1
|
Thompson S, Gutierrez AM, Bukowski J, Bhattacharyya D. Microfiltration Membrane Pore Functionalization with Primary and Quaternary Amines for PFAS Remediation: Capture, Regeneration, and Reuse. Molecules 2024; 29:4229. [PMID: 39275076 PMCID: PMC11397369 DOI: 10.3390/molecules29174229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The widespread production and use of multi-fluorinated carbon-based substances for a variety of purposes has contributed to the contamination of the global water supply in recent decades. Conventional wastewater treatment can reduce contaminants to acceptable levels, but the concentrated retentate stream is still a burden to the environment. A selective anion-exchange membrane capable of capture and controlled release could further concentrate necessary contaminants, making their eventual degradation or long-term storage easier. To this end, commercial microfiltration membranes were modified using pore functionalization to incorporate an anion-exchange moiety within the membrane matrix. This functionalization was performed with primary and quaternary amine-containing polymer networks ranging from weak to strong basic residues. Membrane loading ranged from 0.22 to 0.85 mmol/g membrane and 0.97 to 3.4 mmol/g membrane for quaternary and primary functionalization, respectively. Modified membranes exhibited a range of water permeances within approximately 45-131 LMH/bar. The removal of PFASs from aqueous streams was analyzed for both "long-chain" and "short-chain" analytes, perfluorooctanoic acid and perfluorobutyric acid, respectively. Synthesized membranes demonstrated as high as 90% rejection of perfluorooctanoic acid and 50-80% rejection of perfluorobutyric acid after 30% permeate recovery. Regenerated membranes maintained the capture performance for three cycles of continuous operation. The efficiency of capture and reuse can be improved through the consideration of charge density, water flux, and influent contaminant concentration. This process is not limited by the substrate and, thus, is able to be implemented on other platforms. This research advances a versatile membrane platform for environmentally relevant applications that seek to help increase the global availability of safe drinking water.
Collapse
Affiliation(s)
- Sam Thompson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Angela M Gutierrez
- Sustainability and Analytical Equipment Facility, University of Kentucky, Lexington, KY 40506, USA
| | - Jennifer Bukowski
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
2
|
Léniz-Pizarro F, Rudel HE, Briot NJ, Zimmerman JB, Bhattacharyya D. Membrane Functionalization Approaches toward Per- and Polyfluoroalkyl Substances and Selected Metal Ion Separations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44224-44237. [PMID: 37688548 DOI: 10.1021/acsami.3c08478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Adsorption and ion exchange technologies are two of the most widely used approaches to separate pollutants from water; however, their intrinsic diffusion limitations continue to be a challenge. Pore functionalized membranes are a promising technology that can help overcome these challenges, but the extents of their competitive benefits and broad applicability have not been systematically evaluated. Herein, three types of adsorptive/ion exchange (IX) polymers containing strong/weak acid, strong base, and iron-chitosan complex groups were synthesized in the pores and partially on the surface of microfiltration (MF) membranes and tested for the removal of organic and inorganic cations and anions from water, including arsenic, per- and polyfluoroalkyl substances (PFAS), and calcium (hardness). When directly compared with beads (0.5-6 mm) and crushed resins (0.05 mm), adsorptive/IX pore-functionalized membranes demonstrated an increased relative sorption capacity, up to 2 orders of magnitude faster kinetics and the ability to regenerate up to 70-100% of their capacity while concentrating the initial solution concentration up to 12 times. The simple and versatile synthesis approach used to functionalize membranes, notably independent of the polymer type of the MF membrane, utilized pores throughout the entire cross section of the membrane to immobilize the polymers that contain the functional groups. Utilizing the pore volume of commercial membranes (6-112 mL/m2), the scientific weight capacity of the polymer (3.1-11.5 mequiv/g), and the synthesis conditions (e.g., monomer concentration), the theoretical adsorption/IX capacities per area of the membranes were calculated to be as high as 550 mequiv/m2, substantially higher than the 175 mequiv/m2 value needed to compete with commercially available IX resins. This work therefore shows that pore functionalized membranes are a promising path to tackle water contamination challenges, lowering separation diffusion limitations.
