1
|
Huang Z, Liu Y, Jiang H. Structure Characterization and Products Control of Technical Chlorinated Paraffins by Direct Injection Mass Spectrometry With Data Deconvolution and 1H NMR With Chemometrics Tools. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2025; 2025:1180345. [PMID: 40291792 PMCID: PMC12033057 DOI: 10.1155/jamc/1180345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/29/2025] [Indexed: 04/30/2025]
Abstract
The diverse industrial use of chlorinated paraffins (CPs) have led to their environmental dispersion, and special attention has been paid to their ecotoxicology. Among them, short-chain chlorinated paraffins (SCCPs) have been listed as potential persistent organic pollutants (POPs). However, currently, technical CPs produced by manufacturers are usually labeled by their chlorination degree, but such structural label is not enough to reflect CPs' environmental fate and toxicity. Ecotoxicology research suggested that the chain length, chlorination degree and the chlorine distribution pattern are all factors that can determine CPs' environmental fate and toxicity. Herein, we present a cost-effective method for the structure characterization of technical CPs. By using direct injection mass spectrometry with data deconvolution, chain length distribution and homologous distribution in technical CPs mixture can be delineated. By using 1H NMR with chemometrics tools, the chlorine distribution pattern can be elaborated. Combining the abovementioned two analytical strategies, structural information at different levels that related to CPs' environmental fate and toxicities were revealed. This method is expected to be easily applied in both industry and academia, aiming for quality control of technical CPs, by permitting only nontoxic or noncarcinogenic CPs into industrial use.
Collapse
Affiliation(s)
- Zhouman Huang
- College of Innovation and Entrepreneurship, Wuchang University of Technology, Wuhan, Hubei 430223, China
| | - Yan Liu
- Medical and Nursing School, Wuhan Railway Vocational College of Technology, Wuhan, Hubei 430205, China
| | - Haipeng Jiang
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
| |
Collapse
|
2
|
Yin S, Cseresznye A, Schönleben AM, Bosschaerts S, Rajaei F, Dahmardeh Behrooz R, Poma G, Liu X, Covaci A. Cumulative exposure assessment to polychlorinated alkanes (C 8-36) to indoor dust from Iranian kindergartens: Occurrence and health risk. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138305. [PMID: 40253788 DOI: 10.1016/j.jhazmat.2025.138305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/08/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
The environmental and public health concerns associated with chlorinated paraffins (CPs) are significant, given their widespread use, long-lasting persistence, and potential adverse health effects. The objective of this study was to assess the contamination of polychlorinated alkanes (PCAs-C8-36), the major contaminants in the CP technical mixtures, in kindergartens in Tehran, Iran, and to evaluate the cumulative exposure risks through various routes, including ingestion, dermal contact, and inhalation of dust. The results revealed a pervasive contamination with PCAs. The sum of PCAs-C10-20 across all samples was found to be 1370 ng/g dw, with median values of 500 ng/g dw for ∑PCAs-C10-13, 620 ng/g dw for ∑PCAs-C14-17, and 280 ng/g dw for ∑PCAs-C18-20. These levels did not correlate with outdoor environmental factors or indoor characteristics. Dermal contact constituted 64-84 % of total exposure, with toddlers showing higher intake than caretakers. A cumulative exposure assessment was conducted to calculate the hazard quotient (HQ). The highest HQ value was observed for girls in the case of ∑PCAs-C10-13 (6.2 × 10-5), and the HQ for all groups remained well below the risk threshold. Despite the low level of immediate risks, chronic exposure in vulnerable population groups justifies proactive measures. Further investigation of exposure sources and implementation of interventions to reduce potential health risks are recommended, given the ubiquity of CPs in indoor environments. ENVIRONMENTAL IMPLICATIONS: This study highlights significant environmental implications of pervasive polychlorinated alkanes (PCAs-C8-36) contamination in Tehran's kindergartens, highlighting their persistence and potential long-term ecological impacts. Despite cumulative exposure risks (HQs <1) via dust ingestion, dermal contact, and inhalation, the ubiquity of PCAs (∑PCAs-C10-20: 1370 ng/g dw) raises concerns about chronic low-dose exposure in vulnerable toddlers. The lack of correlation between contamination levels and environmental/indoor factors suggests complex, unidentified emission sources. These findings emphasize the need for proactive regulatory measures to mitigate CP releases and prioritize indoor environmental quality, particularly in child-centric settings. Further research is critical to identify exposure pathways and inform policies safeguarding public health against persistent organic pollutants.
Collapse
Affiliation(s)
- Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Adam Cseresznye
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | | | - Stijn Bosschaerts
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Fatemeh Rajaei
- Department of Environmental Sciences, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Reza Dahmardeh Behrooz
- Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, Sistan, Zabol 98615-538, Iran
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Xuanchen Liu
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium.
