1
|
Kintzi A, Daturpalli S, Battagliarin G, Zumstein M. Biodegradation of Water-Soluble Polymers by Wastewater Microorganisms: Challenging Laboratory Testing Protocols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39134471 PMCID: PMC11360367 DOI: 10.1021/acs.est.4c05808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
For water-soluble polymers (WSPs) that enter environmental systems at their end-of-life, biodegradability is a key functionality. For the development and regulation of biodegradable WSPs, testing methods that are both scientifically validated and economically practicable are needed. Here, we used respirometric laboratory tests to study the biodegradation of poly(amino acids), poly(ethylene glycol), and poly(vinyl alcohol), together with appropriate low-molecular-weight reference substrates. We varied key protocol steps of commonly used testing methods, which were originally established for small molecules and tested for effects on WSP biodegradation. We found that avoiding aeration of the wastewater inoculate prior to WSP addition, incubating WSP with filter-sterilized wastewater prior to biodegradation testing, and lowering the WSP concentration can increase biodegradation rates of WSPs. Combining the above-mentioned protocol variations substantially affected the results of the biodegradation testing for the two poly(amino acids) tested herein (i.e., poly(lysine) and poly(aspartic acid)). Our findings were consistent between microbial inocula derived from two municipal wastewater treatment plants. Our study presents promising biodegradation dynamics for poly(amino acids) and highlights the importance, strengths, and limitations of respirometric laboratory methods for WSP biodegradation testing.
Collapse
Affiliation(s)
- Aaron Kintzi
- Division
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Doctoral
School in Microbiology and Environmental Science, University of Vienna, Vienna 1090, Austria
| | | | | | - Michael Zumstein
- Division
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| |
Collapse
|
2
|
Davenport R, Curtis‐Jackson P, Dalkmann P, Davies J, Fenner K, Hand L, McDonough K, Ott A, Ortega‐Calvo JJ, Parsons JR, Schäffer A, Sweetlove C, Trapp S, Wang N, Redman A. Scientific concepts and methods for moving persistence assessments into the 21st century. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1454-1487. [PMID: 34989108 PMCID: PMC9790601 DOI: 10.1002/ieam.4575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 05/19/2023]
Abstract
The evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;18:1454-1487. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | - Philipp Dalkmann
- Bayer AG, Crop Science Division, Environmental SafetyMonheimGermany
| | | | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of ChemistryUniversity of ZürichZürichSwitzerland
| | - Laurence Hand
- Syngenta, Product Safety, Jealott's Hill International Research CentreBracknellUK
| | | | - Amelie Ott
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)BrusselsBelgium
| | - Jose Julio Ortega‐Calvo
- Instituto de Recursos Naturales y Agrobiología de SevillaConsejo Superior de Investigaciones CientíficasSevillaSpain
| | - John R. Parsons
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Andreas Schäffer
- RWTH Aachen University, Institute for Environmental ResearchAachenGermany
| | - Cyril Sweetlove
- L'Oréal Research & InnovationEnvironmental Research DepartmentAulnay‐sous‐BoisFrance
| | - Stefan Trapp
- Department of Environmental EngineeringTechnical University of DenmarkBygningstorvetLyngbyDenmark
| | - Neil Wang
- Total Marketing & ServicesParis la DéfenseFrance
| | - Aaron Redman
- ExxonMobil Petroleum and ChemicalMachelenBelgium
| |
Collapse
|
3
|
Wennberg AC, Meland S, Grung M, Lillicrap A. Unravelling reasons for variability in the OECD 306 marine biodegradation test. CHEMOSPHERE 2022; 300:134476. [PMID: 35367489 DOI: 10.1016/j.chemosphere.2022.134476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The recommended test for assessing if a chemical can be biodegraded in the marine environment is performed according to the Organisation for Economic Cooperation and Development Marine biodegradation test guideline (OECD 306). However, this test is known to generate highly variable test results when comparing interlaboratory test results for the same compound. One reason can be the relatively low bacterial content compared to the inoculum used for OECD readily biodegradation tests (OECD 301). Some of the variability in data obtained from OECD 306 tests can also be due to the flexibility on how to store the seawater inoculum before starting a test. Another variable in the seawater inoculum is the source of seawater used by different laboratories, i.e., geographical location and anthropogenic activities at the source. In this study, the effect of aging seawater and the source of seawater (sample time and depth) were investigated to determine differences in the biodegradation of the reference compound aniline. Aging the seawater before starting the test is recommended in OECD 306 to reduce the background levels of organic carbon in the water. However, it also functions to acclimatize the bacterial community from the environmental source temperature to the test temperature (normally 20 °C). Herein, the microbial community was monitored using flowcytometer during the aging process. As expected, the microbial community changed over time. In one experiment, aging significantly improved the biodegradation of aniline, while in two experiments, there was no significant difference in biodegradation. Interestingly however, there was significant variability in the biodegradation of aniline between sampling seasons and depths, even when all experiments were performed in the same lab, by the same operator and seawater obtained from the same source. This highlights the need for a more robust and consistent microbial inoculum source to reduce variability in seawater biodegradation tests.
