1
|
Zhao Q, Yang J, Xia J, Zhao G, Yang Y, Zhang Z, Li J, Wei F, Song W. Biomass Cellulose-Derived Carbon Aerogel Supported Magnetite-Copper Bimetallic Heterogeneous Fenton-like Catalyst Towards the Boosting Redox Cycle of ≡Fe(III)/≡Fe(II). NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:614. [PMID: 40278479 PMCID: PMC12029258 DOI: 10.3390/nano15080614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
To degrade high-concentration and toxic organic effluents, we developed Fe-Cu active sites loaded on biomass-source carbon aerogel (CA) to produce a low-cost and high-efficiency magnetic Fenton-like catalyst for the catalytic oxidative decomposition of organic pollutants. It exhibits excellent performance in catalytic Fenton-like reactions for RhB removal at an ultrahigh initial concentration of up to 1000 ppm. To be specific, Fe3O4 and Cu nanoparticles are generated in situ on a mesoporous CA support, denoted as an Fe3O4-Cu/CA catalyst. Experimentally, factors including initial dye concentration, catalyst dosage, H2O2 dosage, pH, and temperature, which significantly influence the oxidative degradation rate of RhB, are carefully studied. The RhB (1000 ppm) degradation ratio reaches 93.7% within 60 min under low catalyst and H2O2 dosage. The catalyst also shows slight metal leaching (almost 1.4% of total Fe and 4.0% of total Cu leached after a complete degradation of 25 μmol RhB under conditions of 15 mg catalyst dosage, 20 mL RhB solution (600 ppm), and 200 μL 30 wt% H2O2 dosage, at pH of 2.5, at 40 °C), good catalytic activity for degrading organic pollutants, excellent reusability, and good catalytic stability (the degradation ratio is nearly 82.95% in the 8th cycle reaction). The synergistic effect between Fe and Cu species plays a vital role in promoting the redox cycle of Fe(III)/Fe(II) and enhancing the generation of ·OH. It is suitable for ultrahigh-concentration organic pollutant degradation in practical wastewater treatment applications.
Collapse
Affiliation(s)
- Qiang Zhao
- College of Science, Civil Aviation University of China (CAUC), Tianjin 300300, China
- College of Aerospace Engineering, Civil Aviation University of China (CAUC), Tianjin 300300, China
| | - Jiawei Yang
- College of Aerospace Engineering, Civil Aviation University of China (CAUC), Tianjin 300300, China
| | - Jiayi Xia
- College of Science, Civil Aviation University of China (CAUC), Tianjin 300300, China
| | - Gaotian Zhao
- College of Aerospace Engineering, Civil Aviation University of China (CAUC), Tianjin 300300, China
| | - Yida Yang
- Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongwei Zhang
- Science and Technology Innovation Research Institute, Civil Aviation University of China (CAUC), Tianjin 300300, China
| | - Jing Li
- Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fang Wei
- College of Science, Civil Aviation University of China (CAUC), Tianjin 300300, China
- College of Aerospace Engineering, Civil Aviation University of China (CAUC), Tianjin 300300, China
| | - Weiguo Song
- Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Mukherjee P, Mandal M, Mukherjee B, Dutta G. Nonenzymatic Electrochemical Sensor Device for On-Site Nitrate Determination Using Copper Anchored Magnetite Nanocomposites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6747-6758. [PMID: 40033825 DOI: 10.1021/acs.langmuir.4c04903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Elevated nitrate (NO3-) levels in potable water due to anthropogenic and geogenic activities pose a significant environmental threat. Herein, we report a highly efficient electrochemical sensor device for NO3- detection using a copper-anchored magnetite (Cu@Fe3O4) nanocomposite. The electrochemical performance of the NO3- sensor was highly durable and reliable on a glassy carbon electrode (GCE) and as a proof of concept, it has been translated to thermal vapor deposited gold electrodes (Au electrodes) chip integrated with a hand-held portable potentiostat connected to a smartphone with read out capabilities for onsite real field application. The Cu@Fe3O4 nanocomposite was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) mapping, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) to confirm phase purity and successful synthesis. The sensor exhibited high selectivity for NO3- (P ≤ 0.05), stability up to 21 days with a minimal 1.2% signal decrease, and a linear detection range of 10-1000 μM, with a detection limit of 1.35 μM and sensitivity of 0.0342 μA/μM. It also showed reproducibility of a relative standard deviation (RSD 1.33%) and successfully detected NO3- in real water samples. This robust sensor provides an effective tool for real-time environmental assessment of NO3-, aiding public health protection.