| |
Collapse
|
3
|
Beloki Ezker I, Yuan B, Bohlin-Nizzetto P, Borgen AR, Wang T. Polychlorinated alkanes in indoor environment: A review of levels, sources, exposure, and health implications for chlorinated paraffin mixtures. CHEMOSPHERE 2024; 365:143326. [PMID: 39306115 DOI: 10.1016/j.chemosphere.2024.143326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
Polychlorinated n-alkanes (PCAs) are the main components of chlorinated paraffins (CPs) mixtures, that have been commonly grouped into short-chain (SCCPs, C10-13), medium-chain (MCCPs, C14-17), and long-chain (LCCPs, C18-30) CPs. PCAs pose a significant risk to human health as they are broadly present in indoor environments and are potentially persistent, bioaccumulative, and toxic. The lack of specific terminology and harmonization in analytical methodologies for PCA analysis complicates direct comparisons between studies. The present work summarizes the different methodologies applied for the analysis of PCAs in indoor dust, air, and organic films. The large variability between the reviewed studies points to the difficulties to assess PCA contamination in these matrices and to mitigate risks associated with indoor exposure. Based on our review of physicochemical properties of PCAs and previously reported sum of measurable S/M/LCCPs levels, the homologue groups PCAs-C10-13 are found to be mostly present in the gas phase, PCAs-C14-17 in particulate matter and organic films, and PCAs-C≥18 in settled dust. However, we emphasized that mapping PCA sources and distribution in the indoors is highly dependent on the individual homologues. To further comprehend indoor PCA distribution, we described the uses of PCA in building materials and household products to apportion important indoor sources of emissions and pathways for human exposure. The greatest risk for indoor PCAs were estimated to arise from dermal absorption and ingestion through contact with dust and CP containing products. In addition, there are several factors affecting indoor PCA levels and exposure in different regions, including legislation, presence of specific products, cleaning routines, and ventilation frequency. This review provides comprehensive analysis of available indoor PCA data, the physicochemical properties, applied analytical methods, possible interior sources, variables affecting the levels, human exposure to PCAs, as well as need for more information, thereby providing perspectives for future research studies.
Collapse
Affiliation(s)
- Idoia Beloki Ezker
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Bo Yuan
- Department of Chemistry, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| | | | | | - Thanh Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden; Department of Thematic Studies - Environmental Change, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
4
|
Mendo Diaz O, Patiny L, Tell A, Hutter J, Knobloch M, Stalder U, Kern S, Bigler L, Heeb N, Bleiner D. A Quasi Real-Time Evaluation of High-Resolution Mass Spectra of Complex Chlorinated Paraffin Mixtures and Their Transformation Products. Anal Chem 2024; 96. [PMID: 39012265 PMCID: PMC11295122 DOI: 10.1021/acs.analchem.4c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Chlorinated paraffins (CPs) are complex mixtures of polychlorinated n-alkanes with multiple carbon- (C-, nC = 9-30) and chlorine homologues (Cl-, nCl = 3-18). The mass spectrometric analysis of CPs is time-consuming and challenging, especially when interferences between CPs, their transformation products, or from the matrix are numerous. These analytical challenges and the lack of appropriate and accessible data evaluation tools are obstacles to their analysis. CP-Hunter is a web-based, open-access data processing platform for the automatic analysis of mass spectra of CPs and their transformation products. Extracts of two consumer plastic materials and sewage sludge were evaluated with CP-Hunter. C- and Cl-homologue distributions were obtained in quasi-real-time and the posterior calculated fingerprints were in agreement with the ones obtained by traditional methods. However, the data extraction and evaluation time were now reduced from several minutes to seconds. The implemented signal deconvolution method, i.e., to resolve mass spectrometric interferences, provides robust results, even when severe matrix effects are present. CP-Hunter facilitates the untargeted analysis of unknown products and the detection and elimination of false positive signals. Finally, data evaluation with CP-Hunter is performed locally without the transfer of data to external servers. The tool is safe, public, and accessible at https://cphunter.cheminfo.org/.
Collapse
Affiliation(s)
- Oscar Mendo Diaz
- Empa
Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland
- UZH, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Luc Patiny
- Zakodium
Sàrl, Route d’Echandens
6b, Lonay1027, Switzerland
| | - Adriana Tell
- Empa
Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland
- Departement
Life Sciences und Facility Management, ZHAW
Zürcher Hochschule für Angewandte Wissenschaften, Einsiedlerstrasse 31, Wadenswil8820, Switzerland
| | - Jules Hutter
- Empa
Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Marco Knobloch
- Suisse
Office fédéral de la sécurité alimentaire
et des affaires vétérinaires, Bern 3003, Switzerland
| | - Urs Stalder
- UZH, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Susanne Kern
- Departement
Life Sciences und Facility Management, ZHAW
Zürcher Hochschule für Angewandte Wissenschaften, Einsiedlerstrasse 31, Wadenswil8820, Switzerland
| | | | - Norbert Heeb
- Empa
Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Davide Bleiner
- Empa
Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland
- UZH, Winterthurerstrasse 190, Zürich 8057, Switzerland
| |
Collapse
|
5
|
Chen C, Li L, Endo S, Jiang S, Wania F. Are We Justified in Modeling Human Exposure to Chlorinated Paraffin Mixtures Using the Average Properties of Congeners and Homologues? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4535-4544. [PMID: 38408178 DOI: 10.1021/acs.est.3c09186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Concern over human exposure to chlorinated paraffin (CP) mixtures keeps increasing. The absence of a comprehensive understanding of how human exposure varies with the physicochemical properties of CP constituents has hindered the ability to determine at what level of aggregation exposure to CPs should be assessed. We answer this question by comparing exposure predicted with either a "complex" method that utilizes isomer-specific properties or "simplified" methods that rely on median properties of congener, homologue, or short-/medium-/long-chain CP groups. Our results demonstrate the wide range of physicochemical properties across CP mixtures and their dependence on molecular structures. Assuming unit emissions in the environment, these variances translate into an extensive disparity in whole-body concentrations predicted for different isomers, spanning ∼11 orders of magnitude. CPs with 13-19 carbons and 6-10 chlorines exhibit the highest human exposure potential, primarily owing to moderate to high hydrophobicity and slow environmental degradation and biotransformation. Far-field exposure is dominant for most CP constituents. Our study underscores that using average properties of congener, homologue, or S/M/LCCP groups yields results that are consistent with those derived from isomer-based modeling, thus offering an efficient and practical framework for future risk assessments and human exposure studies of CPs and other complex chemical mixtures.