Collapse
Affiliation(s)
- Francisco Léniz-Pizarro
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
- Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Holly E Rudel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Nicolas J Briot
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
- Electron Microscopy Center, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Julie B Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
- Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
3
|
Wan H, Islam MS, Tarannum T, Shi K, Mills R, Yi Z, Fang F, Lei L, Li S, Ormsbee L, Xu Z, Bhattacharyya D. Reactive membranes for groundwater remediation of chlorinated aliphatic hydrocarbons: competitive dechlorination and cost aspects. Sep Purif Technol 2023; 320:123955. [PMID: 38303990 PMCID: PMC10830166 DOI: 10.1016/j.seppur.2023.123955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A nanocomposite membrane incorporating reactive Pd-Fe nanoparticles (NPs) was developed to remediate chlorinated aliphatic hydrocarbons (CAHs) from groundwater. Other than recapturing the produced Fen+ for in-situ regeneration, the functionalized polyanions prevented NPs agglomeration and resulting in a spherical Fe0 core (55 nm, O/Fe = 0.05) and an oxidized shell (4 nm, O/Fe = 1.38). The reactive membranes degraded 92% of target CAHs with a residence time of 1.7 seconds. After long-term treatment and regeneration, reusability was confirmed through recovered reactivity, recurrence of Fe0 in X-ray photoelectron spectroscopy, and >96% remaining of Fe and Pd. The total cost (adjusted present value for 20 years) was estimated to be 13.9% lower than the granular activated carbon system, following an EPA work breakdown structure-based cost model. However, non-target CAHs from groundwater can compete for active sites, leading to decreased surface-area normalized dechlorination rate ( k sa ) by 28.2-79.9%. A hybrid nanofiltration (NF)/reactive membrane was proposed to selectively intercept larger competitors, leading to 54% increased dechlorination efficiency and 1.3 to 1.9-fold enlarged k sa . Overall, the practical viability of the developed reactive membranes was demonstrated by the stability, reusability, and cost advantages, while the optional NF strategy could alleviate competitive degradation towards complex water chemistry.
Collapse
Affiliation(s)
- Hongyi Wan
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Md. Saiful Islam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Tahiya Tarannum
- Department of Civil Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Ke Shi
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Zhiyuan Yi
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fumohan Fang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linfeng Lei
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyao Li
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lindell Ormsbee
- Department of Civil Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Zhi Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| |
Collapse
|
4
|
Arif M. A Critical Review of Palladium Nanoparticles Decorated in Smart Microgels. Polymers (Basel) 2023; 15:3600. [PMID: 37688226 PMCID: PMC10490228 DOI: 10.3390/polym15173600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Palladium nanoparticles (Pd) combined with smart polymer microgels have attracted significant interest in the past decade. These hybrid materials have unique properties that make them appealing for various applications in biology, environmental remediation, and catalysis. The responsive nature of the microgels in these hybrids holds great promise for a wide range of applications. The literature contains diverse morphologies and architectures of Pd nanoparticle-based hybrid microgels, and the architecture of these hybrids plays a vital role in determining their potential uses. Therefore, specific Pd nanoparticle-based hybrid microgels are designed for specific applications. This report provides an overview of recent advancements in the classification, synthesis, properties, characterization, and uses of Pd nanostructures loaded into microgels. Additionally, the report discusses the latest progress in biomedical, catalytic, environmental, and sensing applications of Pd-based hybrid microgels in a tutorial manner.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| |
Collapse
|
5
|
Mills R, Tvrdik C, Lin A, Bhattacharyya D. Enhanced Degradation of Methyl Orange and Trichloroethylene with PNIPAm-PMMA-Fe/Pd-Functionalized Hollow Fiber Membranes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2041. [PMID: 37513052 PMCID: PMC10386459 DOI: 10.3390/nano13142041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Trichloroethylene (TCE) is a prominent groundwater pollutant due to its stability, widespread contamination, and negative health effects upon human exposure; thus, an immense need exists for enhanced environmental remediation techniques. Temperature-responsive domains and catalyst incorporation in membrane domains bring significant advantages for toxic organic decontamination. In this study, hollow fiber membranes (HFMs) were functionalized with stimuli-responsive poly-N-isopropylacrylamide (PNIPAm), poly-methyl methacrylate (PMMA), and catalytic zero-valent iron/palladium (Fe/Pd) for heightened reductive degradation of such pollutants, utilizing methyl orange (MO) as a model compound. By utilizing PNIPAm's transition from hydrophilic to hydrophobic expression above the LCST of 32 °C, increased pollutant diffusion and adsorption to the catalyst active sites were achieved. PNIPAm-PMMA hydrogels exhibited 11.5× and 10.8× higher equilibrium adsorption values for MO and TCE, respectively, when transitioning from 23 °C to 40 °C. With dip-coated PNIPAm-PMMA-functionalized HFMs (weight gain: ~15%) containing Fe/Pd nanoparticles (dp~34.8 nm), surface area-normalized rate constants for batch degradation were determined, resulting in a 30% and 420% increase in degradation efficiency above 32 °C for MO and TCE, respectively, due to enhanced sorption on the hydrophobic PNIPAm domain. Overall, with functionalized membranes containing superior surface area-to-volume ratios and enhanced sorption sites, efficient treatment of high-volume contaminated water can be achieved.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| | - Cameron Tvrdik
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew Lin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
6
|
Huang T, Su Z, Hou K, Zeng J, Zhou H, Zhang L, Nunes SP. Advanced stimuli-responsive membranes for smart separation. Chem Soc Rev 2023. [PMID: 37184537 DOI: 10.1039/d2cs00911k] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membranes have been extensively studied and applied in various fields owing to their high energy efficiency and small environmental impact. Further conferring membranes with stimuli responsiveness can allow them to dynamically tune their pore structure and/or surface properties for efficient separation performance. This review summarizes and discusses important developments and achievements in stimuli-responsive membranes. The most commonly utilized stimuli, including light, pH, temperature, ions, and electric and magnetic fields, are discussed in detail. Special attention is given to stimuli-responsive control of membrane pore structure (pore size and porosity/connectivity) and surface properties (wettability, surface topology, and surface charge), from the perspective of determining the appropriate membrane properties and microstructures. This review also focuses on strategies to prepare stimuli-responsive membranes, including blending, casting, polymerization, self-assembly, and electrospinning. Smart applications for separations are also reviewed as well as a discussion of remaining challenges and future prospects in this exciting field. This review offers critical insights for the membrane and broader materials science communities regarding the on-demand and dynamic control of membrane structures and properties. We hope that this review will inspire the design of novel stimuli-responsive membranes to promote sustainable development and make progress toward commercialization.
