1
|
Yan M, Shao D. Application of different lights in solving the marine biofouling problem of uranium extraction from seawater. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113114. [PMID: 39879700 DOI: 10.1016/j.jphotobiol.2025.113114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Marine biofouling remains a big problem of uranium (U(VI)) extraction from seawater. To better utilize sunlight in future, the anti-biofouling properties of typical light sources were evaluated, and ultraviolet (UV) light shows best anti-biofouling capability among studied lights. UV light can damage the cellular structure and intercept the proliferation of marine microorganisms (such as V. alginolyticus), and further control its extracellular polymeric substances (EPS). Microorganism community results clarify that UV light well represses the reproduction and survival of marine microorganisms under different conditions (such as temperature and region), which is in favor of U(VI) extraction. The adsorption capacity of classical U(VI) extraction material poly(amidoxime) (PAO) for U(VI) outstandingly recycled from 47.5 mg/g to 68.5 mg/g after UV irradiated for 12 h at pH 8.2 and 25 °C. UV light can well solve the marine biofouling problem of U(VI) extraction from seawater.
Collapse
Affiliation(s)
- Meng Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Dadong Shao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
2
|
Mao X, Qian L, Tian L, Chen X, Wu W, Li Z. Layered Bio-Inorganic MXene Membranes: A Green Approach for Uranium Extraction from Seawater Using Genetically Modified E. coli. NANO LETTERS 2024; 24:15151-15158. [PMID: 39540791 DOI: 10.1021/acs.nanolett.4c04709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
With the growing demand for clean energy, efficient uranium extraction technologies are needed, especially from seawater, where uranium reserves are huge. Here, we developed a composite membrane by inserting Escherichia coli engineered with super uranyl-binding protein (SUP) within a two-dimensional (2D) MXene (Ti3C2Tx) layer. SUP endowed the bioinorganic hybrid membrane with ultrahigh selectivity for uranyl ions, while the engineered E. coli improved the mechanical strength and economy of the membranes. Experimental results showed that the membranes achieved precise recognition of uranyl ions and excellent ion screening performance (SFU/V ≈ 43, SFNa/U ≈ 158). Excellent separation performance and cyclic stability tests demonstrated the industrial application potential of the membrane. This method offers a green and sustainable solution, combining biological engineering and nanomaterial innovation, providing an environmentally friendly and efficient approach for uranium extraction from seawater, marking a significant advancement in the field of clean energy resource development.
Collapse
Affiliation(s)
- Xiaonan Mao
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Lijuan Qian
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Longlong Tian
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Ximeng Chen
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Wangsuo Wu
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Zhan Li
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Qinghai Nationalities University, Xining 810007, China
| |
Collapse
|
3
|
Yu Y, Liu J, Liu Q, Xue Y, Chen R, Yu J, Zhu J, Wang J. High-Performance Polyamidoxime Porous Membrane Prepared by the In Situ Modification/Nonsolvent-Induced Phase Separation Strategy for Uranium Extraction from Seawater. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49778-49789. [PMID: 39250596 DOI: 10.1021/acsami.4c09875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The abundance of uranium (U(VI)) reserves in seawater makes it crucial to develop economically efficient methods for uranium extraction from seawater. In this work, an enhanced polyamidoxime porous membrane (PAOM) was fabricated by pre-in situ amidoxime modification combined with nonsolvent-induced phase separation (NIPS). The strategy of in situ modification of the polyacrylonitrile (PAN) solution served to enhance the homogeneity of the reaction and avoid the destruction of the membrane matrix and pore structure. Compared with the control sample (AOPM), PAOM possessed better mechanical strength and hydrophilicity. The introduction of polyvinylpyrrolidone (PVP) formed a porous structure in PAOM, improving spatial accessibility and facilitating the diffusion transport and capture of UO22+ inside the membrane. The more uniform and abundant distribution of amidoxime groups in PAOM gave it ultrahigh adsorption capacity and selectivity. The equilibrium adsorption capacity and Kd value of PAOM were 1.72 and 5.51 times higher than those of AOPM. Meanwhile, PAOM also demonstrated good recyclability, with only a 6.15% decrease in adsorption capacity after seven cycles. Additionally, PAOM exhibited excellent dynamic adsorption performance, and after 14 days of continuous filtration and adsorption, PAOM could extract 2.03 mg·g-1 U(VI) from natural seawater.