Collapse
Affiliation(s)
- Priyanka Mukherjee
- NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mukti Mandal
- NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Bimalendu Mukherjee
- NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- School of Nano Science and Technology, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India
| | - Gorachand Dutta
- NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
3
|
Deng K, Hu H, Li Y, Li X, Deng H, Chen Y, Yang X, Wang L, Chen X. Mechanistic investigation and dual-mode colorimetric-chemiluminescent detection of glyphosate based on the specific inhibition of Fe 3O 4@Cu nanozyme peroxidase-like activity. Food Chem 2024; 443:138501. [PMID: 38295565 DOI: 10.1016/j.foodchem.2024.138501] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
In this study, a dual-mode colorimetric/CL nanosensor was developed for glyphosate detection based on the specific inhibition of Fe3O4@Cu peroxidase-like activity. Synthesized Fe3O4@Cu exhibited high levels of peroxidase-like activity that triggered the oxidation of luminol/3,3',5,5'-tetramethyl benzidine dihydrochloride (TMB) to excited-state 3-aminophthalic acid/blue oxTMB, thereby delivering a CL signal/visible colorimetric signal, however, the presence of glyphosate inhibited this activity, resulting in a decrease in signal strength. In-depth investigation revealed that this inhibitory mechanism occurs via two pathways: one in which glyphosate chelates with Fe(III)/Cu(II) and occupy the catalytical active sites of Fe3O4@Cu, thereby decreasing the generation of OH, and another in which glyphosate competes with TMB to consume generated OH, thus reducing the oxidation of TMB. This mechanism formed the basis of our novel dual-mode colorimetric/CL glyphosate nanosensor, which achieved limits of detection (LODs) of 0.086 µg/mL and 0.019 µg/mL in tests, thus demonstrating its significant potential for on-site glyphosate monitoring.
Collapse
Affiliation(s)
- Ke Deng
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, China
| | - Haixia Hu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yi Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xue Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Huiling Deng
- Chongqing Chongke Inspection & Testing Co., Ltd, China
| | - Ya Chen
- Chongqing Research Institute of Daily-used Chemical Industry, China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, China.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, China.
| |
Collapse
|
4
|
Gui Y, Guo S, Lv Y, Li H, Zhang J, Li J. Coactivation of Hydrogen Peroxide Using Pyrogenic Carbon and Magnetite for Sustainable Oxidation of Organic Pollutants. ACS OMEGA 2024; 9:6595-6605. [PMID: 38371804 PMCID: PMC10870288 DOI: 10.1021/acsomega.3c07525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
Pyrogenic carbon and magnetite (Fe3O4) were mixed together for the activation of hydrogen peroxide (H2O2), aiming to enhance the oxidation of refractory pollutants in a sustainable way. The experimental results indicated that the straw-derived carbon obtained by pyrolysis at 500-800 °C was efficient on coactivation of H2O2, and the most efficient one was that prepared at 700 °C (C700) featured with abundant defects. Specifically, the reaction rate constant (kobs) for removal of an antibiotic ciprofloxacin in the coactivation system (C700/Fe3O4/H2O2) is 12.5 times that in the magnetite-catalyzed system (Fe3O4/H2O2). The faster pollutant oxidation is attributed to the sustainable production of •OH in the coactivation process, in which the carbon facilitated decomposition of H2O2 and regeneration of Fe(II). Besides the enhanced H2O2 utilization in the coactivation process, the leaching of iron was controlled within the concentration limit in drinking water (0.3 mg·L-1) set by the World Health Organization.
