1
|
Li J, Chen P, Zhang J, Ji Q, Yang M, Huang Y, Cheng YJ, Guo K, Xia Y. Having Your Cake and Eating It Too: Electrode Processing Approach Improves Safety and Electrochemical Performance of Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15561-15573. [PMID: 36918149 DOI: 10.1021/acsami.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A layered Li[NixCoyMn1-x-y]O2 (NCM)-based cathode is preferred for its high theoretical specific capacity. However, the two main issues that limit its practical application are severe safety issues and excessive capacity decay. A new electrode processing approach is proposed to synergistically enhance the electrochemical and safety performance. The polyimide's (PI) precursor is spin-coated on the LiNi0.5Co0.2Mn0.3O2 (NCM523) electrode sheet, and the homogeneous sulfonated PI layer is in situ produced by thermal imidization reaction. The PI-spin coated (PSC) layer provides improvements in capacity retention (86.47% vs 53.77% after 150 cycles at 1 C) and rate performance (99.21% enhancement at 5 C) as demonstrated by the NCM523-PSC||Li half-cell. The NCM523-PSC||graphite pouch full cell proves enhanced capacity retention (76.62% vs 58.58% after 500 cycles at 0.5 C) as well. The thermal safety of the NCM523-PSC cathode-based pouch cell is also significantly improved, with the critical temperature of thermal safety T1 (the beginning temperature of obvious self-heating temperature) and thermal runaway temperature T2 increased by 60.18 and 44.59 °C, respectively. Mechanistic studies show that the PSC layer has multiple effects as a passivation layer such as isolation of electrode-electrolyte contact, oxygen release suppression, solvation structure tuning, and the decomposition of carbonate solvents as well as LiPF6 inhibition. This work provides a new path for a cost-effective and scalable design of electrode decoration with synergistic safety-electrochemical kinetics enhancement.
Collapse
Affiliation(s)
- Jiapei Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, Zhejiang, P. R. China
| | - Peng Chen
- College of Materials Science & Engineering, Hunan University, Changsha, Hunan Province 410028, P. R. China
| | - Jing Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, Zhejiang, P. R. China
| | - Qing Ji
- Vehicle Energy and Safety Laboratory, Department of Mechanical Engineering, Ningbo University of Technology, Ningbo 315336, P. R. China
| | - Ming Yang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, Zhejiang, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, 166 Renai Road, Suzhou 215123, Jiangsu Province, P. R. China
| | - Yudai Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Ya-Jun Cheng
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, Zhejiang, P. R. China
| | - Kunkun Guo
- College of Materials Science & Engineering, Hunan University, Changsha, Hunan Province 410028, P. R. China
| | - Yonggao Xia
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, Zhejiang, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, Shijingshan District, P. R. China
| |
Collapse
|
2
|
Gan F, Jiang S, Zhou J, Wang J, Wen J, Mo J, Han S, Fan L, Yi N, Wu Y. Architecting dual coordination interactions in polyimide for constructing structurally controllable high-performance nanofiltration membranes. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Braid-reinforced polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltration (OSN). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Lakshmy KS, Lal D, Nair A, Babu A, Das H, Govind N, Dmitrenko M, Kuzminova A, Korniak A, Penkova A, Tharayil A, Thomas S. Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers (Basel) 2022; 14:polym14081604. [PMID: 35458354 PMCID: PMC9029804 DOI: 10.3390/polym14081604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pervaporation is one of the most active topics in membrane research, and it has time and again proven to be an essential component for chemical separation. It has been employed in the removal of impurities from raw materials, separation of products and by-products after reaction, and separation of pollutants from water. Given the global problem of water pollution, this approach is efficient in removing hazardous substances from water bodies. Conventional processes are based on thermodynamic equilibria involving a phase transition such as distillation and liquid-liquid extraction. These techniques have a relatively low efficacy and nowadays they are not recommended because it is not sustainable in terms of energy consumption and/or waste generation. Pervaporation emerged in the 1980s and is now becoming a popular membrane separation technology because of its intrinsic features such as low energy requirements, cheap separation costs, and good quality product output. The focus of this review is on current developments in pervaporation, mass transport in membranes, material selection, fabrication and characterization techniques, and applications of various membranes in the separation of chemicals from water.
Collapse
Affiliation(s)
- Kadavil Subhash Lakshmy
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Devika Lal
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Anandu Nair
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Allan Babu
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Haritha Das
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Neethu Govind
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Aleksandra Korniak
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
- Correspondence: (A.P.); (A.T.)
| | - Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
- Correspondence: (A.P.); (A.T.)