Collapse
Affiliation(s)
- Yan Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Yudong Xue
- Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
4
|
Sepesy M, Banik T, Scott J, Venturina LAF, Johnson A, Schneider BL, Sibley MM, Duval CE. Chemically Stable Styrenic Electrospun Membranes with Tailorable Surface Chemistry. MEMBRANES 2023; 13:870. [PMID: 37999356 PMCID: PMC10673432 DOI: 10.3390/membranes13110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Membranes with tailorable surface chemistry have applications in a wide range of industries. Synthesizing membranes from poly(chloromethyl styrene) directly incorporates an alkyl halide surface-bound initiator which can be used to install functional groups via SN2 chemistry or graft polymerization techniques. In this work, poly(chloromethyl styrene) membranes were synthesized through electrospinning. After fabrication, membranes were crosslinked with a diamine, and the chemical resistance of the membranes was evaluated by exposure to 10 M nitric acid, ethanol, or tetrahydrofuran for 24 h. The resulting membranes had diameters on the order of 2-5 microns, porosities of >80%, and permeance on the order of 10,000 L/m2/h/bar. Crosslinking the membranes generally increased the chemical stability. The degree of crosslinking was approximated using elemental analysis for nitrogen and ranged from 0.5 to 0.9 N%. The poly(chloromethyl styrene) membrane with the highest degree of crosslinking did not dissolve in THF after 24 h and retained its high permeance after solvent exposure. The presented chemically resistant membranes can serve as a platform technology due to their versatile surface chemistry and can be used in membrane manufacturing techniques that require the membrane to be contacted with organic solvents or monomers. They can also serve as a platform for separations that are performed in strong acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christine E. Duval
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Monge Neria R, Kisley L. Single-Molecule Imaging in Commercial Stationary Phase Particles Using Highly Inclined and Laminated Optical Sheet Microscopy. Anal Chem 2023; 95:2245-2252. [PMID: 36652205 DOI: 10.1021/acs.analchem.2c03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We resolve the three-dimensional, nanoscale locations of single-molecule analytes within commercial stationary phase materials using highly inclined and laminated optical sheet (HILO) microscopy. Single-molecule fluorescence microscopy of chromatography can reveal the molecular heterogeneities that lead to peak broadening, but past work has focused on surfaces designed to mimic stationary phases, which have different physical and chemical properties than the three-dimensional materials used in real columns and membranes. To extend single-molecule measurements to commercial stationary phases, we immobilize individual stationary phase particles and modify our microscope for imaging at further depths with HILO, a method which was originally developed to resolve single molecules in cells of comparable size to column packing materials (∼5-10 μm). We describe and characterize how to change the angle of incidence to achieve HILO so that other researchers can easily incorporate this method onto their existing epi- or total internal reflection fluorescence microscopes. We show improvements up to a 32% in signal-to-background ratio and 118% in the number of single molecules detected within stationary phase particles when using HILO compared to epifluorescence. By controlling the objective position relative to the sample, we produce three-dimensional maps of molecule locations throughout entire stationary phase particles at nanoscale lateral and axial resolutions. The number of localized molecules remains constant axially throughout isolated stationary phase particles and between different particles, indicating that heterogeneity in a separation would not be caused by such affinity differences at microscales but instead kinetic differences at nanoscales on identifiable and distinct adsorption sites.
