1
|
Wang L, Hemmatpour H, Rudolf P, Gerlach D, Euverink GJ, Picchioni F. Swollen hydrogels with strong mechanical characteristics: A superior adsorbent for the sustainable removal of diclofenac sodium. J Colloid Interface Sci 2025; 686:754-763. [PMID: 39922165 DOI: 10.1016/j.jcis.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Hydrogel adsorbents that possess both good mechanical strength and adsorption capabilities are crucial for practical wastewater treatment. However, achieving this balance has been demanding due to the trade-off between swelling properties and adsorption capacities in hydrogels. Although swelling increases the availability of functional groups and facilitates the diffusion of pollutants, it compromises the mechanical integrity. In this study, we address this challenge by developing double-network hydrogels based on poly(vinyl) alcohol and poly[2-(acryloyloxy)ethyl]trimethyl ammonium chloride, prepared via free-radical polymerization, and subsequent freeze-thaw treatment. These hydrogels were investigated for their efficacy in removing diclofenac sodium, a prevalent drug pollutant in pharmaceutical wastewater. By leveraging the synergistic effect of the physical and chemical networks, the prepared hydrogels exhibit intrinsic toughness and compressibility even in a fully swollen state. Most importantly, the maximum adsorption capacity yielded by the Langmuir model fitting was 1012 mg/g under natural conditions, they surpass all other hydrogel adsorbents proposed so far. Thermodynamic analysis implied the spontaneous and exothermic nature of diclofenac sodium adsorption process, while infrared and photoemission spectroscopy revealed that diclofenac sodium uptake is predominantly governed by ion exchange. Overall, double-network hydrogels offer considerable promise for eco-friendly and sustainable wastewater purification due to their high mechanical stability, outstanding adsorption performance, good reusability, and adaptability to diverse environmental conditions.
Collapse
Affiliation(s)
- Lin Wang
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 3, 9747AG Groningen, the Netherlands.
| | - Hamoon Hemmatpour
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands.
| | - Dominic Gerlach
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands.
| | - Gert JanWillem Euverink
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 3, 9747AG Groningen, the Netherlands.
| | - Francesco Picchioni
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 3, 9747AG Groningen, the Netherlands.
| |
Collapse
|
2
|
Cho YE, Lee S, Ma SJ, Sun JY. Network design for soft materials: addressing elasticity and fracture resistance challenges. SOFT MATTER 2025; 21:1603-1623. [PMID: 39937243 DOI: 10.1039/d4sm01430h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Soft materials, such as elastomers and gels, feature crosslinked polymer chains that provide stretchable and elastic mechanical properties. These properties are derived from entropic elasticity, which limits energy dissipation and makes the material susceptible to fracture. To address this issue, network designs that dissipate energy through the plastic zone have been introduced to enhance toughness; however, this approach compromises elasticity, preventing the material from fully recovering its original shape after deformation. In this review, we describe the trade-off between fracture resistance and elasticity, exploring network designs that overcome this limitation to achieve both high toughness and low hysteresis. The development of soft materials that are both elastic and fracture-resistant holds significant promise for applications in stretchable electronics, soft robotics, and biomedical devices. By analyzing successful network designs, we identify strategies to further improve these materials and discuss potential enhancements based on existing limitations.
Collapse
Affiliation(s)
- Yong Eun Cho
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sihwan Lee
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sang Jun Ma
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jeong-Yun Sun
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Han M, Yao Z, Ye Q, Wang Y, Zhou D, Yang W. Construction of high strength PVA/cellulose conductive hydrogels based on sodium citrate/aluminium chloride dual ions regulation. Int J Biol Macromol 2024; 282:137587. [PMID: 39542291 DOI: 10.1016/j.ijbiomac.2024.137587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Hydrogels used for flexible sensing usually require a good balance between mechanical strength and conductivity. In this study, polyvinyl alcohol/carboxymethyl cellulose/cellulose nanofibers (PVA/CMC/CNF) hydrogels with multi-hierarchical structures were firstly prepared by adjusting the CNF content. Then, PVA/CMC/CNF-xM with excellent mechanical properties and conductivity were prepared by cyclic freezing-thawing and sodium citrate/aluminium chloride (Na3Cit/AlCl3) dual ions salt equilibrium methods. Results showed that at an ion concentration of 3 mol/L, PVA/CMC/CNF-3 M hydrogel exhibited a tensile strength, elongation at break and conductivity of 3.41 MPa, 1271 % and 0.35 S/m, respectively. The structural evolution of PVA/CMC/CNF-xM conductive hydrogels were studied, and the results indicated that Cit3- formed numerous intermolecular hydrogen bonds, while Al3+ could strongly coordinate with carboxyl and hydroxyl groups between the polysaccharide chains. Meanwhile, PVA/CMC/CNF-3 M possessed a low strain detection limit of 1 %, making it not only can be used for human motion monitoring, but also information encoding and transmission. This work may provide a facile approach for preparing high-strength and conductive hydrogels, which can be applied in flexible wearable electronic devices and information transmission.
