1
|
Yuan Y, Huang E, Hwang S, Liu P, Chen JG. Confining platinum clusters in indium-modified ZSM-5 zeolite to promote propane dehydrogenation. Nat Commun 2024; 15:6529. [PMID: 39095363 PMCID: PMC11297129 DOI: 10.1038/s41467-024-50709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Designing highly active and stable catalytic sites is often challenging due to the complex synthesis procedure and the agglomeration of active sites during high-temperature reactions. Here, we report a facile two-step method to synthesize Pt clusters confined by In-modified ZSM-5 zeolite. In-situ characterization confirms that In is located at the extra-framework position of ZSM-5 as In+, and the Pt clusters are stabilized by the In-ZSM-5 zeolite. The resulting Pt clusters confined in In-ZSM-5 show excellent propane conversion, propylene selectivity, and catalytic stability, outperforming monometallic Pt, In, and bimetallic PtIn alloys. The incorporation of In+ in ZSM-5 neutralizes Brønsted acid sites to inhibit side reactions, as well as tunes the electronic properties of Pt clusters to facilitate propane activation and propylene desorption. The strategy of combining precious metal clusters with metal cation-exchanged zeolites opens the avenue to develop stable heterogeneous catalysts for other reaction systems.
Collapse
Grants
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 and DE-SC0012653 DOE | LDRD | Brookhaven National Laboratory (BNL)
- DE-SC0012335 DOE | SC | Basic Energy Sciences (BES)
- DE-SC0012335 DOE | SC | Basic Energy Sciences (BES)
- DE-AC02-05CH11231 DOE | Office of Science (SC)
- DE-AC02-05CH11231 DOE | Office of Science (SC)
- DE-AC02-05CH11231 DOE | Office of Science (SC)
Collapse
Affiliation(s)
- Yong Yuan
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Erwei Huang
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA.
| | - Jingguang G Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA.
- Department of Chemical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Luo L, Zhou T, Li W, Li X, Yan H, Chen W, Xu Q, Hu S, Ma C, Bao J, Pao CW, Wang Z, Li H, Ma X, Luo L, Zeng J. Close Intimacy between PtIn Clusters and Zeolite Channels for Ultrastability toward Propane Dehydrogenation. NANO LETTERS 2024. [PMID: 38837959 DOI: 10.1021/acs.nanolett.4c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Propane dehydrogenation (PDH) serves as a pivotal intentional technique to produce propylene. The stability of PDH catalysts is generally restricted by the readsorption of propylene which can subsequently undergo side reactions for coke formation. Herein, we demonstrate an ultrastable PDH catalyst by encapsulating PtIn clusters within silicalite-1 which serves as an efficient promoter for olefin desorption. The mean lifetime of PtIn@S-1 (S-1, silicalite-1) was calculated as 37317 h with high propylene selectivity of >97% at 580 °C with a weight hourly space velocity (WHSV) of 4.7 h-1. With an ultrahigh WHSV of 1128 h-1, which pushed the catalyst away from the equilibrium conversion to 13.3%, PtIn@S-1 substantially outperformed other reported PDH catalysts in terms of mean lifetime (32058 h), reaction rates (3.42 molpropylene gcat-1 h-1 and 341.90 molpropylene gPt-1 h-1), and total turnover number (14387.30 kgpropylene gcat-1). The developed catalyst is likely to lead the way to scalable PDH applications.
Collapse
Affiliation(s)
- Lei Luo
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tao Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wenjie Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xu Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Han Yan
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Weiye Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiang Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Sunpei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xinlong Ma
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Laihao Luo
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| |
Collapse
|
3
|
Ma L, Liu H, He D. Recent Progress in Catalyst Development of the Hydrogenolysis of Biomass-Based Glycerol into Propanediols-A Review. Bioengineering (Basel) 2023; 10:1264. [PMID: 38002388 PMCID: PMC10669600 DOI: 10.3390/bioengineering10111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
The use of biomass-based glycerol to produce chemicals with high added value is of great significance for solving the problem of glycerol surplus and thus reducing the production cost of biodiesel. The production of 1,2-propanediol (abbreviated as 1,2-PDO) and 1,3-propanediol (abbreviated as 1,3-PDO) via the hydrogenolysis of glycerol is one of the most representative and highest-potential processes for the comprehensive utilization of biomass-based glycerol. Glycerol hydrogenolysis may include several parallel and serial reactions (involving broken C-O and C-C bonds), and therefore, the catalyst is a key factor in improving the rate of glycerol hydrogenolysis and the selectivities of the target products. Over the past 20 years, glycerol hydrogenolysis has been extensively investigated, and until now, the developments of catalysts for glycerol hydrogenolysis have been active research topics. Non-precious metals, including Cu, Ni, and Co, and some precious metals (Ru, Pd, etc.) have been used as the active components of the catalysts for the hydrogenolysis of glycerol to 1,2-PDO, while precious metals such as Pt, Rh, Ru, Pd, and Ir have been used for the catalytic conversion of glycerol to 1,3-PDO. In this article, we focus on reviewing the research progress of the catalyst systems, including Cu-based catalysts and Pt-, Ru-, and Pd-based catalysts for the hydrogenolysis of glycerol to 1,2-PDO, as well as Pt-WOx-based and Ir-ReOx-based catalysts for the hydrogenolysis of glycerol to 1,3-PDO. The influence of the properties of active components and supports, the effects of promoters and additives, and the interaction and synergic effects between active component metals and supports are also examined.
