1
|
Pinky SK, Kwansa AL, Zhang B, Stiff-Roberts AD, Yingling YG. Effect of solvent on the emulsion and morphology of polyfluorene films: all-atom molecular dynamics approach. SOFT MATTER 2023; 19:1782-1790. [PMID: 36779927 DOI: 10.1039/d2sm01001a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The morphology of conjugated polymer thin films deposited by the resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) process is related to the emulsion characteristics. However, a fundamental understanding of how and why the emulsion characteristics control the film properties and device performance is yet unclear. We performed all-atom molecular dynamics simulations of emulsions containing a mixture of polyfluorene (PFO) polymer, various primary solvents, secondary solvent, and water. The emulsion properties were then examined as a function of variable primary solvent and correlated with the morphology of deposited PFO thin films. The examination of the explicit interactions between all components of the emulsion indicated that using a primary solvent with a lower solubility-in-water and a higher non-bonded interaction energy ratio, between the solvent, polymer, and water in the emulsion recipe, produced the best result with smoother and denser films. Additionally, our simulation results are consistent with the AFM experimental results, indicating that interactions driven by trichlorobenzene (TCB) primary solvent within the emulsion are responsible for high-quality, smooth, and continuous thin film surfaces. Overall, this study can support the choice of a suitable primary solvent and provides the computational framework for predictions of new recipes for polymeric emulsion systems.
Collapse
Affiliation(s)
- Sabila K Pinky
- Department of Materials Science and Engineering, North Carolina State university, Raleigh, NC, 27606, USA.
| | - Albert L Kwansa
- Department of Materials Science and Engineering, North Carolina State university, Raleigh, NC, 27606, USA.
| | - Buang Zhang
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA
| | - Adrienne D Stiff-Roberts
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA
- University Program in Materials Science and Engineering, Duke University, Durham, NC, 27708, USA
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State university, Raleigh, NC, 27606, USA.
| |
Collapse
|
2
|
Yao S, Li W, Wu Y, Martin GJO, Ashokkumar M. The Impact of High-Intensity Ultrasound-Assisted Extraction on the Structural and Functional Properties of Hempseed Protein Isolate (HPI). Foods 2023; 12:348. [PMID: 36673438 PMCID: PMC9858475 DOI: 10.3390/foods12020348] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Hempseed protein has become a promising candidate as a future alternative protein source due to its high nutritional value. In the current study, hempseed protein isolate (HPI) was obtained using ultrasonic-assisted extraction with the aim to improve the functionality of HPI via protein structure modification. The solubility of HPI could be improved twofold under 20 kHz ultrasound processing compared to conventional alkaline extraction-isoelectric point precipitation. The protein solubility was gradually enhanced as the ultrasonic power improved, whereas excessive ultrasound intensity would cause a decline in protein solubility. Ultrasonic processing was found to have beneficial effects on the other functionalities of the extracted HPI, such as emulsifying and foaming properties. This improvement can be ascribed to the physical effects of acoustic cavitation that changed the secondary and tertiary structures of the protein to enhance surface hydrophobicity and decrease the particle size of the extracted protein aggregates. In addition, more available thiols were observed in US-treated samples, which could be another reason for improved functionality. However, the results of this study also revealed that prolonged high-power ultrasound exposure may eventually have a detrimental impact on HPI functional properties due to protein aggregation. Overall, this study suggests that high intensity ultrasound can enhance the functionality of HPI, which may ultimately improve its value in HPI-based food products.
Collapse
Affiliation(s)
- Shunyu Yao
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Wu Li
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Gregory J. O. Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Muthupandian Ashokkumar
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Perrin L, Desobry-Banon S, Gillet G, Desobry S. Review of High-Frequency Ultrasounds Emulsification Methods and Oil/Water Interfacial Organization in Absence of any Kind of Stabilizer. Foods 2022; 11:2194. [PMID: 35892779 PMCID: PMC9331899 DOI: 10.3390/foods11152194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Emulsions are multiphasic systems composed of at least two immiscible phases. Emulsion formulation can be made by numerous processes such as low-frequency ultrasounds, high-pressure homogenization, microfluidization, as well as membrane emulsification. These processes often need emulsifiers' presence to help formulate emulsions and to stabilize them over time. However, certain emulsifiers, especially chemical stabilizers, are less and less desired in products because of their negative environment and health impacts. Thus, to avoid them, promising processes using high-frequency ultrasounds were developed to formulate and stabilize emulsifier-free emulsions. High-frequency ultrasounds are ultrasounds having frequency greater than 100 kHz. Until now, emulsifier-free emulsions' stability is not fully understood. Some authors suppose that stability is obtained through hydroxide ions' organization at the hydrophobic/water interfaces, which have been mainly demonstrated by macroscopic studies. Whereas other authors, using microscopic studies, or simulation studies, suppose that the hydrophobic/water interfaces would be rather stabilized thanks to hydronium ions. These theories are discussed in this review.