Collapse
Affiliation(s)
- Meiling Han
- Department of Pharmacy, The Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Zheng Yao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qing Ye
- Zhejiang Rongsheng Environmental Protection Paper Co. LTD, Zhejiang 314213, China
| | - Yan Wang
- Department of Pharmacy, The Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Danli Zhou
- Department of Pharmacy, The Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Cui P, Chen J, Fu K, Deng J, Sun T, Chen K, Yin P. Bioinspired Bouligand-Structured Cellulose Nanocrystals/Poly(vinyl alcohol) Composite Hydrogel for Enhanced Impact Resistance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53022-53032. [PMID: 39306751 DOI: 10.1021/acsami.4c13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Impact-protective materials are gaining importance because of the widespread occurrence of impact damage. Hydrogels have emerged as promising candidates owing to their lightweight and flexible nature. However, achieving soft impact-resistant hydrogels with exceptional stiffness, strength, and toughness remains a challenge. Inspired by the Bouligand structure found in the smasher dactyl club of stomatopods, we propose a straightforward multiscale hierarchical structural design strategy. This strategy integrates self-assembly and salting-out techniques to enhance the impact resistance of soft hydrogels. Rigid cellulose nanocrystals (CNCs) self-assemble into Bouligand-like structures within soft poly(vinyl alcohol) (PVA) matrix via supramolecular interactions. This rational structural design combines the CNC Bouligand structure with a cross-linked network of soft PVA crystalline domains, resulting in a composite hydrogel with impressive mechanical properties: high tensile fracture strength (30.2 MPa), elastic modulus (62.7 MPa), and fracture energy (75.6 kJ m-2), surpassing those of other tough hydrogels. Moreover, the multiscale hierarchical structure facilitates various energy dissipation mechanisms, including crack twisting, tortuous crack paths, and PVA chain orientation, resulting in notable force attenuation (80.4%) in the composite hydrogel. This biomimetic design strategy opens new avenues for developing soft and lightweight impact-resistant materials.
Collapse
Affiliation(s)
- Pengcheng Cui
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Jiadong Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Kewen Fu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Jie Deng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Taolin Sun
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Kun Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Chen C, Liu X, Wang J, Guo H, Chen Y, Wang N. Research on the Thermal Aging Mechanism of Polyvinyl Alcohol Hydrogel. Polymers (Basel) 2024; 16:2486. [PMID: 39274119 PMCID: PMC11398078 DOI: 10.3390/polym16172486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Polyvinyl alcohol (PVA) hydrogels find applications in various fields, including machinery and tissue engineering, owing to their exceptional mechanical properties. However, the mechanical properties of PVA hydrogels are subject to alteration due to environmental factors such as temperature, affecting their prolonged utilization. To enhance their lifespan, it is crucial to investigate their aging mechanisms. Using physically cross-linked PVA hydrogels, this study involved high-temperature accelerated aging tests at 60 °C for 80 d and their performance was analyzed through macroscopic mechanics, microscopic morphology, and microanalysis tests. The findings revealed three aging stages, namely, a reduction in free water, a reduction in bound water, and the depletion of bound water, corresponding to volume shrinkage, decreased elongation, and a "tough-brittle" transition. The microscopic aging mechanism was influenced by intermolecular chain spacing, intermolecular hydrogen bonds, and the plasticizing effect of water. In particular, the loss of bound water predominantly affected the lifespan of PVA hydrogel structural components. These findings provide a reference for assessing and improving the lifespan of PVA hydrogels.