Collapse
Affiliation(s)
- Lan Ma
- Institute of Chemical Defense, Beijing 102205, China;
| | - Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Dehua He
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Luo Z, Zhu Z, Xiao R, Chu D. Selective Production of 1,2-Propanediol or 1,3-Propanediol from Glycerol Hydrogenolysis over Transition Metal Doped Pt/TiO 2. Chem Asian J 2023; 18:e202201046. [PMID: 36546829 DOI: 10.1002/asia.202201046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Selective hydrogenolysis of biomass-derived glycerol to propanediol is important for producing high value-added chemicals from renewable resources but faces a huge challenge. Here we report a transition metal doped Pt/TiO2 catalyst with incorporated Cr, Mo, or W oxides, which exhibits the selective formation of 1,2-propanediol or 1,3-propanediol with a yield from 51.2% to 82.5% toward glycerol hydrogenolysis. In situ experimental studies verify that the surrounding CrOx decreases the hydrogenating ability of Pt, leading to the formation of 1,2-propanediol, while the MoOx or WOx brings the Brønsted acid, giving 1,3-propanediol. This modification based on the catalyst compositions alters the reaction pathway with a different adsorption and bond scission mechanism, which can be extended to other sustainable catalytic systems.
Collapse
Affiliation(s)
- Zhicheng Luo
- MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, 210096, Nanjing, P. R. China
| | - Zhiguo Zhu
- College of Chemistry and Chemical Engineering, Yantai University, 264005, Yantai, P. R. China
| | - Rui Xiao
- MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, 210096, Nanjing, P. R. China
| | - Dawang Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, P. R. China
| |
Collapse
|
5
|
Qian R, Luo SZ, Jing F, Fang W. Carbon Nanotubes Confined PtIn Alloy as a Highly Stable Catalyst for Propane Dehydrogenation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Rong Qian
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Shi-zhong Luo
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Fangli Jing
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Avenue Xindu, Chengdu 610500, China
| | - Wenhao Fang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
6
|
Production of Propanediols through In Situ Glycerol Hydrogenolysis via Aqueous Phase Reforming: A Review. Catalysts 2022. [DOI: 10.3390/catal12090945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Production of 1,2-propanediol and 1,3-propanediol are identified as methods to reduce glycerol oversupply. Hence, glycerol hydrogenolysis is identified as a thermochemical conversion substitute; however, it requires an expensive, high-pressure pure hydrogen supply. Studies have been performed on other potential thermochemical conversion processes whereby aqueous phase reforming has been identified as an excellent substitute for the conversion process due to its low temperature requirement and high H2 yields, factors which permit the process of in-situ glycerol hydrogenolysis which requires no external H2 supply. Hence, this manuscript emphasizes delving into the possibilities of this concept to produce 1,2-propanediol and 1,3-propanediol without “breaking the bank” with expenses. Various heterogenous catalysts of aqueous phase reforming (APR) and glycerol hydrogenolysis were identified, whereby the combination of a noble metal, support, and dopant with a good amount of Brønsted acid sites are identified as the key factors to ensure a high yield of 1,3-propanediol. However, for 1,2-propanediol, a Cu-based catalyst with decent basic support is observed to be the key for good yield and selectivity of product. The findings have shown that it is possible to produce high yields of both 1,2-propanediol and 1,3-propanediol via aqueous phase reforming, specifically 1,2-propanediol, for which some of the findings achieve better selectivity compared to direct glycerol hydrogenolysis to 1,2-propanediol. This is not the case for 1,3-propanediol, for which further studies need to be conducted to evaluate its feasibility.
Collapse
|
7
|
Cao L, Qiu Y, Luo S, Jiang C, Jing F. Size effect in propane dehydrogenation on PtIn/Sn-SBA-15. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Bellè A, Kusada K, Kitagawa H, Perosa A, Castoldi L, Polidoro D, Selva M. Carbon-supported WOx–Ru-based catalysts for the selective hydrogenolysis of glycerol to 1,2-propanediol. Catal Sci Technol 2022. [DOI: 10.1039/d1cy00979f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A quantitative and highly selective hydrogenolysis of glycerol to 1,2-propanediol was achieved under mild conditions over bifunctional Ru/WOx catalysts.
