1
|
Hsu CY, AL-Salman H, Hussein HH, Juraev N, Mahmoud ZH, Al-Shuwaili SJ, Hassan Ahmed H, Ali Ami A, Ahmed NM, Azat S, kianfar E. Experimental and theoretical study of improved mesoporous titanium dioxide perovskite solar cell: The impact of modification with graphene oxide. Heliyon 2024; 10:e26633. [PMID: 38404854 PMCID: PMC10884932 DOI: 10.1016/j.heliyon.2024.e26633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
The present study serves experimental and theoretical analyses in developing a hybrid advanced structure as a photolysis, which is based on electrospun Graphene Oxide-titanium dioxide (GO-TiO2) nanofibers as an electron transfer material (ETMs) functionalized for perovskite solar cell (PVSCs) with GO. The prepared ETMs were utilized for the synthesis of mixed-cation (FAPbI3)0.8(MAPbBr3)0.2. The effect of GO on TiO2 and their chemical structure, electronic and morphological characteristic were investigated and discussed. The elaborated device, namely ITO/Bl-TiO2/3 wt% GO-TiO2/(FAPbI3)0.8(MAPbBr3)0.2/spiro-MeTAD/Pt, displayed 20.14% disposition and conversion solar energy with fill factor (FF) of 1.176%, short circuit current density (Jsc) of 20.56 mA/cm2 and open circuit voltage (VOC) 0.912 V. The obtained efficiency is higher than titanium oxide (18.42%) and other prepared GO-TiO2 composite nanofibers based ETMs. The developed materials and device would facilitate elaboration of advanced functional materials and devices for energy storage applications.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - H.N.K. AL-Salman
- Pharmaceutical Chemistry Department, college of Pharmacy, University of Basrah, Iraq
| | - Hussein H. Hussein
- Pharmaceutical Chemistry Department, college of Pharmacy, University of Basrah, Iraq
| | - Nizomiddin Juraev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan
- Scientific and Innovation Department, Tashkent State Pedagogical University, Tashkent, Uzbekistan
| | - Zaid H. Mahmoud
- University of Diyala, college of sciences, chemistry department, Iraq
| | - Saeb Jasim Al-Shuwaili
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad, 10011, Iraq
| | | | - Ahmed Ali Ami
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Nahed Mahmood Ahmed
- college of pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Seitkhan Azat
- Satbayev University, Satbayev Str. 22a, 050013, Almaty, Kazakhstan
| | - Ehsan kianfar
- Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| |
Collapse
|
2
|
Zhang C, Wang R, He A. In-situ preparation of TBIR/CB nanocomposites and its regulation in structure and properties of NR based composites. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Mburu MM, Au-Duong AN, Li WT, Wu CC, Cheng YH, Chen KL, Chiang WH, Chiu YC. The Impacts of Polyisoprene Physical Interactions on Sorting of Single-Wall Carbon Nanotubes. Macromol Rapid Commun 2021; 42:e2100327. [PMID: 34288205 DOI: 10.1002/marc.202100327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/03/2021] [Indexed: 12/28/2022]
Abstract
Conjugated polymer sorting is currently the best method to select large-diameter single-walled carbon nanotubes (SWCNTs) with tunable narrow chirality in the adaption of highly desired electronics applications. The acceleration on conjugated polymers-SWCNTs interaction with long-term stability through different molecular designs; for example, longer alkyl side-chains or conjugation moieties have been extensively developed in recent years. However, the importance of the macromolecules with abundant van der Waals (VDW) interaction in the conjugated-based block copolymer system acting during SWCNTs sorting is not clearly demonstrated. In this work, a conjugated diblock copolymer involving polyisoprene (PI) and highly dense π-interaction of poly (9,9-dioctylfluorene) (PFO) is utilized to investigate the impact of natural rubber PI physical interaction on sorting effectiveness and stability. Through the rational design of diblock copolymer, PFO with ≈1200 isoprene units can remarkably enhance SWCNTs sorting ability and selected few chiralities with a diameter of ≈0.83-1.1 nm and highly stable solution for more than 1 year. The introduction of long-chain PI system is attributed not only to form weak VDW force with SWCNTs and strengthen the wrapping of PFO around the semiconducting SWCNTs but also to act as a barrier among nanotubes to prevent reaggregation of sorted SWCNTs.
Collapse
Affiliation(s)
- Maina Moses Mburu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Rd., Da'an Dist., Taipei City, 10607, Taiwan
| | - Ai-Nhan Au-Duong
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Rd., Da'an Dist., Taipei City, 10607, Taiwan
| | - Wei-Ting Li
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Rd., Da'an Dist., Taipei City, 10607, Taiwan
| | - Chung-Ching Wu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Rd., Da'an Dist., Taipei City, 10607, Taiwan
| | - Yu-Hsuan Cheng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Rd., Da'an Dist., Taipei City, 10607, Taiwan
| | - Kai-Lin Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Rd., Da'an Dist., Taipei City, 10607, Taiwan.,Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Rd., Da'an Dist., Taipei City, 10607, Taiwan
| | - Yu-Cheng Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Rd., Da'an Dist., Taipei City, 10607, Taiwan.,Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|