Collapse
Affiliation(s)
- Chengkang Chen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Li Li
- School of Public Health, University of Nevada Reno, 1664 N Virginia Street, Reno, Nevada 89557, United States
| | - Satoshi Endo
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba 305-8506, Ibaraki, Japan
| | - Shaoxiang Jiang
- Institute for Global Health and Development, Peking University, Beijing 100871, China
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
6
|
Amoura C, Larvor F, Marchand P, Le Bizec B, Cariou R, Bichon E. Quantification of chlorinated paraffins by chromatography coupled to high-resolution mass spectrometry - Part A: Influence of gas chromatography and ionisation source parameters. CHEMOSPHERE 2024; 352:141400. [PMID: 38340993 DOI: 10.1016/j.chemosphere.2024.141400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The analysis of chlorinated paraffins (CPs) has become a major analytical challenge. GC-ECNI-HRMS coupling is often used to analyse and quantify them. However, the influence of certain GC and ECNI parameters on the responses of polychlorinated n-alkanes (PCAs), the dominant components of CPs, has hardly been studied. In this paper, we investigated not only the influence of GC column characteristics, but also oven, GC inlet and source temperatures for simultaneous analysis of PCAs with chain-length ranging from 10 up to 20 carbon atoms (PCAs-C10-20). Particular attention was paid to the absolute response and PCA homologue group pattern obtained for a CP technical mixture. The optimum conditions for a wide homologue group determination were GC inlet, final gradient and ion source temperatures set at 220-240 °C, 340 °C and 200 °C. At the same time, a higher response was obtained with the Optima 5HT column compared to Optima 1 column, and with a length and film thickness of 12.5 m and 0.25 μm, respectively. The homologue group pattern of the technical mixture studied was significantly modified as a function of the source and GC inlet temperatures, film thickness and composition of the stationary phase. Here we recommend conditions that will improve the overall PCA pattern, in order to better characterise their occurrence in future environmental monitoring and exposure assessment.
Collapse
|
7
|
Amoura C, Larvor F, Marchand P, Bizec BL, Cariou R, Bichon E. Quantification of chlorinated paraffins by chromatography coupled to high-resolution mass spectrometry - Part B: Influence of liquid chromatography separation. CHEMOSPHERE 2024; 352:141401. [PMID: 38346520 DOI: 10.1016/j.chemosphere.2024.141401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
The analysis of chlorinated paraffins (CPs) is today an analytical challenge. Indeed, it is still impractical to describe their real composition in terms of polychlorinated alkanes (PCAs) homologue groups, which dominate technical mixtures. The co-elution of PCA congeners generates interferences due to the competition phenomena which occur during the ionisation process as well as to the dependence of the ionisation sources on the PCA chemistry. Therefore, the aim of this study was to investigate the influence of chromatographic separation, by LC-ESI-HRMS coupling, on the PCA homologue group pattern and, eventually, on their determination in food samples from interlaboratory studies. For this, three different mobile phases and six LC chromatographic columns were studied in order to optimise the analysis of CP mixtures. The first results showed that the use of a MeOH/H2O mobile phase reveals more appropriately the higher chlorinated PCAs. However, using ACN/H2O led to less ion species, with almost exclusively [M + Cl]- adducts, formed using post-column dichloromethane addition. Regarding the choice of the stationary phases, Hypercarb column provided a completely different homologue group pattern from the other chromatographic columns, in relation with the stronger retention of PCAs. Among the other columns, the C30 column better highlighted the short-chain PCAs compared to the C18 column conventionally used. Because the regulations now concern short-chain CPs, the quantification of food samples was then carried out on the C30 column. The optimised LC-ESI-HRMS conditions using C30 column and MeOH/H2O solvent mixture led to a quantification of PCAs in samples from interlaboratory studies with satisfactory accuracy (|Z-score| ≤ 2) and precision (<15%).