Collapse
Affiliation(s)
- Tiefan Huang
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhixin Su
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Kun Hou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Hu Zhou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, 310058, China
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
7
|
Mills R, Baldridge KC, Bernard M, Bhattacharyya D. Recent Advances in Responsive Membrane Functionalization Approaches and Applications. SEP SCI TECHNOL 2022; 58:1202-1236. [PMID: 37063489 PMCID: PMC10103845 DOI: 10.1080/01496395.2022.2145222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022]
Abstract
In recent years, significant advances have been made in the field of functionalized membranes. With the functionalization using various materials, such as polymers and enzymes, membranes can exhibit property changes in response to an environmental stimulation, such as heat, light, ionic strength, or pH. The resulting responsive nature allows for an increased breadth of membrane uses, due to the developed functionalization properties, such as smart-gating filtration for size-selective water contaminant removal, self-cleaning antifouling surfaces, increased scalability options, and highly sensitive molecular detection. In this review, new advances in both fabrication and applications of functionalized membranes are reported and summarized, including temperature-responsive, pH-responsive, light-responsive, enzyme-functionalized, and two-dimensional material-functionalized membranes. Specific emphasis was given to the most recent technological improvements, current limitations, advances in characterization techniques, and future directions for the field of functionalized membranes.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Kevin C. Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Matthew Bernard
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| |
Collapse
|
8
|
Vauthier M, Serra CA. Controlled reversible aggregation of thermoresponsive polymeric nanoparticles by interfacial Diels-Alder reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Mills R, Vogler RJ, Bernard M, Concolino J, Hersh LB, Wei Y, Hastings JT, Dziubla T, Baldridge KC, Bhattacharyya D. Aerosol capture and coronavirus spike protein deactivation by enzyme functionalized antiviral membranes. COMMUNICATIONS MATERIALS 2022; 3:34. [PMID: 36406238 PMCID: PMC9674191 DOI: 10.1038/s43246-022-00256-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/02/2022] [Indexed: 06/16/2023]
Abstract
The airborne nature of coronavirus transmission makes it critical to develop new barrier technologies that can simultaneously reduce aerosol and viral spread. Here, we report nanostructured membranes with tunable thickness and porosity for filtering coronavirus-sized aerosols, combined with antiviral enzyme functionalization that can denature spike glycoproteins of the SARS-CoV-2 virus in low-hydration environments. Thin, asymmetric membranes with subtilisin enzyme and methacrylic functionalization show more than 98.90% filtration efficiency for 100-nm unfunctionalized and protein-functionalized polystyrene latex aerosol particles. Unfunctionalized membranes provided a protection factor of 540 ± 380 for coronavirus-sized particle, above the Occupational Safety and Health Administration's standard of 10 for N95 masks. SARS-CoV-2 spike glycoprotein on the surface of coronavirus-sized particles was denatured in 30 s by subtilisin enzyme-functionalized membranes with 0.02-0.2% water content on the membrane surface.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Ronald J. Vogler
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
- These authors contributed equally: Ronald J. Vogler, Matthew Bernard
| | - Matthew Bernard
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
- These authors contributed equally: Ronald J. Vogler, Matthew Bernard
| | - Jacob Concolino
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Louis B. Hersh
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jeffrey Todd Hastings
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Thomas Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Kevin C. Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
10
|
Léniz-Pizarro F, Vogler RJ, Sandman P, Harris N, Ormsbee LE, Liu C, Bhattacharyya D. Dual-Functional Nanofiltration and Adsorptive Membranes for PFAS and Organics Separation from Water. ACS ES&T WATER 2022; 2:863-872. [PMID: 35822195 PMCID: PMC9273029 DOI: 10.1021/acsestwater.2c00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Challenges associated with water separation technologies for per- and polyfluoroalkyl substances (PFASs) require efficient and sustainable processes supported by a proper understanding of the separation mechanisms. The solute rejections by nanofiltration (NF) at pH values near the membrane isoelectric point were compared to the size- and mass-transfer-dependent modeled rejection rates of these compounds in an ionized state. We find that the low pK a value of perfluorooctanoic acid (PFOA) relates to enhanced solute exclusions by minimizing the presence and partitioning of the protonated organic compound into the membrane domain. The effects of Donnan exclusion are moderate, and co-ion transport also contributes to the PFAS rejection rates. An additional support barrier with thermo-responsive (quantified by water permeance variation) adsorption/desorption properties allows for enhanced separations of PFAS. This was possible by successfully synthesizing an NF layer on top of a poly-N-isopropylacrylamide (PNIPAm) pore-functionalized microfiltration support structure. The support layer adsorbs organics (178 mg PFOA adsorbed/m2 membrane at an equilibrium concentration of 70 mg/L), and the simultaneous exclusion from the NF layer allows separations of PFOA and the smaller sized heptafluorobutyric acid from solutions containing 70 μg/L of these compounds at a high water flux of 100 L/m2-h at 7 bar.
