. Herein, metal-free electrochemical advanced oxidation processes (EAOPs) were developed with nitrogen and sulfur co-doped electrochemically exfoliated graphene (N, S-EEGr) electrocatalysts, which was confirmed as an outstanding bifunctional catalyst for synchronous generation and activation of H2O2 via (2 + 1) e- consecutive reduction reactions. Specifically, two elements (N, S) in metal-free N, S-EEGr-CF cathode synergize to promote the formation of H2O2 followed by its activation. With N, S-EEGr-CF cathode, phenol of initial 50 mg L-1 could be effectively removed within pH 3-11 and 6.25 mA cm-2, and 100% removal efficiency could be achieved within 15-min even at neutral pH. The pseudo-first-order rate constant for phenol removal in metal-free EAOPs with N,S-EEGr-CF at neutral pH was 10 times higher than that with EF process. Detection of active species, coupled with decay kinetics with specific trapping agents, confirmed that OH was the dominant oxidizing species promoting removal efficiencies of organics (phenol, antibiotics and dyes) at pH 3 and pH 7. In the actual wastewater treatment, the synergistic effect of bifunctional catalyst would also be used for improving the degradation efficiency of organics. Thus, the metal-free EAOPs with N,S-EEGr-CF cathode may serve as an alternative in wastewater treatment with a broadened range of solution pH values and avoiding Fe2+ (catalyst) addition.
Collapse
Affiliation(s)
- Weilu Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Mai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement, EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Mehmet A Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement, EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|