Collapse
|
8
|
He C, Thai PK, Bertrand L, Jayarathne A, van Mourik L, Phuc DH, Banks A, Mueller JF, Wang XF. Calibration and Application of PUF Disk Passive Air Samplers To Assess Chlorinated Paraffins in Ambient Air in Australia, China, and Vietnam. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21061-21070. [PMID: 37939218 DOI: 10.1021/acs.est.3c06703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Ambient air samples were collected in Brisbane (Australia), Dalian (China), and Hanoi (Vietnam) during Mar 2013-Feb 2018 using polyurethane foam based passive air samplers. A sampling rate calibration experiment was conducted for chlorinated paraffins (CPs, i.e., short-chain, medium-chain, and long-chain CPs), where the sampling rates were 4.5 ± 0.7, 4.8 ± 0.3, and 4.8 ± 2.1 m3 day-1 for SCCPs, MCCPs, and LCCPs, respectively. The atmospheric concentration of CPs was then calculated and the medians of ∑CPs were 0.079, 1.0, and 0.89 ng m-3 in Brisbane, Dalian, and Hanoi, respectively. The concentration of CPs in Brisbane's air remained at low levels, with no significant differences observed between the city background site and the city center site, indicating limited usage and production of CPs in this city. The highest concentration of MCCPs was detected in Dalian, while the highest concentration of SCCPs was detected in Hanoi. A decrease of SCCP concentration and an increase of MCCPs' were found in Brisbane's air from 2016 to 2018, while increasing trends for both SCCPs and MCCPs were observed in Dalian. These results indicated impacts from different sources of CPs in the investigated cities.
Collapse
Affiliation(s)
- Chang He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Phong K Thai
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Lidwina Bertrand
- CIBICI- CONICET and Universidad Nacional de Córdoba, Facultad Ciencias Químicas, Dpto. Bioquímica Clínica, 5000 Córdoba, Argentina
| | - Ayomi Jayarathne
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Louise van Mourik
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Dam Hoang Phuc
- Hanoi University of Science and Technology, Hanoi 10999, Viet Nam
| | - Andrew Banks
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
- Racing Science Centre, Queensland Racing Integrity Commission, 4010 Brisbane, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Xianyu Fisher Wang
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| |
Collapse
|
9
|
Liao H, Li X, Zhou Y, Wu Y, Cao Y, Yang J, Zhang J. Biomonitoring, exposure routes and risk assessment of chlorinated paraffins in humans: a mini-review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1588-1603. [PMID: 37655634 DOI: 10.1039/d3em00235g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Chlorinated paraffins (CPs), which were conventionally classified into short- (SCCPs), medium- (MCCPs) and long- (LCCPs) chain CPs, have received growing attention due to their wide usage and extensive detection in environmental samples and biota. The number of studies regarding the biomonitoring of CPs in human beings increased rapidly and their health risk gained great concern. This review summarized their occurrence and homologue patterns in human matrices including blood/serum, placenta, cord serum and breast milk. As the production and usage of SCCPs was progressively banned after being listed in Annex A of the Stockholm Convention, the production of MCCPs and LCCPs was stimulated. Accordingly, the ratio of MCCPs/SCCPs in human samples has increased rapidly in the last 5 years. The current understanding of exposure routes and risk assessments of CPs was also reviewed. Oral dietary intake is the most predominant source of daily CP intake, but dust ingestion, inhalation and dermal exposure is also nonnegligible, especially for MCCPs and LCCPs. Furthermore, the reported upper bound of the estimated daily intakes (EDIs) in various risk assessment studies was close to or exceeded the tolerable daily intakes (TDIs). Considering the bioaccumulation and long-lasting exposure of CPs, their health impacts on humans and the ecosystem required continuous monitoring and evaluation.
Collapse
Affiliation(s)
- Hanyu Liao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Xue Li
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yuanyuan Zhou
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yinyin Wu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yifei Cao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jun Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jianyun Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
10
|
Yin S, McGrath TJ, Cseresznye A, Bombeke J, Poma G, Covaci A. Assessment of silicone wristbands for monitoring personal exposure to chlorinated paraffins (C 8-36): A pilot study. ENVIRONMENTAL RESEARCH 2023; 224:115526. [PMID: 36813067 DOI: 10.1016/j.envres.2023.115526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs) are a major environmental concern due to their ubiquitous presence in the environment. Since human exposure to CPs can significantly differ among individuals, it is essential to have an effective tool for monitoring personal exposure to CPs. In this pilot study, silicone wristbands (SWBs) were employed as a personal passive sampler to measure time-weighted average exposure to CPs. Twelve participants were asked to wear a pre-cleaned wristband for a week during the summer of 2022, and three field samplers (FSs) in different micro-environments were also deployed. The samples were then analyzed for CP homologs by LC-Q-TOFMS. In worn SWBs, the median concentrations of quantifiable CP classes were 19 ng/g wb, 110 ng/g wb, and 13 ng/g wb for ∑SCCPs, ∑MCCPs, and ∑LCCPs (C18-20), respectively. For the first time, lipid content is reported in worn SWBs, which could be a potential impact factor in the kinetics of the accumulation process for CPs. Results showed that micro-environments were key contributors to dermal exposure to CPs, while a few outliers suggested other sources of exposure. CP exposure via dermal contact showed an increased contribution and thus poses a nonnegligible potential risk to humans in daily life. Results presented here provide proof of concept of the use of SWBs as a cheap and non-invasive personal sampler in exposure studies.