Collapse
Affiliation(s)
- Chunkun Chen
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiangyang Liu
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangtao Wang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haoran Guo
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yingjun Chen
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ningfei Wang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Lv J, Xu P, Hou D, Sun Y, Hu J, Yang J, Yan J, Li C. Facile preparation of highly adhesive yet ultra-strong poly (vinyl alcohol)/cellulose nanocrystals composite hydrogel enabled by multiple networks structure. Int J Biol Macromol 2024; 272:132919. [PMID: 38843673 DOI: 10.1016/j.ijbiomac.2024.132919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/19/2024]
Abstract
Poly (vinyl alcohol) (PVA) hydrogel showed potential applications in bioengineering and wearable sensors fields. It is still a huge challenge to prepare highly adhesive yet strong poly (vinyl alcohol) hydrogel with good biocompatibility. Herein, we prepared a highly self-adhesive and strong poly (vinyl alcohol)/tannic acid@cellulose nanocrystals (PVA/TA@CNCs) composite hydrogel using TA@CNCs as functional nanofiller via facile freezing-thawing method. Multiple networks consisting of hydrogen bonding and coordination interactions endowed the hydrogel with high mechanical strength, excellent flexibility and fracture toughness with adequate energy dissipation mechanism and relatively dense network structure. The tensile strength of PVA/TA@CNCs hydrogel reached the maximum of 463 kPa, increasing by 367 % in comparison with pure PVA hydrogel (99 kPa), demonstrating the synergistic reinforcing and toughening effect of TA@CNCs. The hydrogel exhibited extremely high adhesion not only for various dry and wet substrates such as plastic, metal, Teflon, rubber, glass, leaf, but also sweaty human skin, showing good adhesion durability. The highest adhesion strength to silicone rubber, steel plate and pigskin could reach 197 kPa, 100 kPa and 46.9 kPa, respectively. Meanwhile the hydrogel had negligible cytotoxicity to cells and showed good biocompatibility.
Collapse
Affiliation(s)
- Jin Lv
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Peikuan Xu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dewang Hou
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ye Sun
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Hu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jian Yang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Chengjie Li
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
7
|
Zhou H, Wei X, Liu A, Wang S, Chen B, Chen Z, Lyu M, Guo W, Cao X, Ye M. Tough Hydro-Aerogels with Cation Specificity Enabled Ultra-High Stability for Multifunctional Sensing and Quasi-Solid-State Electrolyte Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313088. [PMID: 38308465 DOI: 10.1002/adma.202313088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The anion-specific effects of the salting-in and salting-out phenomena are extensively observed in hydrogels, whereas the cation specificity of hydrogels is rarely reported. Herein, a multi-step strategy including borax pre-gelation, saline soaking, freeze-drying, and rehydrating is developed to fabricate polyvinyl alcohol gels with cation specificity, exhibiting the specific ordering of effects on the mechanical properties of gels as Ca2+ > Li+ > Mg2+ >> Fe3+ > Cu2+ >> Co2+ ≈ Ni2+ ≈ Zn2+. The multiple effects of the fabrication strategy, including the electrostatic repulsion among cations, skeleton support function of graphene oxide nanosheets, and water absorption and retention of ions, endow the gels with the dual characteristics of hydrogels and aerogels (i.e., hydro-aerogels). The hydro-aerogels prepared with the cationic salting-out effect display attractive pressure sensing performance with excellent stability over 90 days and enable continuous monitoring of ambient humidity in real-time and effective work in seawater to detect various parameters (e.g., depth, salinity, and temperature). The hydro-aerogels prepared without borax pretreatment or using the cationic salting-in effect can serve as quasi-solid-state electrolytes in supercapacitors, with 99.59% capacitance retention after 10 000 cycles. This study realizes cation specificity in hydrogels and designs multifunctional hydro-aerogels for promising applications in various fields.