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| |
Collapse
|
5
|
Yang R, Chen MY, Li P. Carbon molecular sieve hollow fiber composite membrane derived from PMDA-ODA polyimide for gas separation. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083211032384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carbon molecular sieve (CMS) membranes have excellent gas separation property over conventional polymeric membranes and superior anti-swelling property. PMDA-ODA polyimide has high thermal stability and good mechanical property. It has been extensively adopted as the precursor of CMS membrane. However, due to the insoluble nature, PMDA-ODA CMS membranes are limited to configurations like dense symmetric films or composite membranes using porous inorganic or metal substrates. In this work, CMS hollow fiber composite membranes based on an asymmetric PMDA-ODA hollow fiber were successfully prepared for the first time. The neat PMDA-ODA hollow fiber membrane was crosslinked by polyethyleneimine to alleviate pore collapsing during carbonization and then dip-coated by a PMDA-ODA PAA solution to seal the surface defects. The PDMA-ODA CMS composite hollow fiber membranes showed gas permeances of 93.4 GPU, 19.6 GPU, 6.5 GPU, and 4.7 GPU for CO2, O2, N2, and CH4, respectively, with an ideal selectivity of 14.4, 3.0, and 19.8 for CO2/N2, O2/N2, and CO2/CH4 gas pairs, respectively. The attractive gas separation property shows a great potential for industrial application.
Collapse
Affiliation(s)
- Rui Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ming Yang Chen
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Pei Li
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
6
|
Dai Z, Bao Z, Ding S, Liu C, Sun H, Wang H, Zhou X, Wang Y, Yin Y, Li X. Scalable Polyimide-Poly(Amic Acid) Copolymer Based Nanocomposites for High-Temperature Capacitive Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101976. [PMID: 34807475 DOI: 10.1002/adma.202101976] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The developments of next-generation electric power systems and electronics demand for high temperature (≈150 °C), high energy density, high efficiency, scalable, and low-cost polymer-based dielectric capacitors are still scarce. Here, the nanocomposites based on polyimide-poly(amic acid) copolymers with a very low amount of boron nitride nanosheets are designed and synthesized. Under the actual working condition in hybrid electric vehicles of 200 MV m-1 and 150 °C, a high energy density of 1.38 J cm-3 with an efficiency higher than 96% is achieved. This is about 2.5 times higher than the room temperature energy density (≈0.39 J cm-3 under 200 MV m-1 ) of the commercially used biaxially oriented polypropylene, the benchmark of dielectric polymer. Especially, the energy density and efficiency at 150 °C show no sign of degradation after 20 000 cycles of charge-discharge test and 35 days' high-temperature endurance test. This research provides an effective and low-cost strategy to develop high-temperature polymer-based capacitors.
Collapse
Affiliation(s)
- Zhizhan Dai
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhiwei Bao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Song Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chuanchuan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Haoyang Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - He Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yuchen Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yuewei Yin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaoguang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
7
|
Chen M, Yang R, Li P. Preparation of defect-free hollow fiber membranes derived from PMDA-ODA polyimide for gas separation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Fabrication of high-performance composite membranes based on hierarchically structured electrospun nanofiber substrates for pervaporation desalination. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Abdollahi E, Heidari A, Mohammadi T, Asadi AA, Ahmadzadeh Tofighy M. Application of Mg-Al LDH nanoparticles to enhance flux, hydrophilicity and antifouling properties of PVDF ultrafiltration membrane: Experimental and modeling studies. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117931] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Zhao B, Shi GM, Wang KY, Lai JY, Chung TS. Employing a green cross-linking method to fabricate polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltration (OSN). Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117702] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Yuan XS, Liu W, Zhu WY, Zhu XX. Enhancement in Flux and Antifouling Properties of Polyvinylidene Fluoride/Polycarbonate Blend Membranes for Water Environmental Improvement. ACS OMEGA 2020; 5:30201-30209. [PMID: 33251454 PMCID: PMC7689897 DOI: 10.1021/acsomega.0c04656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
In this work, to overcome the fouling phenomenon of hydrophobic polymer membranes, polyvinylidene fluoride (PVDF) was blended with hydrophilic polycarbonate (PC) to prepare ultrafiltration membranes via the nonsolvent-induced phase separation method. The effects of PC content on membrane morphology, pore size distribution, and surface porosity were characterized and investigated by FE-SEM and image analyzer software. Solubility parameters calculated by molecular dynamics (MD) simulation showed that PVDF and PC are compatible and the results were confirmed by differential scanning calorimetry and wide angle X-ray diffractometry. The long-term chemical stability against NaOH and mechanical property before and after the abrasion test of the prepared membranes were also characterized by dynamic thermomechanical analysis. It was found that the hydrophilicity, water flux, abrasion resistance, and antifouling properties as the performance criteria of polymeric membranes were improved because of the presence of PC, and the separation efficiency of PVDF/PC membranes is much higher than that of the pristine PVDF membrane. The exemplary water filtration performances of these polymer membranes are harnessed here in this work to purify raw water polluted by natural organic matters, addressing the key environmental issue of water contamination.
Collapse
Affiliation(s)
- Xiao Song Yuan
- College
of Forestry, Guizhou University, Guiyang 550025, China
- School
of Science, Guizhou Institute of Technology, Guiyang 550003, China
| | - Wei Liu
- School
of Materials and Energy Engineering, Guizhou
Institute of Technology, Guiyang 550003, China
| | - Wei Ya Zhu
- School
of Materials and Energy Engineering, Guizhou
Institute of Technology, Guiyang 550003, China
| | - Xun Xian Zhu
- School
of Materials and Energy Engineering, Guizhou
Institute of Technology, Guiyang 550003, China
| |
Collapse
|