Collapse
Affiliation(s)
- Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adam Cseresznye
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
11
|
Yuan B, Haug LS, Tay JH, Padilla-Sánchez JA, Papadopoulou E, de Wit CA. Dietary Intake Contributed the Most to Chlorinated Paraffin Body Burden in a Norwegian Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17080-17089. [PMID: 36378808 PMCID: PMC9730849 DOI: 10.1021/acs.est.2c04998] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Determining the major human exposure pathways is a prerequisite for the development of effective management strategies for environmental pollutants such as chlorinated paraffins (CPs). As a first step, the internal and external exposure to CPs were quantified for a well-defined human cohort. CPs in participants' plasma and diet samples were analyzed in the present study, and previous results on paired air, dust, and hand wipe samples were used for the total exposure assessment. Both one compartment pharmacokinetic modeling and forensic fingerprinting indicate that dietary intake contributed the most to body burden of CPs in this cohort, contributing a median of 60-88% of the total daily intakes. The contribution from dust ingestion and dermal exposure was greater for the intake of long-chain CPs (LCCPs) than short-chain CPs (SCCPs), while the contribution from inhalation was greater for the intake of SCCPs than medium-chain CPs (MCCPs) and LCCPs. Significantly higher concentrations of SCCPs and MCCPs were observed in diets containing butter and eggs, respectively (p < 0.05). Additionally, other exposure sources were correlated to plasma levels of CPs, including residence construction parameters such as the construction year (p < 0.05). This human exposure to CPs is not a local case. From a global perspective, there are major knowledge gaps in biomonitoring and exposure data for CPs from regions other than China and European countries.
Collapse
Affiliation(s)
- Bo Yuan
- Department
of Environmental Science, Stockholm University, StockholmSE-10691, Sweden
- ,
| | - Line Småstuen Haug
- Department
for Food Safety, Norwegian Institute of
Public Health, OsloNO-0213, Norway
| | - Joo Hui Tay
- Department
of Environmental Science, Stockholm University, StockholmSE-10691, Sweden
| | | | - Eleni Papadopoulou
- Department
for Food Safety, Norwegian Institute of
Public Health, OsloNO-0213, Norway
| | - Cynthia A. de Wit
- Department
of Environmental Science, Stockholm University, StockholmSE-10691, Sweden
| |
Collapse
|
12
|
Valderhaug S, Liu H, Gorovoy A, Johansen JE, van Mourik L, de Boer J, Gautun OR. Nuclear magnetic resonance as a tool to determine chlorine percentage of chlorinated paraffin mixtures. CHEMOSPHERE 2022; 308:136312. [PMID: 36096309 DOI: 10.1016/j.chemosphere.2022.136312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/13/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
A new simple method for chlorine percentage calculations (method C), from proton nuclear magnetic resonance (1H NMR) spectroscopy, has been established and applied to an industrial chlorinated paraffin (CP) mixture and 13 single-chain CPs of known carbon chain lengths. Two modified methods (method A and B), originating from the work of Sprengel et al., have been utilized on the same single-chain mixtures. All samples were analysed by 1H NMR and two-dimensional heteronuclear quantum coherence (HSQC) for this purpose. All three methods worked well for medium chlorinated (45-55% Cl) single-chain mixtures of known carbon chain lengths. Method A yielded the best result for mixtures of lower chlorine content (<45% Cl), method C gave better estimations for higher chlorine contents (>55% Cl). Compared to Mohr's titration, method A showed a deviation of 0.7-7.8% (3.6% average), method B 4.1-11.3% (7.0% average) and method C 0.6-11.6% (5.2% average), for all 13 single-chain mixtures. The new method C is the only method that could be applied for determining the chlorine percentage of industrial mixtures of multiple, unknown chain lengths.
Collapse
Affiliation(s)
- Solveig Valderhaug
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway; Chiron AS, Stiklestadveien 1, NO-7041, Trondheim, Norway
| | - Huiling Liu
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway; Chiron AS, Stiklestadveien 1, NO-7041, Trondheim, Norway
| | - Alexey Gorovoy
- Chiron AS, Stiklestadveien 1, NO-7041, Trondheim, Norway
| | | | - Louise van Mourik
- Department of Environment and Health (E&H), Faculty of Sciences, Vrije Universiteit, De Boelelaan, 1108, 1081, HV Amsterdam, Netherlands
| | - Jacob de Boer
- Department of Environment and Health (E&H), Faculty of Sciences, Vrije Universiteit, De Boelelaan, 1108, 1081, HV Amsterdam, Netherlands
| | - Odd Reidar Gautun
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway.
| |
Collapse
|
13
|
Lai A, Clark AM, Escher BI, Fernandez M, McEwen LR, Tian Z, Wang Z, Schymanski EL. The Next Frontier of Environmental Unknowns: Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials (UVCBs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7448-7466. [PMID: 35533312 PMCID: PMC9228065 DOI: 10.1021/acs.est.2c00321] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) are over 70 000 "complex" chemical mixtures produced and used at significant levels worldwide. Due to their unknown or variable composition, applying chemical assessments originally developed for individual compounds to UVCBs is challenging, which impedes sound management of these substances. Across the analytical sciences, toxicology, cheminformatics, and regulatory practice, new approaches addressing specific aspects of UVCB assessment are being developed, albeit in a fragmented manner. This review attempts to convey the "big picture" of the state of the art in dealing with UVCBs by holistically examining UVCB characterization and chemical identity representation, as well as hazard, exposure, and risk assessment. Overall, information gaps on chemical identities underpin the fundamental challenges concerning UVCBs, and better reporting and substance characterization efforts are needed to support subsequent chemical assessments. To this end, an information level scheme for improved UVCB data collection and management within databases is proposed. The development of UVCB testing shows early progress, in line with three main methods: whole substance, known constituents, and fraction profiling. For toxicity assessment, one option is a whole-mixture testing approach. If the identities of (many) constituents are known, grouping, read across, and mixture toxicity modeling represent complementary approaches to overcome data gaps in toxicity assessment. This review highlights continued needs for concerted efforts from all stakeholders to ensure proper assessment and sound management of UVCBs.