Collapse
Affiliation(s)
- Louise Perrin
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
- SAS GENIALIS, Route d’Achères, 18250 Henrichemont, France;
| | - Sylvie Desobry-Banon
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
| | | | - Stephane Desobry
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
| |
Collapse
|
4
|
Alboul L, Lishchuk SV. Bulk viscosity of gaseous argon from molecular dynamics simulations. Phys Rev E 2022; 105:054135. [PMID: 35706273 DOI: 10.1103/physreve.105.054135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The bulk viscosity of dilute argon gas is calculated using molecular dynamics simulations in the temperature range 150-500 K and is found to be proportional to density squared in the investigated range of densities 0.001-1 kg m^{-3}. A comparison of the results obtained using Lennard-Jones and Tang-Toennies models of pair interaction potential reveals that the value of the bulk viscosity coefficient is sensitive to the choice of the pair interaction model. The inclusion of the Axilrod-Teller-Muto three-body interaction in the model does not noticeably affect the values of the bulk viscosity in dilute states, contrary to the previously investigated case of dense fluids.
Collapse
Affiliation(s)
- Lyuba Alboul
- Industry & Innovation Research Institute, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Sergey V Lishchuk
- Thermodynamics and Process Engineering, Technische Universität Berlin, 10587 Berlin, Germany
| |
Collapse
|
5
|
An experimental study on low-content crude oil in water emulsion using low-frequency ultrasonic waves. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-021-00215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Singla M, Sit N. Application of ultrasound in combination with other technologies in food processing: A review. ULTRASONICS SONOCHEMISTRY 2021; 73:105506. [PMID: 33714087 PMCID: PMC7960546 DOI: 10.1016/j.ultsonch.2021.105506] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 05/06/2023]
Abstract
The use of non-thermal processing technologies has been on the surge due to ever increasing demand for highest quality convenient foods containing the natural taste & flavor and being free of chemical additives and preservatives. Among the various non-thermal processing methods, ultrasound technology has proven to be very valuable. Ultrasound processing, being used alone or in combination with other processing methods, yields significant positive results on the quality of foods, thus has been considered efficacious. Food processes performed under the action of ultrasound are believed to be affected in part by cavitation phenomenon and mass transfer enhancement. It is considered to be an emerging and promising technology and has been applied efficiently in food processing industry for several processes such as freezing, filtration, drying, separation, emulsion, sterilization, and extraction. Various researches have opined that ultrasound leads to an increase in the performance of the process and improves the quality factors of the food. The present paper will discuss the mechanical, chemical and biochemical effects produced by the propagation of high intensity ultrasonic waves through the medium. This review outlines the current knowledge about application of ultrasound in food technology including processing, preservation and extraction. In addition, the several advantages of ultrasound processing, which when combined with other different technologies (such as microwave, supercritical CO2, high pressure processing, enzymatic extraction, etc.) are being examined. These include an array of effects such as effective mixing, retention of food characteristics, faster energy and mass transfer, reduced thermal and concentration gradients, effective extraction, increased production, and efficient alternative to conventional techniques. Furthermore, the paper presents the necessary theoretical background and details of the technology, technique, and safety precautions about ultrasound.