Collapse
Affiliation(s)
- Yao Gui
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Sen Guo
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Ying Lv
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Huiming Li
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Junhuan Zhang
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Jianfa Li
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| |
Collapse
|
5
|
Bao J, Guo S, Fan D, Cheng J, Zhang Y, Pang X. Sonoactivated Nanomaterials: A potent armament for wastewater treatment. ULTRASONICS SONOCHEMISTRY 2023; 99:106569. [PMID: 37657369 PMCID: PMC10495678 DOI: 10.1016/j.ultsonch.2023.106569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
The world is currently facing a critical issue of water pollution, with wastewater being a major contributor. It comes from different types of pollutants, including industrial, medical, agricultural, and domestic. Effective treatment of wastewater requires efficient degradation of pollutants and carcinogens prior to discharge. Commonly used methods for wastewater treatment include filtration, adsorption, biodegradation, advanced oxidation processes, and Fenton oxidation, among others.The sonochemical effect refers to the decomposition, oxidation, reduction, and other reactions of pollutant molecules in wastewater upon ultrasound activation, achieving pollutants removal. Furthermore, the micro-flow effect generated by ultrasonic waves creates tiny bubbles and eddies. This significantly increases the contact area and exchange speed of pollutants and dissolved oxygen, thereby accelerating pollutant degradation. Currently, ultrasonic-assisted technology has emerged as a promising approach due to its strong oxidation ability, simple and cheap equipments, and minimal secondary pollution. However, the use of ultrasound in wastewater treatment has some limitations, such as high energy consumption, lengthy treatment time, limited water treatment capacity, stringent water quality requirements, and unstable treatment effects. To address these issues, the combination of enhanced ultrasound with nanotechnology is proposed and has shown great potential in wastewater treatment. Such a combination can greatly improve the efficiency of ultrasonic oxidation, resulting in an improved performance of wastewater purification. This article presents recent progress in the development of sonoactivated nanomaterials for enhanced wastewater disposal. Such nanomaterials are systematically classified and discussed. Potential challenges and future prospects of this emerging technology are also highlighted.
Collapse
Affiliation(s)
- Jianfeng Bao
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Shuangshaung Guo
- School of Basic Medical Sciences, Academy of Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dandan Fan
- School of Basic Medical Sciences, Academy of Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jingliang Cheng
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Yong Zhang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Xin Pang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
6
|
Zhao F, Xiao J, Geng S, Wang Y, Tsiakaras P, Song S. Novel Fe7S8/C nanocomposites with accelerating iron cycle for enhanced heterogeneous electro-Fenton degradation of dyes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Jin Z, Li Q, Tang P, Li G, Liu L, Chen D, Wu J, Chai Z, Huang G, Chen X. Copper-doped carbon dots with enhanced Fenton reaction activity for rhodamine B degradation. NANOSCALE ADVANCES 2022; 4:3073-3082. [PMID: 36133526 PMCID: PMC9417171 DOI: 10.1039/d2na00269h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
The Fenton reaction has attracted extensive attention due to its potential to be a highly efficient and environmentally friendly wastewater treatment technology. Noble copper-doped carbon dots (CuCDs) are prepared through a simple one-step hydrothermal method with 3,4-dihydroxyhydrocinnamic acid, 2,2'-(ethylenedioxy)bis(ethylamine) and copper chloride, endowing the Fenton reaction with enhanced catalytic activity for rhodamine B (RhB) degradation. The effects of the concentration of CuCDs, temperature, pH, oxygen (O2), metal ions and polymers on the catalytic activity of CuCDs are investigated. It is worth noting that electron transfer happening on the surface of CuCDs plays a vital role in the RhB degradation process. As evidenced by radical scavenger experiments and electron spin resonance (ESR) studies, CuCDs significantly boost the formation of hydroxyl radicals (˙OH) and singlet oxygen (1O2), facilitating the Fenton reaction for RhB degradation. Due to the strong oxidation of ROS generated by the Fe2+ + H2O2 + CuCD system, RhB degradation may involve the cleavage of the chromophore aromatic ring and the de-ethylation process. Additionally, the toxicity of RhB degradation filtrates is assessed in vitro and in vivo. The as-prepared CuCDs may be promising catalytic agents for the enhancement of the Fenton reaction.