Collapse
Affiliation(s)
- Ricardo Monge Neria
- Department of Physics, Case Western Reserve University, Cleveland, Ohio44106-7079, United States
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, Ohio44106-7079, United States.,Department of Chemistry, Case Western Reserve University, Cleveland, Ohio44106-7079, United States
| |
Collapse
|
6
|
Yan H, Liu Y, Zhang F, Ma K, Tang L, Liu X, Gu M, Han J, Wu F, Bu W, Yang C, Li L, Hu S. Combined separation-assay method for uranium in environmental water using a polyethylene-supported phosphonate coordination polymer membrane. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Kaushik A, Marvaniya K, Kulkarni Y, Bhatt D, Bhatt J, Mane M, Suresh E, Tothadi S, Patel K, Kushwaha S. Large-area self-standing thin film of porous hydrogen-bonded organic framework for efficient uranium extraction from seawater. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Ouimet JA, Xu J, Flores‐Hansen C, Phillip WA, Boudouris BW. Design Considerations for Next‐Generation Polymer Sorbents: From Polymer Chemistry to Device Configurations. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan Aubuchon Ouimet
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Jialing Xu
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Carsten Flores‐Hansen
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
| | - William A. Phillip
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Bryan W. Boudouris
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
- Charles D. Davidson School of Chemical Engineering Purdue University West Lafayette Indiana 47907 United States
| |
Collapse
|
9
|
Zhu B, Li L, Dai Z, Tang S, Zhen D, Sun L, Chen L, Tuo C, Tang Z. Synthesis of amidoximated polyacrylonitrile/sodium alginate composite hydrogel beed and its use in selective and recyclable removal of U(VI). J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08233-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Tan HY, Yang J, Linnes JC, Welch CJ, Bruening ML. Quantitation of Trastuzumab and an Antibody to SARS-CoV-2 in Minutes Using Affinity Membranes in 96-Well Plates. Anal Chem 2022; 94:884-891. [PMID: 34982935 PMCID: PMC8751022 DOI: 10.1021/acs.analchem.1c03654] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Quantitation of therapeutic monoclonal antibodies (mAbs) in human serum could ensure that patients have adequate levels of mAbs for effective treatment. This research describes the use of affinity, glass-fiber membranes in a 96-well-plate format for rapid (<5 min) quantitation of the therapeutic mAb trastuzumab and a mAb against the SARS-CoV-2 spike protein. Adsorption of a poly(acrylic acid)-containing film in membrane pores and activation of the -COOH groups in the film enable covalent-linking of affinity peptides or proteins to the membrane. Passage of mAb-containing serum through the affinity membrane results in mAb capture within 1 min. Subsequent rinsing, binding of a secondary antibody conjugated to a fluorophore, and a second rinse yield mAb-concentration-dependent fluorescence intensities in the wells. Calibration curves established from analyses on different days have low variability and allow determination of mAb levels in separately prepared samples with an average error <10%, although errors in single-replicate measurements may reach 40%. The assays can occur in diluted serum with physiologically relevant mAb concentrations, as well as in undiluted serum. Thus, the combination of 96-well plates containing affinity membranes, a microplate reader, and a simple vacuum manifold affords convenient mAb quantitation in <5 min.
Collapse
Affiliation(s)
- Hui Yin Tan
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Junyan Yang
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Jacqueline C. Linnes
- Weldon
School of Bioengineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher J. Welch
- Indiana
Consortium for Analytical Science & Engineering (ICASE), 410 W. 10th Street, # 1020H, Indianapolis, Indiana 46202, United States
| | - Merlin L. Bruening
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
11
|
Mi Z, Zhang D, Wang J, Bi S, Liu J, Gao X, Zhang D, Jiang Y, Li Z, Zhu Y, Liu Z. Polyamidoxime grafting on ultrahigh-strength cellulose-based jute fabrics for effectively extracting uranium from seawater. NEW J CHEM 2022. [DOI: 10.1039/d1nj06072d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrahigh-strength cellulose-based jute fabric (jute–TMC–PAO) for the highly effective extraction of uranium from seawater.