Collapse
Affiliation(s)
| | - Sondre Meland
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Merete Grung
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Adam Lillicrap
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| |
Collapse
|
4
|
Redman AD, Bietz J, Davis JW, Lyon D, Maloney E, Ott A, Otte JC, Palais F, Parsons JR, Wang N. Moving persistence assessments into the 21st century: A role for weight-of-evidence and overall persistence. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:868-887. [PMID: 34730270 PMCID: PMC9299815 DOI: 10.1002/ieam.4548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 05/29/2023]
Abstract
Assessing the persistence of chemicals in the environment is a key element in existing regulatory frameworks to protect human health and ecosystems. Persistence in the environment depends on many fate processes, including abiotic and biotic transformations and physical partitioning, which depend on substances' physicochemical properties and environmental conditions. A main challenge in persistence assessment is that existing frameworks rely on simplistic and reductionist evaluation schemes that may lead substances to be falsely assessed as persistent or the other way around-to be falsely assessed as nonpersistent. Those evaluation schemes typically assess persistence against degradation half-lives determined in single-compartment simulation tests or against degradation levels measured in stringent screening tests. Most of the available test methods, however, do not apply to all types of substances, especially substances that are poorly soluble, complex in composition, highly sorptive, or volatile. In addition, the currently applied half-life criteria are derived mainly from a few legacy persistent organic pollutants, which do not represent the large diversity of substances entering the environment. Persistence assessment would undoubtedly benefit from the development of more flexible and holistic evaluation schemes including new concepts and methods. A weight-of-evidence (WoE) approach incorporating multiple influencing factors is needed to account for chemical fate and transformation in the whole environment so as to assess overall persistence. The present paper's aim is to begin to develop an integrated assessment framework that combines multimedia approaches to organize and interpret data using a clear WoE approach to allow for a more consistent, transparent, and thorough assessment of persistence. Integr Environ Assess Manag 2022;18:868-887. © 2021 ExxonMobil Biomedical Sciences, Inc. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Jens Bietz
- Clariant Produkte (Deutschland) GmbHSulzbachGermany
| | - John W. Davis
- Dow, Inc.MidlandMichiganUSA
- John Davis Consulting, LLCMidlandMichiganUSA
| | | | | | - Amelie Ott
- Newcastle University, School of EngineeringNewcastle upon TyneUK
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)BrusselsBelgium
| | | | - Frédéric Palais
- SOLVAY, HSE PRA‐PS, RICL—Antenne de GenasSaint‐FonsCedexFrance
| | - John R. Parsons
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Neil Wang
- TotalEnergies Marketing & ServicesParis la DéfenseFrance
| |
Collapse
|
5
|
Ott A, Quintela-Baluja M, Zealand AM, O'Donnell G, Haniffah MRM, Graham DW. Improved quantitative microbiome profiling for environmental antibiotic resistance surveillance. ENVIRONMENTAL MICROBIOME 2021; 16:21. [PMID: 34794510 PMCID: PMC8600772 DOI: 10.1186/s40793-021-00391-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Understanding environmental microbiomes and antibiotic resistance (AR) is hindered by over reliance on relative abundance data from next-generation sequencing. Relative data limits our ability to quantify changes in microbiomes and resistomes over space and time because sequencing depth is not considered and makes data less suitable for Quantitative Microbial Risk Assessments (QMRA), critical in quantifying environmental AR exposure and transmission risks. RESULTS Here we combine quantitative microbiome profiling (QMP; parallelization of amplicon sequencing and 16S rRNA qPCR to estimate cell counts) and absolute resistome profiling (based on high-throughput qPCR) to quantify AR along an anthropogenically impacted river. We show QMP overcomes biases caused by relative taxa abundance data and show the benefits of using unified Hill number diversities to describe environmental microbial communities. Our approach overcomes weaknesses in previous methods and shows Hill numbers are better for QMP in diversity characterisation. CONCLUSIONS Methods here can be adapted for any microbiome and resistome research question, but especially providing more quantitative data for QMRA and other environmental applications.
