1
|
Yang L, Qian Y, Zhang Z, Li T, Lin X, Fu L, Zhou S, Kong XY, Jiang L, Wen L. A marine bacteria-inspired electrochemical regulation for continuous uranium extraction from seawater and salt lake brine. Chem Sci 2024; 15:4538-4546. [PMID: 38516083 PMCID: PMC10952061 DOI: 10.1039/d4sc00011k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Oceans and salt lakes contain vast amounts of uranium. Uranium recovery from natural water not only copes with radioactive pollution in water but also can sustain the fuel supply for nuclear power. The adsorption-assisted electrochemical processes offer a promising route for efficient uranium extraction. However, competitive hydrogen evolution greatly reduces the extraction capacity and the stability of electrode materials with electrocatalytic activity. In this study, we got inspiration from the biomineralisation of marine bacteria under high salinity and biomimetically regulated the electrochemical process to avoid the undesired deposition of metal hydroxides. The uranium uptake capacity can be increased by more than 20% without extra energy input. In natural seawater, the designed membrane electrode exhibits an impressive extraction capacity of 48.04 mg-U per g-COF within 21 days (2.29 mg-U per g-COF per day). Furthermore, in salt lake brine with much higher salinity, the membrane can extract as much uranium as 75.72 mg-U per g-COF after 32 days (2.37 mg-U per g-COF per day). This study provides a general basis for the performance optimisation of uranium capture electrodes, which is beneficial for sustainable access to nuclear energy sources from natural water systems.
Collapse
Affiliation(s)
- Linsen Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tingyang Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiangbin Lin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lin Fu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shengyang Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
2
|
Alali KT, Tan S, Zhu J, Liu J, Yu J, Liu Q, Wang J. High mechanical property and hydrophilic electrospun poly amidoxime/poly acrylonitrile composite nanofibrous mats for extraction uranium from seawater. CHEMOSPHERE 2024; 351:141191. [PMID: 38218238 DOI: 10.1016/j.chemosphere.2024.141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Seawater reserves about 4.5 billion tons of uranium, if properly extracted, could be a sustainable green energy resource for hundreds of years, alternating its limited terrestrial ore and reducing the CO2 emitted from fossil fuels. The current seawater uranium adsorbents suffer neither economically viable nor adsorption efficiency, requiring more development to harvest satisfactorily uranium from seawater. Amidoxime-based fibrous adsorbents are the most promising adsorbents of seawater uranium due to abundant chelating sites. However, they suffer from severe shrinkage and stiffness once they dry, losing porous architecture and mechanical properties. Herein, an economical and scalable two-nozzle electrospinning technology was applied to produce poly amidoxime nanofibers (PAO NFs) supported by Poly acrylonitrile nanofibers (PAN NFs) as composite PAO/PAN nanofibrous mats with high structure stability. These PAO/PAN mats, with rapid wettability and excellent mechanical strength, show promising uranium adsorption capacities of 369.8 mg/g at seawater pH level, much higher than PAO and PAN NFs. The uranium adsorption capacity of the PAO/PAN mat reached 5.16 mg/g after 7 days of circulating (10 ppm uranium) spiked natural seawater. Importantly, the composite mat maintained its fibrous structure after five adsorption-desorption cycles with more than 80 % of its adsorption capacity, confirming its recyclability and stability. Therefore, the composite PAO/PAN mat fulfills the basic requirements for effectively and economically trapping uranium from seawater, which could be a matrix for further development.
Collapse
Affiliation(s)
- Khaled Tawfik Alali
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Sichao Tan
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, China.
| | - Jiahui Zhu
- Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
| | - Jun Wang
- Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
3
|
Semi-IPN Alg/PAO microspheres for the efficient removal of U(VI) from alkaline solution by experimental and DFT study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Liu Z, Lan Y, Jia J, Geng Y, Dai X, Yan L, Hu T, Chen J, Matyjaszewski K, Ye G. Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater. Nat Commun 2022; 13:3918. [PMID: 35798729 PMCID: PMC9262957 DOI: 10.1038/s41467-022-31360-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
By integrating multi-scale computational simulation with photo-regulated macromolecular synthesis, this study presents a new paradigm for smart design while customizing polymeric adsorbents for uranium harvesting from seawater. A dissipative particle dynamics (DPD) approach, combined with a molecular dynamics (MD) study, is performed to simulate the conformational dynamics and adsorption process of a model uranium grabber, i.e., PAOm-b-PPEGMAn, suggesting that the maximum adsorption capacity with atomic economy can be achieved with a preferred block ratio of 0.18. The designed polymers are synthesized using the PET-RAFT polymerization in a microfluidic platform, exhibiting a record high adsorption capacity of uranium (11.4 ± 1.2 mg/g) in real seawater within 28 days. This study offers an integrated perspective to quantitatively assess adsorption phenomena of polymers, bridging metal-ligand interactions at the molecular level with their spatial conformations at the mesoscopic level. The established protocol is generally adaptable for target-oriented development of more advanced polymers for broadened applications.
Collapse
Affiliation(s)
- Zeyu Liu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Youshi Lan
- China Institute of Atomic Energy, Department of Radiochemistry, 102413, Beijing, People's Republic of China
| | - Jianfeng Jia
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Yiyun Geng
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Litang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Tongyang Hu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Lin C, Chen J, Wu Z, Chi R, Lin H, Liu Y, Lv Y, Ye X, Luo W. Phosphate-Functionalized Fibrous Adsorbent for Effectively Extracting Uranium from Seawater. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jinteng Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhihao Wu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ruiyang Chi
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Huiting Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Wei Luo
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
6
|
Chen YM, Wang CZ, Wu QY, Lan JH, Chai ZF, Shi WQ. Theoretical insights into the possible applications of amidoxime-based adsorbents in neptunium and plutonium separation. Dalton Trans 2021; 50:15576-15584. [PMID: 34667997 DOI: 10.1039/d1dt01900g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient separation of neptunium and plutonium from spent nuclear fuel is essential for advanced nuclear fuel cycles. At present, the development of effective actinide separation ligands has become a top priority. As common adsorbents for extracting uranium from seawater, amidoxime-based adsorbents may also be able to separate actinides from high-level liquid waste (HLLW). In this work, the complexation of Np(IV,V,VI) and Pu(IV) and alkyl chains (R = C13H26) modified with amidoximate (AO-) and carboxyl (Ac-) functional groups was systematically studied by quantum chemical calculations. For all the studied complexing species, the RAc- and RAO- ligands act as monodentate or bidentate ligands. Complexes with AO- groups show higher covalency of the metal-ligand bonding than the analogues with Ac- groups, in line with the binding energy analysis. Bonding analysis verifies that these amidoxime/carboxyl-based adsorbents possess higher coordination affinity toward Pu(IV) than toward Np(IV), and the Np(VI) complexes have stronger covalent interactions than Np(V). According to thermodynamic analysis, these adsorbents have the ability to separate Np(IV,V,VI) and Pu(IV), and also exhibit potential performance for partitioning Pu(IV) from Np(IV) under acidic conditions. This work can help to deeply understand the interaction between transuranium elements and amidoxime-based adsorbents, and provide a theoretical basis for the separation of actinides with amidoxime-based adsorbents.
Collapse
Affiliation(s)
- Yan-Mei Chen
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Fang Chai
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Joshi R. Binding Study of Vanadium and Uranium Complexes with Amidoxime Ligands at different pH. ChemistrySelect 2021. [DOI: 10.1002/slct.202102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ruma Joshi
- Mount Carmel College # 58, Palace Road Bengaluru Karnataka 560052
| |
Collapse
|