Collapse
Affiliation(s)
- Zhiru Jin
- School of Public Health, Guangxi Medical University Nanning 530021 China
- Department of Ultrasonic Medicine, First Affiliated Hospital of Guangxi Medical University Nanning 530021 China
| | - Qiuying Li
- School of Public Health, Guangxi Medical University Nanning 530021 China
| | - Peiduo Tang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences Nanning 530007 China
| | - Ganfeng Li
- School of Public Health, Guangxi Medical University Nanning 530021 China
| | - Li Liu
- School of Public Health, Guangxi Medical University Nanning 530021 China
| | - Dong Chen
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences Nanning 530007 China
| | - Ji Wu
- Department of Ultrasonic Medicine, First Affiliated Hospital of Guangxi Medical University Nanning 530021 China
| | - Zhihui Chai
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences Nanning 530007 China
| | - Gang Huang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences Nanning 530007 China
| | - Xing Chen
- School of Public Health, Guangxi Medical University Nanning 530021 China
| |
Collapse
|
8
|
Synthesis and characterization of CoFe2O4/SiO2/Cu-MOF for degradation of methylene blue through catalytic sono-Fenton-like reaction. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Qin X, Wang Z, Guo C, Guo R, Lv Y, Li M. Fulvic acid degradation in Fenton-like system with bimetallic magnetic carbon aerogel Cu-Fe@CS as catalyst: Response surface optimization, kinetic and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114500. [PMID: 35051814 DOI: 10.1016/j.jenvman.2022.114500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this study, Cu-Fe bimetallic magnetic chitosan carbon aerogel catalyst (Cu-Fe@CS) was prepared by the sol-gel method to degrade Fulvic acid (FA) in Fenton-like system. Degradation experiment results showed bimetallic catalyst Cu-Fe@CS can degrade more FA than monometallic catalysts (Cu@CS and Fe@CS) due to the synergistic effect between the copper and iron. Plackett Buiman (PB) design showed that pH and temperature exhibited significant influence on FA degradation. The significant factors were optimized by Central Composite Design (CCD), the results revealed that the maximum FA removal reached 96.59% under the conditions of pH 4.07 and temperature 93.77 °C, the corresponding TOC removal reached 77.7%. The kinetic analysis implied that the reaction followed pseudo-first order kinetic with correlation coefficient (R2) = 0.9939. The Arrhenius fitting analysis revealed that Cu-Fe@CS had a lower activation energy (Ea) than Cu@CS and Fe@CS, meaning that reaction was easier to occur in Fenten-like system with Cu-Fe@CS. Catalyst still remained the higher FA and TOC removals of 96.28% and 77.33% after six runs, respectively. The FA removal was reduced by 65.53% with 12 mmol tertiary butanol (TBA) as scavenger, indicating that •OH played an important role in FA degradation. Finally, the catalytic degradation mechanism was proposed.