Collapse
Affiliation(s)
- Hao Zhou
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Xiaohan Wei
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Andeng Liu
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Senjing Wang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Bingqi Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Zhuomin Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Miaoqiang Lyu
- Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology, School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Wenxi Guo
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Xuezheng Cao
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Meidan Ye
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Zhong W, Song Y, Yang S, Gong L, Shi D, Dong W, Zhang H. A monocarboxylic acid induction strategy to prepare tough and thermo-reversible poly(vinyl alcohol) physical gels with high transparency. SOFT MATTER 2023; 19:355-360. [PMID: 36598067 DOI: 10.1039/d2sm01417c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To date, poly(vinyl alcohol) (PVA) gels attract tremendous attention because of their potential applications in a wide variety of fields. Here, a novel monocarboxylic acid induction strategy was developed to fabricate tough and thermo-reversible PVA physical gels by introducing monocarboxylic acids into the PVA/dimethyl sulfoxide (DMSO) system. The obtained PVA gels exhibited appropriate crystalline architectures, leading to superior mechanical properties and high transparency. Furthermore, the role of monocarboxylic acids in the formation of PVA physical gels and the effects of alkyl chain length, concentration, and the induction time of monocarboxylic acids on the properties of PVA physical gels were also investigated.
Collapse
Affiliation(s)
- Weifeng Zhong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yufang Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Shuai Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Lihao Gong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Dongjian Shi
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Hongji Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Zhong L, Dong Z, Liu Y, Chen C, Xu Z. Construction of strong and tough carboxymethyl cellulose-based oriented hydrogels by phase separation. Int J Biol Macromol 2023; 225:79-89. [PMID: 36460246 DOI: 10.1016/j.ijbiomac.2022.11.284] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Anisotropic hydrogels have attracted extensive attention because they are similar to natural hydrogel-like materials and exhibit superiority and new functions that isotropic hydrogels cannot. Here, we fabricated strong and tough carboxymethyl cellulose-based conductive hydrogels with oriented hierarchical structures through pre-stretching, solvent displacement induced phase separation, and subsequent ionic crosslinking immobilization. Solvent displacement made the pre-stretched carboxymethyl cellulose-based polymer network more dense and linear, while the toughness of the hydrogel was further improved under the effect of phase separation. Strong and tough hydrogels were prepared by combining pre-stretching and phase separation; the variation range (tensile strength of 2.24-6.19 MPa and toughness of 19.41-22.92 MJ/m3) can be adjusted by the stretching ratio. Compared with traditional carboxymethyl cellulose-based hydrogels, the tensile strength and toughness were increased by 49 times and 15 times, respectively. In addition, the hydrogels had good underwater stability, ion cross-linking made the hydrogels have good conductivity, and the directional stratification structure gave the hydrogels conductive anisotropy. These characteristics give hydrogel sensors broad application prospects in flexible wearable devices, anisotropic sensors, and intelligent underwater devices.
Collapse
Affiliation(s)
- Li Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoji Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanquan Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chuchu Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhaoyang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Fu ZZ, Yao YH, Guo SJ, Wang K, Zhang Q, Fu Q. Effect of Plasticization on Stretching Stability of Poly(Vinyl Alcohol) Films: A Case Study Using Glycerol and Water. Macromol Rapid Commun 2023; 44:e2200296. [PMID: 35700343 DOI: 10.1002/marc.202200296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/25/2022] [Indexed: 01/11/2023]
Abstract
Adding small molecular plasticizers is the most common route to tailor the stretchability of poly(vinyl alcohol) (PVA). However, how the plasticization along with the nature of the plasticizer governs the structural homogeneity during stretching remains an open question to answer. Herein, two representative plasticizers, glycerol (GLY) and water, are chosen to endow the PVA films with ductility. It is found that large strain cavitations cause obvious stress whitening in the PVA/H2 O films; on the contrary, most of the PVA/GLY films maintain transparent undergoing tensile deformation. Through a combination of experimental inspections and molecular dynamic simulation, it is revealed that partial water molecules that behave as free water will aggregate into microdomains, which serve as mechanical defects responsible for yielding voids. Whereas, the GLY plasticizer homogeneously disperses at a molecular level and interacts with PVA chains through strong hydrogen bonds. More interestingly, it is illustrated that the dispersion and bound states of plasticizers are closely related to the mechanical character of the plasticized PVA films. These findings offer new insight into the working mechanism of plasticization on the structural stability during stretching, and guide the design of PVA/plasticizer system to obtain excellent comprehensive mechanics.