Collapse
Affiliation(s)
- Adelene Lai
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
- Institute
for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743 Jena, Germany
| | - Alex M. Clark
- Collaborative
Drug Discovery Inc., 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | - Beate I. Escher
- Helmholtz
Centre for Environmental Research GmbH—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Marc Fernandez
- Environment
and Climate Change Canada, 401 Burrard Street, Vancouver, British Columbia V6C 3R2, Canada
| | - Leah R. McEwen
- Cornell
University, Ithaca, New York 14850, United States
- International
Union of Pure and Applied Chemistry, Research Triangle Park, North Carolina 27709, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Department of Marine and Environmental
Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhanyun Wang
- Empa—Swiss
Federal Laboratories for Materials Science and Technology, Technology
and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|
14
|
Fernandes AR, Falandysz J, Yuan B. Widening knowledge horizons on legacy POPs: Chlorinated paraffins and polychlorinated naphthalenes. CHEMOSPHERE 2022; 289:133131. [PMID: 34863731 DOI: 10.1016/j.chemosphere.2021.133131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Jerzy Falandysz
- Medical University of Lodz, Department of Toxicology, 1 Muszyńskiego Street, 90-151, Lódź, Poland.
| | - Bo Yuan
- Department of Environmental Science, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
15
|
Vetter W, Sprengel J, Krätschmer K. Chlorinated paraffins - A historical consideration including remarks on their complexity. CHEMOSPHERE 2022; 287:132032. [PMID: 34523451 DOI: 10.1016/j.chemosphere.2021.132032] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Chlorinated paraffins (CPs) are high production volume chemicals currently produced and used in higher quantities than any other medium-size polyhalogenated compound (class). In addition, the composition of industrial CP mixtures is highly complex and poorly understood. In this article, we searched in the literature for the beginning of the chlorination of alkanes and how this substance class developed from niche applications to unmatched quantities in various industrial applications. Also, an estimation was made on the theoretical variety of chloroparaffins and the possible complexity of industrial CP mixtures. These data may explain why little is known about CPs although the production volume throughout the industrial generation was virtually always higher than the one of PCBs and has continued to increase after the ban of the latter.
Collapse
Affiliation(s)
- Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, 70599, Stuttgart, Germany.
| | - Jannik Sprengel
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, 70599, Stuttgart, Germany
| | - Kerstin Krätschmer
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, 70599, Stuttgart, Germany; European Union Reference Laboratory (EURL) for halogenated POPs in Feed and Food, Bissierstraße 5, 79114, Freiburg, Germany
| |
Collapse
|
16
|
Fernandes AR, Vetter W, Dirks C, van Mourik L, Cariou R, Sprengel J, Heeb N, Lentjes A, Krätschmer K. Determination of chlorinated paraffins (CPs): Analytical conundrums and the pressing need for reliable and relevant standards. CHEMOSPHERE 2022; 286:131878. [PMID: 34416588 DOI: 10.1016/j.chemosphere.2021.131878] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The determination of chlorinated paraffins (CPs) has posed an intractable challenge in analytical chemistry for over three decades. The combination of an as yet unspecifiable number (tens - hundreds of thousands) of individual congeners in mass produced commercial CP mixtures and the steric interactions between them, contrive to defy efforts to characterise their residual occurrences in environmental compartments, food and human tissues. However, recent advances in instrumentation (mass spectrometric detectors and nuclear magnetic resonance), combined with interlaboratory studies, have allowed a better insight into the nature of the conundrums. These include the variability of results, even between experienced laboratories when there is insufficient matching between analytical standards and occurrence profiles, the poor (or no) response of some instrumentation to some CP congener configurations (multiple terminal chlorines or < four chlorines) and the occurrence of chlorinated olefins in commercial mixtures. The findings illustrate some limitations in the existing set of commercially available standards. These include cross-contamination of some standards (complex CP mixtures), an insufficient number of single chain standards (existing ones do not fully reflect food/biota occurrences), lack of homologue group standards and unsuitability of some configurationally defined CP congeners/labelled standards (poor instrument response and a smaller likelihood of occurrence in commercial mixtures). They also indicate an underestimation in reported occurrences arising from those CPs that are unresponsive during measurement. A more extensive set of standards is suggested and while this might not be a panacea for accurate CP determination, it would reduce the layers of complexity inherent in the analysis.