Collapse
Affiliation(s)
- Amelie Ott
- School of Engineering, Newcastle University, Cassie Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Marcos Quintela-Baluja
- School of Engineering, Newcastle University, Cassie Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Andrew M Zealand
- School of Engineering, Newcastle University, Cassie Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Greg O'Donnell
- School of Engineering, Newcastle University, Cassie Building, Newcastle upon Tyne, NE1 7RU, UK
| | | | - David W Graham
- School of Engineering, Newcastle University, Cassie Building, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
6
|
Seller C, Özel Duygan BD, Honti M, Fenner K. Biotransformation of Chemicals at the Water–Sediment Interface─Toward a Robust Simulation Study Setup. ACS ENVIRONMENTAL AU 2021; 1:46-57. [PMID: 37101935 PMCID: PMC10114792 DOI: 10.1021/acsenvironau.1c00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studying aquatic biotransformation of chemicals in laboratory experiments, i.e., OECD 308 and OECD 309 studies, is required by international regulatory frameworks to prevent the release of persistent chemicals into natural water bodies. Here, we aimed to address several previously described shortcomings of OECD 308/309 studies regarding their variable outcomes and questionable environmental relevance by broadly testing and characterizing a modified biotransformation test system in which an aerated water column covers a thin sediment layer. Compared to standard OECD 308/309 studies, the modified system showed little inter-replicate variability, improved observability of biotransformation, and consistency with first-order biotransformation kinetics for the majority of 43 test compounds, including pharmaceuticals, pesticides, and artificial sweeteners. To elucidate the factors underlying the decreased inter-replicate variability compared to OECD 309 outcomes, we used multidimensional flow cytometry data and a machine learning-based cell type assignment pipeline to study cell densities and cell type diversities in the sediment and water compartments. Our here presented data on cell type composition in both water and sediment allows, for the first time, to study the behavior of microbial test communities throughout different biotransformation simulation studies. We found that sediment-associated microbial communities were generally more stable throughout the experiments and exhibited higher cell type diversity than the water column-associated communities. Consistently, our data indicate that aquatic biotransformation of chemicals can be most robustly studied in test systems providing a sufficient amount of sediment-borne biomass. While these findings favor OECD 308-type systems over OECD 309-type systems to study biotransformation at the water-sediment interface, our results suggest that the former should be modified toward lower sediment-water ratios to improve observability and interpretability of biotransformation.
Collapse
Affiliation(s)
- Carolin Seller
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Birge D. Özel Duygan
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Microbiology, CHUV, 1011 Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mark Honti
- MTA-BME Water Research Group, 1111 Budapest, Hungary
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Whale G, Parsons J, van Ginkel K, Davenport R, Vaiopoulou E, Fenner K, Schaeffer A. Improving our understanding of the environmental persistence of chemicals. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:1123-1135. [PMID: 33913596 PMCID: PMC8596663 DOI: 10.1002/ieam.4438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/23/2021] [Accepted: 04/26/2021] [Indexed: 05/04/2023]
Abstract
Significant progress has been made in the scientific understanding of factors that influence the outcome of biodegradation tests used to assess the persistence (P) of chemicals. This needs to be evaluated to assess whether recently acquired knowledge could enhance existing regulations and environmental risk assessments. Biodegradation tests have limitations, which are accentuated for "difficult-to-test" substances, and failure to recognize these can potentially lead to inappropriate conclusions regarding a chemical's environmental persistence. Many of these limitations have been previously recognized and discussed in a series of ECETOC reports and workshops. These were subsequently used to develop a series of research projects designed to address key issues and, where possible, propose methods to mitigate the limitations of current assessments. Here, we report on the output of a Cefic LRI-Concawe Workshop held in Helsinki on September 27, 2018. The objectives of this workshop were to disseminate key findings from recent projects and assess how new scientific knowledge can potentially support and improve assessments under existing regulatory frameworks. The workshop provided a unique opportunity to initiate a process to reexamine the fundamentals of degradation and what current assessment methods can achieve by (1) providing an overview of the key elements and messages coming from recent research initiatives and (2) stimulating discussion regarding how these interrelate and how new findings can be developed to improve persistence assessments. Opportunities to try and improve understanding of factors affecting biodegradation assessments and better understanding of the persistence of chemicals (particularly UVCBs [substances of unknown or variable composition, complex reaction products, or biological materials]) were identified, and the workshop acted as a catalyst for further multistakeholder activities and engagements to take the persistence assessment of chemicals into the 21st century. Integr Environ Assess Manag 2021;17:1123-1135. © 2021 European Petroleum Refiners Association - Concawe Division. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - John Parsons
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | | | | | | | - Kathrin Fenner
- Chemistry DepartmentUniversity of ZürichZürichSwitzerland
| | | |
Collapse
|
8
|
Albright VC, Chai Y. Knowledge Gaps in Polymer Biodegradation Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11476-11488. [PMID: 34374525 DOI: 10.1021/acs.est.1c00994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The environmental fate of polymers has attracted growing attention in the academic, industrial, and regulatory communities as well as in the general public as global production and use of polymers continue to increase. Biodegradable polymers especially have drawn significant interest. Polymer biodegradation literature published over the past decade was reviewed to compare test methods commonly used for evaluating polymer biodegradation, and to identify key areas for improvement. This paper examines key aspects of study design for polymer biodegradation such as physical form of the test material, use of appropriate reference materials, selection of test systems, and advantages and limitations of various analytical methods for determining biodegradation. Those aspects of study design are critical for determining the outcome of polymer biodegradation studies. This paper identifies several knowledge gaps for assessing polymer biodegradation and provides four key recommendations. (1) develop standardized guidelines for each specific environmental matrix (compost, activated sludge, marine environments, etc.) that can used for all polymer types, (2) develop accelerated biodegradation test methods and predictive methods for polymers, (3) develop an integrated analytical approach using multiple simple, and effective analytical methods, and (4) develop new frameworks for assessing the overall persistence of polymers and are accepted by the greater scientific community.
Collapse
Affiliation(s)
- Vurtice C Albright
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, 1803 Building, Midland, Michigan 48674, United States
| | - Yunzhou Chai
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, 1803 Building, Midland, Michigan 48674, United States
| |
Collapse
|