Collapse
Affiliation(s)
- Zhen-Zhen Fu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, P. R. China
| | - Yi-Hang Yao
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, P. R. China
| | - Sheng-Jie Guo
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, P. R. China
| | - Ke Wang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, P. R. China
| | - Qin Zhang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, P. R. China
| | - Qiang Fu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, P. R. China
| |
Collapse
|
11
|
Yu H, Xiao Q, Qi G, Chen F, Tu B, Zhang S, Li Y, Chen Y, Yu H, Duan P. A Hydrogen Bonds-Crosslinked Hydrogels With Self-Healing and Adhesive Properties for Hemostatic. Front Bioeng Biotechnol 2022; 10:855013. [PMID: 35497342 PMCID: PMC9046721 DOI: 10.3389/fbioe.2022.855013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Hydrogels with adhesive properties have the potential for rapid haemostasis and wound healing in uncontrolled non-pressurized surface bleeding. Herein, a typical hydrogen bond-crosslinked hydrogel with the above functions was constructed by directly mixing solutions of humic acid (HA) and polyvinylpyrrolidone (PVP), in which the HA worked as a crosslinking agent to form hydrogen bonds with the PVP. By altering the concentration of HA, a cluster of stable and uniform hydrogels were prepared within 10 s. The dynamic and reversible nature of the hydrogen bonds gave the HA/PVP complex (HPC) hydrogels injectability and good flexibility, as well as a self-healing ability. Moreover, the numerous functional groups in the hydrogels enhanced the cohesion strength and interaction on the interface between the hydrogel and the substrate, endowing them with good adhesion properties. The unique chemical composition and cross-linking mechanism gave the HPC hydrogel good biocompatibility. Taking advantage of all these features, the HPC hydrogels obtained in this work were broadly applied as haemostatic agents and showed a good therapeutic effect. This work might lead to an improvement in the development of multifunctional non-covalent hydrogels for application to biomaterials.
Collapse
Affiliation(s)
- Han Yu
- Department of Pathology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Pathophysiology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- *Correspondence: Han Yu, ; Hui Yu, ; Peng Duan,
| | - Qiaohong Xiao
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Guilin Qi
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biyue Tu
- Fourth Clinical College, Hubei University of Medicine, Shiyan, China
| | - Suo Zhang
- Fourth Clinical College, Hubei University of Medicine, Shiyan, China
| | - Yinping Li
- Department of Pathophysiology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui Yu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- *Correspondence: Han Yu, ; Hui Yu, ; Peng Duan,
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- *Correspondence: Han Yu, ; Hui Yu, ; Peng Duan,
| |
Collapse
|
12
|
Fu ZZ, Guo SJ, Li CX, Wang K, Zhang Q, Fu Q. Hydrogen-bond-dominated mechanical stretchability in PVA films: from phenomenological to numerical insights. Phys Chem Chem Phys 2022; 24:1885-1895. [PMID: 34990505 DOI: 10.1039/d1cp03893a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonds (H-bonds) in poly(vinyl alcohol) (PVA) play a crucial role in macroscopic mechanical properties, particularly for stretchability. However, there is still some ambiguity about the quantitative dependence of H-bond interactions on the mechanical performance, mainly attributed to the difficulty in the discrimination of various H-bond types. Herein, small molecular chemicals as plasticizers were incorporated into the PVA matrix to tailor the H-bonding interactions. By altering the PVA molecular weight, plasticizer type and loading, both the stretchability and H-bond content were regulated on a large scale. By a combination of DMA, IR spectroscopy, MD simulation and solid-state 13C-NMR, every sort of H-bond in PVA was assigned, and their relative fractions were ascertained quantitatively. After correlating the elongation ratio with the relative fraction of the different types of H-bonding interaction, it was found that all the pairs of elongation vs. intermolecular H-bond content derived from different series of PVA/plasticizer films could be plotted into a master curve and exhibited good linearity, indicating that intermolecular H-bonds dominate the mechanical stretchability in PVA films. Our efforts contribute towards an in-depth understanding of performance optimization induced by H-bond manipulation from empirical, phenomenological aspects to intrinsic, numerical insights.