Collapse
Affiliation(s)
- Zhiming Mi
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Dexing Zhang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Junman Wang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Shiman Bi
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Xiyu Gao
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Dawei Zhang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute Chemical Technology, Jilin City 132022, China
| | - Yuanping Jiang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Zuojia Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Yean Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Zhixiao Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| |
Collapse
|
12
|
Foster JC, DeVol TA, Husson SM. Membranes for the Capture and Screening of Waterborne Plutonium Based on a Novel Pu-Extractive Copolymer Additive. MEMBRANES 2021; 12:3. [PMID: 35054528 PMCID: PMC8779412 DOI: 10.3390/membranes12010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
This contribution describes the fabrication of plutonium-adsorptive membranes by non-solvent induced phase separation. The dope solution comprised poly(vinylidene fluoride) (PVDF) and a Pu-extractive copolymer additive of PVDF-g-poly(ethylene glycol methacrylate phosphate) (EGMP) in dimethylformamide (DMF). The effects of casting conditions on membrane permeability were determined for PVDF membranes prepared with 10 wt% PVDF-g-EGMP. Direct-flow filtration and alpha spectrometry showed that membranes containing the graft copolymer could recover Pu up to 59.9 ± 3.0% from deionized water and 19.3 ± 3.5% from synthetic seawater after filtering 10 mL of 0.5 Bq/mL 238Pu. SEM-EDS analysis indicated that the graft copolymer was distributed evenly throughout the entire depth of the copolymer membranes, likely attributing to the tailing observed in the alpha spectra for 238Pu. Despite the reduction in resolution, the membranes exhibited high Pu uptake at the conditions tested, and new membrane designs that promote copolymer surface migration are expected to improve alpha spectrometry peak energy resolutions. Findings from this study also can be used to guide the development of extractive membranes for chromatographic separation of actinides from contaminated groundwater sources.
Collapse
Affiliation(s)
- James C. Foster
- Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC 29634, USA;
- Nuclear Environmental Engineering Sciences, Radioactive Waste Management Center, Clemson University, Clemson, SC 29625, USA;
| | - Timothy A. DeVol
- Nuclear Environmental Engineering Sciences, Radioactive Waste Management Center, Clemson University, Clemson, SC 29625, USA;
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, SC 29625, USA
| | - Scott M. Husson
- Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC 29634, USA;
| |
Collapse
|
13
|
Jiang J. Non-monotonic Effects of Intrinsic Stiffness and Concentration of Polyelectrolytes on the Electro-Sorption. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian Jiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Sujanani R, Landsman MR, Jiao S, Moon JD, Shell MS, Lawler DF, Katz LE, Freeman BD. Designing Solute-Tailored Selectivity in Membranes: Perspectives for Water Reuse and Resource Recovery. ACS Macro Lett 2020; 9:1709-1717. [PMID: 35617076 DOI: 10.1021/acsmacrolett.0c00710] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Treatment of nontraditional source waters (e.g., produced water, municipal and industrial wastewaters, agricultural runoff) offers exciting opportunities to expand water and energy resources via water reuse and resource recovery. While conventional polymer membranes perform water/ion separations well, they do not provide solute-specific separation, a key component for these treatment opportunities. Herein, we discuss the selectivity limitations plaguing all conventional membranes, which include poor removal of small, neutral solutes and insufficient discrimination between ions of the same valence. Moreover, we present synthetic approaches for solute-tailored selectivity including the incorporation of single-digit nanopores and solute-selective ligands into membranes. Recent progress in these areas highlights the need for fundamental studies to rationally design membranes with selective moieties achieving desired separations.
Collapse
Affiliation(s)
- Rahul Sujanani
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, Texas 78712, United States
| | - Matthew R. Landsman
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 East Dean Keeton Street, Austin, Texas 78712, United States
| | - Sally Jiao
- Department of Chemical Engineering, The University of California Santa Barbara, 3357 Engineering II, Santa Barbara, California 93106, United States
| | - Joshua D. Moon
- Department of Chemical Engineering, The University of California Santa Barbara, 3357 Engineering II, Santa Barbara, California 93106, United States
| | - M. Scott Shell
- Department of Chemical Engineering, The University of California Santa Barbara, 3357 Engineering II, Santa Barbara, California 93106, United States
| | - Desmond F. Lawler
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 East Dean Keeton Street, Austin, Texas 78712, United States
| | - Lynn E. Katz
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 East Dean Keeton Street, Austin, Texas 78712, United States
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, Texas 78712, United States
| |
Collapse
|