Collapse
Affiliation(s)
- Mohit Singla
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
7
|
Sadatshojaie A, Wood DA, Jokar SM, Rahimpour MR. Applying ultrasonic fields to separate water contained in medium-gravity crude oil emulsions and determining crude oil adhesion coefficients. ULTRASONICS SONOCHEMISTRY 2021; 70:105303. [PMID: 32781426 PMCID: PMC7786624 DOI: 10.1016/j.ultsonch.2020.105303] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 05/03/2023]
Abstract
Separating produced water is a key part of production processing for most crude oils. It is required for quality reasons, and to avoid unnecessary transportation costs and prevent pipework corrosion rates caused by soluble salts present in the water. A complicating factor is that water is often present in crude oil in the form of emulsions. Experiments were performed to evaluate the performance of ultrasonic fields in demulsifying crude oil emulsions using novel pipe-form equipment. A horn-type piezoelectric ultrasonic transducer with a frequency of 20 kHz and power ranging from 80 W to 1000 W was used for experimental purposes. The influences of the intensity of ultrasonic fields, ultrasonic irradiation time, and the initial water content of crude oils were evaluated to establish the rate of water segregation from oil. The experiments applied ultrasonic-field intensities of 0.25 W/cm3, 0.5 W/cm3, 0.75 W/cm3 and 1 W/cm3 to synthetic emulsions with 10%, 15%, 20%, and 25% of the water in crude oil. Crude oil demulsification occurred for each ultrasonic field intensity tested for all the samples tested. Function β involving adhesion coefficients was expressed in terms of wave-field intensity and initial concentration of water in each of the three crude oil samples tested. The experiments demonstrated that despite the absence of any chemical demulsifier involved, water separation caused by applying ultrasonic fields was effective and occurred rapidly. As the intensity of the ultrasonic field applied increased, the amount of water segregated from crude oil also increased. Subjected to constant field intensity, higher initial water cuts (up to 15% or so) in the crude oil samples and higher ultrasonic irradiation times, resulted in greater segregation of water from crude oil in percentage terms. However, in samples with initial water cuts of 20+% long irradiation times (~5 min), resulted in a decline in water separation compared to 2-min tests. Ultrasonic field treatments offer commercially-viable and environmentally-friendly alternatives to treatments using chemical demulsifiers as they reduce desalination requirements of wastewater.
Collapse
Affiliation(s)
- Ali Sadatshojaie
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
| | | | - Seyyed Mohammad Jokar
- Department of Chemical, Petroleum and Gas Engineering, Shiraz University of Technology, Shiraz, Iran.
| | | |
Collapse
|
8
|
Kullappan M, Chaudhury MK. Thermodynamic and Kinetic Pathways to Agitated and Spontaneous Emulsification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10218-10237. [PMID: 32787033 DOI: 10.1021/acs.langmuir.0c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Emulsification of an oil (dodecane and diesel fuel) in salinized water was studied under turbulent and agitation-free conditions in the presence of a mixture of an ionic and a nonionic surfactant. The properties of the air-water and the oil-water interfaces were investigated using the methods of du-Nouy ring, drop resonance vibrometry, and Langmuir film balance that allowed pinpointing the relevance of certain interfacial properties in emulsification. Estimation of the droplet size and its distribution from the nanometer-to-micrometer range was carried out with optical microscopy, acoustic attenuation spectroscopy, and continuous hydrodynamic flow fractionation. These measurements provided the platform for the comparison of the emulsion droplet size with those predicted from the fluctuation of the dynamic stress in the turbulent water via a capillary hydrodynamic model. While such a comparison was reasonably meaningful for micron size emulsion droplets, production of nanometer size droplets was beyond such a rudimentary expectation. We thus carried out systematic investigations into other factors that contribute to emulsification under both agitated and agitation-free conditions. An important finding of these studies is that the infusion of air bubbles that profoundly enhance the hydrodynamic fluctuation produces mainly submicroscopic emulsion droplets, while a fluctuation inhibiting water-soluble polymer has the opposite effect. Furthermore, while a hydrophilic polymer dissolved in water enhances the ripening of the droplets with time, hydrophobic polymer in oil thwarts aging, plausibly by osmotic backpressure and interfacial stiffening, which, upon compression, acts against surface tension, thereby decreasing the chemical potential of the trapped oil molecules inside the droplet. These effects are similarly observed in spontaneous emulsifications, that is, when a layer of oil containing the additives is deposited upon the surface of the aqueous phase in the absence of any external work input.
Collapse
Affiliation(s)
- Monicka Kullappan
- Department of Chemical and Biomolecular Engineering and Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Manoj K Chaudhury
- Department of Chemical and Biomolecular Engineering and Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
9
|
Ronchi RP, Negris L, Melo BN, Pereira LSF, Vicente MA, Flores EMM, Santos MDFP. Removal of oil from synthetic heavy crude oil-in-water emulsions by the association of glass raschig rings and ultrasound. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1813155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Renata Peterle Ronchi
- LaPAQui Laboratory, Department of Natural Science, Federal University of Espirito Santo, São Mateus, ES, Brazil
| | - Luana Negris
- LaPAQui Laboratory, Department of Natural Science, Federal University of Espirito Santo, São Mateus, ES, Brazil
| | - Breno Nonato Melo
- LaPAQui Laboratory, Department of Natural Science, Federal University of Espirito Santo, São Mateus, ES, Brazil
| | | | - Maristela A. Vicente
- LaPAQui Laboratory, Department of Natural Science, Federal University of Espirito Santo, São Mateus, ES, Brazil
| | - Erico M. M. Flores
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|