Collapse
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Walter Vetter
- Institute of Food Chemistry, (170b), University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Caroline Dirks
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Louise van Mourik
- Department of Environment and Health, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1087, 1081 HV, Amsterdam, the Netherlands
| | | | - Jannik Sprengel
- Institute of Food Chemistry, (170b), University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Norbert Heeb
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Anouk Lentjes
- Department of Environment and Health, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1087, 1081 HV, Amsterdam, the Netherlands
| | - Kerstin Krätschmer
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Bissierstraße 5, 79114, Freiburg, Germany
| |
Collapse
|
17
|
Sprengel J, Krätschmer K, Vetter W. A new synthesis approach for the generation of single chain CP mixtures composed of a few major compounds. CHEMOSPHERE 2022; 287:132372. [PMID: 34592207 DOI: 10.1016/j.chemosphere.2021.132372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Chlorinated paraffins (CPs) are complex mixtures, which consist of thousands of individual compounds with no dominant representative. Consequently, knowledge on structure and environmental relevance of individual CP congeners is poor. Similarly to the synthesis of individual CPs, the generation of less complex CP mixtures that can be thoroughly analyzed may be used to overcome some drawbacks of the highly complex technical CP mixtures. Here, we present a new synthesis approach to generate such simple CP mixtures by decarboxylation of polyunsaturated fatty acids followed by saturation of the double bonds by chlorination. Specifically, α-linolenic acid (18:3Δ9,12,15) was decarboxylated to heptadecatriene. The resulting raw product was chlorinated with SO2Cl2. Purification by column chromatography led to a main fraction consisting of four major peaks originating from hexachloroheptadecane (C17H30Cl6) isomers (∼80% of the total peak area) along with ∼20 low abundant by-products, according to gas chromatography with electron capture negative ion mass spectrometry. In the same way, decarboxylation and subsequent chlorination of other polyunsaturated fatty acids may lead to further simple CP mixtures with other chain lengths. Although these simple CP mixtures cannot fully reflect the various structural features present in technical mixtures they could be beneficial for transformation studies because changes in the CP pattern can easily be noted which is in contrast to technical CP mixtures. Such simple CP mixtures could also be used in toxicity tests which are difficult to perform with technical CP mixtures because of their high complexity.
Collapse
Affiliation(s)
- Jannik Sprengel
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599, Stuttgart, Germany
| | - Kerstin Krätschmer
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599, Stuttgart, Germany; European Union Reference Laboratory for halogenated POPs in Feed and Food (EURL POPs), Bissierstraße 5, D-79114, Freiburg, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599, Stuttgart, Germany.
| |
Collapse
|
18
|
Li X, Chevez T, De Silva AO, Muir DCG, Kleywegt S, Simpson A, Simpson MJ, Jobst KJ. Which of the (Mixed) Halogenated n-Alkanes Are Likely To Be Persistent Organic Pollutants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15912-15920. [PMID: 34802231 DOI: 10.1021/acs.est.1c05465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Short-chain polychlorinated n-alkanes are ubiquitous industrial chemicals widely recognized as persistent organic pollutants. They represent only a small fraction of the 184,600 elemental compositions (C10-25) and the myriad isomers of all possible (mixed) halogenated n-alkanes (PXAs). This study prioritizes the PXAs on the basis of their potential to persist, bioaccumulate, and undergo long-range transport guided by quantitative structure-property relationships (QSPRs), density functional theory (DFT), chemical fate models, and partitioning space. The QSPR results narrow the list to 966 elemental compositions, of which 352 (23 Br, 83 Cl/F, 119 Br/Cl, and 127 Br/F) are likely constituents of substances used as lubricants, plasticizers, and flame retardants. Complementary DFT calculations suggest that an additional 1367 elemental compositions characterized by a greater number of carbon and fluorine atoms but fewer chlorine and bromine atoms may also pose a risk. The results of this study underline the urgent need to identify and monitor these suspected pollutants, most appropriately using mass spectrometry. We estimate that the resolving power required to distinguish ∼74% of the prioritized elemental compositions from the most likely interferents, i.e., chlorinated alkanes, is approximately 60,000 (full width at half-maximum). This indicates that accurate identification of the PXAs is achievable using most high-resolution mass spectrometers.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Tannia Chevez
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Amila O De Silva
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
- Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Derek C G Muir
- Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Andre Simpson
- Departments of Chemistry and Physical & Environmental Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Myrna J Simpson
- Departments of Chemistry and Physical & Environmental Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| |
Collapse
|
19
|
Endo S. Refinement and extension of COSMO-RS-trained fragment contribution models for predicting the partition properties of C 10-20 chlorinated paraffin congeners. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:831-843. [PMID: 34019049 DOI: 10.1039/d1em00123j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
COSMO-RS-trained fragment contribution models (FCMs) to predict the partition properties of chlorinated paraffin (CP) congeners were refined and extended. The improvement includes (i) the use of an improved conformer generation method for COSMO-RS, (ii) extension of training and validation sets for FCMs up to C20 congeners covering short-chain (SCCPs), medium-chain (MCCPs) and long-chain CPs (LCCPs), and (iii) more realistic simulation of industrial CP mixture compositions by using a stochastic algorithm. Extension of the training set markedly improved the accuracy of model predictions for MCCPs and LCCPs, as compared to the previous study. The predicted values of the log octanol/water partition coefficients (Kow) for CP mixtures agreed well with experimentally determined values from the literature. Using the established FCMs, this study provided a set of quantum chemically based predictions for 193 congener groups (C10-20 and Cl0-21) regarding Kow, air/water (Kaw), and octanol/air (Koa) partition coefficients, subcooled liquid vapor pressure (VP) and aqueous solubility (Sw) in a temperature range of 5-45 °C as well as the respective enthalpy and internal energy changes.