Collapse
Affiliation(s)
- Alessandro Bellè
- Department of Molecular Sciences and Nanosystems, Scientific Campus, Ca’ Foscari University of Venice, Via Torino, 155 – Venezia Mestre, Italy
| | - Kohei Kusada
- Department of Molecular Sciences and Nanosystems, Scientific Campus, Ca’ Foscari University of Venice, Via Torino, 155 – Venezia Mestre, Italy
- Graduate School of Science, Kyoto University Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroshi Kitagawa
- Graduate School of Science, Kyoto University Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Alvise Perosa
- Department of Molecular Sciences and Nanosystems, Scientific Campus, Ca’ Foscari University of Venice, Via Torino, 155 – Venezia Mestre, Italy
| | - Lidia Castoldi
- Department of Energy, Milan Polytechnic, Campus Bovisa – Via Lambruschini, 4a – 20156 Milano, Italy
| | - Daniele Polidoro
- Department of Molecular Sciences and Nanosystems, Scientific Campus, Ca’ Foscari University of Venice, Via Torino, 155 – Venezia Mestre, Italy
| | - Maurizio Selva
- Department of Molecular Sciences and Nanosystems, Scientific Campus, Ca’ Foscari University of Venice, Via Torino, 155 – Venezia Mestre, Italy
| |
Collapse
|
9
|
Yang Y, Ren Z, Zhou S, Wei M. Perspectives on Multifunctional Catalysts Derived from Layered Double Hydroxides toward Upgrading Reactions of Biomass Resources. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00699] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhen Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shijie Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
10
|
Wang Z, Guo S, Wang Z, Li F, Xue W, Wang Y. A highly efficient rod-like-CeO 2-supported palladium catalyst for the oxidative carbonylation of glycerol to glycerol carbonate. RSC Adv 2021; 11:17072-17079. [PMID: 35479701 PMCID: PMC9032912 DOI: 10.1039/d1ra02187g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
A rod-like-CeO2-supported Pd catalyst (Pd/CeO2-r) was prepared using two-step hydrothermal impregnation and used in the oxidative carbonylation of glycerol to produce glycerol carbonate. The characterization results showed that the Pd was highly dispersed on the surface of the CeO2-r, and metallic Pd was the main species in the catalyst. The Pd/CeO2-r exhibited good catalytic performance for the oxidative carbonylation of glycerol. Under optimized reaction conditions, the glycerol conversion and glycerol carbonate selectivity were 93% and 98%, respectively, and turnover frequency was 1240 h−1. However, because of the leaching of Pd and the growth of Pd particles, the catalyst was gradually deactivated throughout reuse. Pd/CeO2-r was prepared by a two-step hydrothermal-impregnation method for oxidative carbonylation of glycerol. It exhibited high activity, and glycerol conversion was 93% and glycerol carbonate selectivity was 98% with a TOF of 1240 h−1 under optimized conditions.![]()
Collapse
Affiliation(s)
- Ziyan Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Shuo Guo
- Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 China
| | - Zhimiao Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China .,Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 China
| | - Fang Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China .,Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 China
| | - Wei Xue
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China .,Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 China
| | - Yanji Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China .,Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 China.,Hebei Industrial Technology Research Institute of Green Chemical Industry Huanghua 061100 Hebei China
| |
Collapse
|
11
|
Hu T, Yu Z, Liu S, Liu B, Sun Z, Liu YY, Wang A, Wang Y. Citric acid modified Ni 3P as a catalyst for aqueous phase reforming and hydrogenolysis of glycerol to 1,2-PDO. NEW J CHEM 2021. [DOI: 10.1039/d1nj04179g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The addition of citric acid reduced the Ni3P particle size, leading to high performance in glycerol hydrogenolysis without external H2.
Collapse
Affiliation(s)
- Tianyu Hu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiquan Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shan Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bingyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhichao Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ying-Ya Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
12
|
Sahu A, Mondal K, Pala RG. Activated Porous Highly Enriched Platinum and Palladium Electrocatalysts from Dealloyed Noncrystalline Alloys for Enhanced Hydrogen Evolution. ChemElectroChem 2020. [DOI: 10.1002/celc.202001230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arti Sahu
- Department of Chemical Engineering Indian Institute of Technology Kanpur 208016 India
| | - Kallol Mondal
- Department of Material Science and Engineering Indian Institute of Technology Kanpur 208016 India
| | - Raj Ganesh Pala
- Department of Chemical Engineering Indian Institute of Technology Kanpur 208016 India
- Materials Science Programme Indian Institute of Technology Kanpur 208016 India
| |
Collapse
|
13
|
Liu J, Ruan L, Liao J, Pei A, Yang K, Zhu L, Chen BH. Magnesium hydroxide–supported ruthenium as an efficient and stable catalyst for glycerol-selective hydrogenolysis without addition of base and acid additives. NEW J CHEM 2020. [DOI: 10.1039/d0nj03157g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ru/Mg(OH)2(S) exhibited high catalytic activity and selectivity to 1,2-propanediol for glycerol hydrogenolysis without any base and acid additives.
Collapse
Affiliation(s)
- Jun Liu
- College of Chemistry and Chemical Engineering
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Luna Ruan
- College of Chemistry and Chemical Engineering
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Jianhua Liao
- School of Pharmaceutical Sciences
- Gannan Medical University
- Ganzhou 341000
- China
| | - An Pei
- College of Chemistry and Chemical Engineering
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Kai Yang
- College of Chemistry and Chemical Engineering
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Lihua Zhu
- College of Chemistry and Chemical Engineering
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Bing Hui Chen
- Department of Chemical and Biochemical Engineering
- National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|