Collapse
Affiliation(s)
- Zhen-Zhen Fu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, People's Republic of China.
| | - Sheng-Jie Guo
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, People's Republic of China.
| | - Chen-Xi Li
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, People's Republic of China.
| | - Ke Wang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, People's Republic of China.
| | - Qin Zhang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, People's Republic of China.
| | - Qiang Fu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, People's Republic of China.
| |
Collapse
|
13
|
Jiao C, Obst F, Geisler M, Che Y, Richter A, Appelhans D, Gaitzsch J, Voit B. Reversible Protein Capture and Release by Redox-Responsive Hydrogel in Microfluidics. Polymers (Basel) 2022; 14:267. [PMID: 35054674 PMCID: PMC8780672 DOI: 10.3390/polym14020267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/10/2022] Open
Abstract
Stimuli-responsive hydrogels have a wide range of potential applications in microfluidics, which has drawn great attention. Double cross-linked hydrogels are very well suited for this application as they offer both stability and the required responsive behavior. Here, we report the integration of poly(N-isopropylacrylamide) (PNiPAAm) hydrogel with a permanent cross-linker (N,N'-methylenebisacrylamide, BIS) and a redox responsive reversible cross-linker (N,N'-bis(acryloyl)cystamine, BAC) into a microfluidic device through photopolymerization. Cleavage and re-formation of disulfide bonds introduced by BAC changed the cross-linking densities of the hydrogel dots, making them swell or shrink. Rheological measurements allowed for selecting hydrogels that withstand long-term shear forces present in microfluidic devices under continuous flow. Once implemented, the thiol-disulfide exchange allowed the hydrogel dots to successfully capture and release the protein bovine serum albumin (BSA). BSA was labeled with rhodamine B and functionalized with 2-(2-pyridyldithio)-ethylamine (PDA) to introduce disulfide bonds. The reversible capture and release of the protein reached an efficiency of 83.6% in release rate and could be repeated over 3 cycles within the microfluidic device. These results demonstrate that our redox-responsive hydrogel dots enable the dynamic capture and release of various different functionalized (macro)molecules (e.g., proteins and drugs) and have a great potential to be integrated into a lab-on-a-chip device for detection and/or delivery.
Collapse
Affiliation(s)
- Chen Jiao
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (C.J.); (M.G.); (Y.C.); (D.A.)
- Organische Chemie der Polymere, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Franziska Obst
- Institut für Halbleiter- und Mikrosystemtechnik, Technische Universität Dresden, Nöthnitzer Straße 64, 01187 Dresden, Germany; (F.O.); (A.R.)
| | - Martin Geisler
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (C.J.); (M.G.); (Y.C.); (D.A.)
| | - Yunjiao Che
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (C.J.); (M.G.); (Y.C.); (D.A.)
| | - Andreas Richter
- Institut für Halbleiter- und Mikrosystemtechnik, Technische Universität Dresden, Nöthnitzer Straße 64, 01187 Dresden, Germany; (F.O.); (A.R.)
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (C.J.); (M.G.); (Y.C.); (D.A.)
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (C.J.); (M.G.); (Y.C.); (D.A.)
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (C.J.); (M.G.); (Y.C.); (D.A.)
- Organische Chemie der Polymere, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| |
Collapse
|
14
|
Chen X, Yu H, Wang L, Shen D, Li C, Zhou W. Cross-Linking-Density-Changeable Microneedle Patch Prepared from a Glucose-Responsive Hydrogel for Insulin Delivery. ACS Biomater Sci Eng 2021; 7:4870-4882. [PMID: 34519208 DOI: 10.1021/acsbiomaterials.1c01073] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To simplify the preparation process of a glucose-responsive microneedle patch, a cross-linking-density changeable microneedle patch was designed. The microneedle patch was made up of a hydrogel formed by phenylboronic acid-grafted polyallylamine and poly(vinyl alcohol) (PVA). The gel was cross-linked by boronate ester bonds between phenylboronic acid groups and PVA. It still had fluidity and could be filled into a mold to prepare microneedle patches. Moreover, insulin could be directly loaded into the microneedle patch by mixing with the gel. The boronate ester bond would be broken in the presence of glucose, resulting in a decrease in the cross-linking density. Therefore, the gel could achieve a greater swelling degree and insulin could be released faster. In addition, PVA chains were crystallized by repeatedly freezing and thawing to improve the mechanical strength of the microneedle patch. In terms of glucose-dependent insulin release, the gel showed good glucose-responsive insulin-release ability. Through additional ion cross-linking, the microneedle patch could also control the insulin release according to glucose concentration. In the hypoglycemic experiment of diabetic rats, the microneedle patch effectively pierced the skin and slowly released insulin.