Collapse
Affiliation(s)
- Satoshi Endo
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan.
| |
Collapse
|
20
|
van Mourik LM, Janssen E, Breeuwer R, Jonker W, Koekkoek J, Arrahman A, Kool J, Leonards PEG. Combining High-Resolution Gas Chromatographic Continuous Fraction Collection with Nuclear Magnetic Resonance Spectroscopy: Possibilities of Analyzing a Whole GC Chromatogram. Anal Chem 2021; 93:6158-6168. [PMID: 33832223 PMCID: PMC8153385 DOI: 10.1021/acs.analchem.1c00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
This study presents, for the first time, the successful
application
of analyzing a whole gas chromatography (GC) chromatogram by nuclear
magnetic resonance (NMR) spectroscopy using a continuous repeatable
and stable (n = 280) high-resolution (HR) GC fractionation
platform with a 96-well plate. Typically with GC– or liquid
chromatography–mass spectrometry analysis, (isomer) standards
and/or additional NMR analysis are needed to confirm the identification
and/or structure of the analyte of interest. In the case of complex
substances (e.g., UVCBs), isomer standards are often unavailable and
NMR spectra too complex to achieve this. This proof of concept study
shows that a HR GC fractionation collection platform was successfully
applied to separate, purify, and enrich isomers in complex substances
from a whole GC chromatogram, which would facilitate NMR analysis.
As a model substance, a chlorinated paraffin (CP) mixture (>8,000
isomers) was chosen. NMR spectra were obtained from all 96 collected
fractions, which provides important information for unravelling their
full structure. As a proof of concept, a spectral interpretation of
a few NMR spectra was made to assign sub-structures. More research
is ongoing for the full characterization of CP isomers using multivariate
statistical analysis. For the first time, up to only a few CP isomers
per fraction were isolated from a highly complex mixture. These may
be further purified and certified as standards, which are urgently
needed, and can also be used for persistency, bioaccumulation, or
toxicity studies.
Collapse
Affiliation(s)
- Louise M van Mourik
- Department of Environment and Health (E&H), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| | - Elwin Janssen
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| | - Robin Breeuwer
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| | - Willem Jonker
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| | - Jacco Koekkoek
- Department of Environment and Health (E&H), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| | - Arif Arrahman
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| | - Jeroen Kool
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| | - Pim E G Leonards
- Department of Environment and Health (E&H), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
21
|
Hammer J, Matsukami H, Endo S. Congener-specific partition properties of chlorinated paraffins evaluated with COSMOtherm and gas chromatographic retention indices. Sci Rep 2021; 11:4426. [PMID: 33627839 PMCID: PMC7904792 DOI: 10.1038/s41598-021-84040-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/04/2021] [Indexed: 11/09/2022] Open
Abstract
Chlorinated Paraffins (CPs) are high volume production chemicals and have been found in various organisms including humans and in environmental samples from remote regions. It is thus of great importance to understand the physical-chemical properties of CPs. In this study, gas chromatographic (GC) retention indexes (RIs) of 25 CP congeners were measured on various polar and nonpolar columns to investigate the relationships between the molecular structure and the partition properties. Retention measurements show that analytical standards of individual CPs often contain several stereoisomers. RI values show that chlorination pattern have a large influence on the polarity of CPs. Single Cl substitutions (-CHCl-, -CH2Cl) generally increase polarity of CPs. However, many consecutive -CHCl- units (e.g., 1,2,3,4,5,6-C11Cl6) increase polarity less than expected from the total number of -CHCl- units. Polyparameter linear free energy relationship descriptors show that polarity difference between CP congeners can be explained by the H-bond donating properties of CPs. RI values of CP congeners were predicted using the quantum chemically based prediction tool COSMOthermX. Predicted RI values correlate well with the experimental data (R2, 0.975-0.995), indicating that COSMOthermX can be used to accurately predict the retention of CP congeners on GC columns.
Collapse
Affiliation(s)
- Jort Hammer
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Hidenori Matsukami
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Satoshi Endo
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
22
|
Endo S, Hammer J. Predicting Partition Coefficients of Short-Chain Chlorinated Paraffin Congeners by COSMO-RS-Trained Fragment Contribution Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15162-15169. [PMID: 33207873 DOI: 10.1021/acs.est.0c06506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chlorinated paraffins (CPs) are highly complex mixtures of polychlorinated n-alkanes with differing chain lengths and chlorination patterns. Knowledge on physicochemical properties of individual congeners is limited but needed to understand their environmental fate and potential risks. This work used a sophisticated but time-demanding quantum chemically based method COSMO-RS and a fast-running fragment contribution approach to enable prediction of partition coefficients for a large number of short-chain chlorinated paraffin (SCCP) congeners. Fragment contribution models (FCMs) were developed using molecular fragments with a length of up to C4 in CP molecules as explanatory variables and COSMO-RS-calculated partition coefficients as training data. The resulting FCMs could quickly provide COSMO-RS predictions for octanol-water (Kow), air-water (Kaw), and octanol-air (Koa) partition coefficients of SCCP congeners with an accuracy of 0.1-0.3 log units root-mean-squared errors. The FCM predictions for Kow agreed with experimental values for individual constitutional isomers within 1 log unit. The distribution of partition coefficients for each SCCP congener group was computed, which successfully reproduced experimental log Kow ranges of industrial CP mixtures. As an application of the developed FCMs, the predicted Kaw and Koa were plotted to evaluate the bioaccumulation potential of each SCCP congener group.
Collapse
Affiliation(s)
- Satoshi Endo
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Jort Hammer
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| |
Collapse
|