Collapse
Affiliation(s)
- Xia Qin
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Ziyuan Wang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Chengrui Guo
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Rui Guo
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yue Lv
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Mingran Li
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
10
|
Fazli A, Brigante M, Khataee A, Mailhot G. Fe 2.5Co 0.3Zn 0.2O 4/CuCr-LDH as a visible-light-responsive photocatalyst for the degradation of caffeine, bisphenol A, and simazine in pure water and real wastewater under photo-Fenton-like degradation process. CHEMOSPHERE 2022; 291:132920. [PMID: 34798115 DOI: 10.1016/j.chemosphere.2021.132920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 05/12/2023]
Abstract
This paper outlines the synthesis and application of a sustainable composite for the photo-Fenton-like degradation of caffeine, bisphenol A, and simazine. The phase, morphology, optical and magnetic properties of the samples were evaluated by different characterization techniques. The composite of Fe2.5Co0.3Zn0.2O4 and copper-chromium layered double hydroxide (CuCr-LDH) was determined to be the most favorable photocatalyst in the photo-Fenton-like process when compared with Fe3O4, Fe2.5Co0.3Zn0.2O4, CuCr-LDH, and Fe3O4/CuCr-LDH composite. Studying the efficiency of the photo-Fenton-like degradation process in the presence of the Fe2.5Co0.3Zn0.2O4/CuCr-LDH composite revealed a degradation rate constant of caffeine twice more than the sum of those obtained for the individual processes. This ascribes to the synergistic effect by which the photo-generated electron-hole from the catalyst and the efficient reduction of Fe3+, Cu2+, etc. during the photo-Fenton-like reaction is accelerated. Moreover, under the optimal condition and after 120 min of heterogenous photo-Fenton-like process at natural pH, > 90% of pollutants mixture was decomposed. The experiments fulfilled in near-real conditions demonstrated I) the high stability and magnetically recoverability of the photocatalyst and II) the proper degradation performance of the applied heterogenous photo-Fenton-process in the removal of pollutant mixture in different water bodies and in the presence of chloride and bicarbonate ions.
Collapse
Affiliation(s)
- Arezou Fazli
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| |
Collapse
|
11
|
Li X, Wu D, Hua T, Lan X, Han S, Cheng J, Du KS, Hu Y, Chen Y. Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: Opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150096. [PMID: 34798724 DOI: 10.1016/j.scitotenv.2021.150096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 05/24/2023]
Abstract
Advanced oxidation processes (AOPs) have demonstrated an effective wastewater treatment method. But the application of AOPs using nanomaterials as catalysts is challenged with a series of problems, including limited mass transfer, surface fouling, poor stability, and difficult recycling. Recently, metal-organic frameworks (MOFs) with high tunability and ultrahigh porosity are emerging as excellent precursors for the delicate design of the structure/composition of catalysts and many MOF-derived catalysts with distinct physicochemical characteristics have shown optimized performance in various AOPs. Herein, to elucidate the structure-composition-performance relationship, a review on the performance optimization of MOF-derived catalysts to overcome the existing problems in AOPs by micro/macrostructure and multicomponent design is given. Impressively, MOF-derived strategy for the design of catalyst materials from the aspects of microstructure, macrostructure, and multicomponent (polymetallic, heteroatom doping, M/C hybrids, etc.) is firstly presented. Moreover, important advances of MOF-derived catalysts in the application of various AOPs (Fenton, persulfate-based AOPs, photocatalysis, electrochemical processes, hybrid AOPs) are summarized. The relationship between the unique micro/macrostructure and/or multicomponent features and performance optimization in mass transfer, catalytic efficiency, stability, and recyclability is clarified. Furthermore, the challenges and future work directions for the practical application of MOF-derived catalysts in AOPs for wastewater treatment are provided.
Collapse
Affiliation(s)
- Xiaoman Li
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Danhui Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tao Hua
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiuquan Lan
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shuaipeng Han
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Cheng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; South China Institute of Collaborative Innovation, Dongguan 523808, China.
| | - Ke-Si Du
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Ultrasound aided heterogeneous Fenton degradation of Acid Blue 15 over green synthesized magnetite nanoparticles. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
N-doped carbon-coated Fe3N composite as heterogeneous electro-Fenton catalyst for efficient degradation of organics. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63719-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|