Collapse
Affiliation(s)
- Xiang Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chengjiang Li
- The First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, Hangzhou 310027, P. R. China
| | - Weibin Zhou
- The First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
15
|
Oikonomou P, Sanopoulou M, Papadokostaki KG. Blends of Poly(vinyl alcohol) and Poly(vinyl pyrrolidone): Interrelation between the Degree of Hydration and Thermal and Mechanical Properties. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Petros Oikonomou
- Institute for Nanoscience and Nanotechnology, National Center of Scientific Research “Demokritos”, 15310 Agia Paraskevi, Athens, Greece
| | - Merope Sanopoulou
- Institute for Nanoscience and Nanotechnology, National Center of Scientific Research “Demokritos”, 15310 Agia Paraskevi, Athens, Greece
| | - Kyriaki G. Papadokostaki
- Institute for Nanoscience and Nanotechnology, National Center of Scientific Research “Demokritos”, 15310 Agia Paraskevi, Athens, Greece
| |
Collapse
|
16
|
Wang S, Guo X, Guo P, Guan S, Fu H, Cui W, Ao Y. Tunable mechanical and self-healing poly (acrylic acid-co-stearyl methacrylate) hydrogels induced by soaking methods. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Dong C, Zhou J, Shi D, Song Y, Yu X, Dong W, Chen M, Kaneko D. One-step mild preparation of tough and thermo-reversible poly(vinyl alcohol) hydrogels induced by small molecules. Chem Commun (Camb) 2021; 57:3789-3792. [PMID: 33876123 DOI: 10.1039/d1cc00578b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To overcome shortcomings of the traditional freeze-thaw method for PVA hydrogel preparation, we develop a one-step mild method, which induces PVA crystallization to form hydrogels through small molecules containing hydroxyl and carboxyl groups. The obtained hydrogels showed high mechanical properties, untypical plasticity with short gelation time and repeatable sol-gel transformation.
Collapse
Affiliation(s)
- Chuang Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Song F, Gong J, Tao Y, Cheng Y, Lu J, Wang H. A robust regenerated cellulose-based dual stimuli-responsive hydrogel as an intelligent switch for controlled drug delivery. Int J Biol Macromol 2021; 176:448-458. [PMID: 33607138 DOI: 10.1016/j.ijbiomac.2021.02.104] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022]
Abstract
Constructing robust hydrogels with biodegradability and dual stimuli-responsive by utilizing natural polymer as raw materials remains a sustaining challenge. Herein, we proposed an interpenetrating strategy in which N-isopropyl acrylamide (NIPAM) and acrylamide (AM) block copolymers were introduced as the second network into the carboxymethyl cellulose single network gel (CMC gel) to construct a dual-network robust hydrogel (CMC/PNIPAM-co-PAM). The dual-network design strategy effectively improves the mechanical strength of CMC gel. The hydrogel suggests intelligent dual stimuli-responsive behavior to pH and temperature. Furthermore, the copolymerization of NIPAM and AM regulated the low critical solution temperature (LCST) of the hybrid hydrogel, making it close to the physiological temperature of the human body. With the aim of evaluating its application in drug delivery, we loaded tetracycline into the dual-network hydrogel and simulated its release process under the pH microenvironment of the small intestine and the physiological temperature to infer its potential application in intestinal inflammation treatments. Moreover, it is proved that the strong hydrogel possesses good cytocompatibility in vitro biocompatibility testing. In addition, the embedding of tetracycline makes the hydrogel excellent antioxidant performance. This dual-stimulus response integrated hydrogel is expected to play a critical role in drug delivery and targeted therapy.
Collapse
Affiliation(s)
- Fuyu Song
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Jingwei Gong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Yehan Tao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China.
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|