Collapse
Affiliation(s)
- Francisco Léniz-Pizarro
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Ronald J Vogler
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Phillip Sandman
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Natalie Harris
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Lindell E Ormsbee
- Department of Civil Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chunqing Liu
- Membranes R&D Group, Honeywell UOP, Des Plaines, Illinois 60016, United States
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
11
|
Xu X, Bizmark N, Christie KSS, Datta SS, Ren ZJ, Priestley RD. Thermoresponsive Polymers for Water Treatment and Collection. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Chen Y, Fan S, Chen J, Deng L, Xiao Z. Catalytic Membrane Nanoreactor with Cu-Ag x Bimetallic Nanoparticles Immobilized in Membrane Pores for Enhanced Catalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9106-9115. [PMID: 35143180 DOI: 10.1021/acsami.1c22753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A catalytic membrane nanoreactor (CMNR) with Cu-Agx (where x is the millimolar concentration of AgNO3) bimetallic catalysts immobilized in membrane pores has been fabricated via coupling flowing synthesis and replacement reaction. Surface characterization by transmission electron microscopy (TEM) gives obvious evidence of the formation of Cu-Ag bimetallic core-shell nanostructures with Ag islands deposited on the Cu core metal. An apparent high shift phenomenon for the Cu element and a low shift phenomenon for the Ag element was determined by X-ray photoelectron spectroscopy (XPS), indicating a close interaction with the transfer of electron density from the Cu atom to the Ag atom. The hydrogenation catalysis of p-nitrophenol (p-NP) was tested to evaluate the catalytic performance. During the catalytic process, the Cu core acts as an electron-deficient site to adsorb and activate the -NO2 group for p-NP, and the Ag shell is beneficial for enhancing active H spilling to the Cu surface and then performing hydrogenation. A volcano-shaped apparent reaction rate constant can be achieved, which rises initially with the increasing Ag content and subsequently drops with a further increase in the Ag content. The highest value of 1071 min-1 can be achieved for CMNR immobilized with Cu-Ag2 owing to the suitable adsorption activation behavior and the best hydrogen spillover behavior.
Collapse
Affiliation(s)
- Yu Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Senqin Fan
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Jiaojiao Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Lei Deng
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zeyi Xiao
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| |
Collapse
|
13
|
Chen Y, Fan S, Qiu B, Chen J, Mai Z, Wang Y, Bai K, Xiao Z. Cu-Ag Bimetallic Core-shell Nanoparticles in Pores of a Membrane Microreactor for Enhanced Synergistic Catalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24795-24803. [PMID: 34008937 DOI: 10.1021/acsami.1c04155] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A bimetallic catalytic membrane microreactor (CMMR) with bimetallic nanoparticles in membrane pores has been fabricated via flowing synthesis. The bimetallic nanoparticle is successfully immobilized in membrane pores along its thickness direction. Enhanced synergistic catalysis can be expected in this CMMR. As a concept-of-proof, Cu-Ag core-shell nanoparticles have been fabricated and immobilized in membrane pores for p-nitrophenol (p-NP) hydrogenation. Transmission electron microscopy (TEM) for the characterization of the bimetallic core-shell nanostructure and X-ray photoelectron spectroscopy (XPS) for the characterization of the electron transfer behavior between Cu-Ag bimetal have been performed. The Ag shell on the core of Cu can improve the utilization of Ag atoms, and electron transfer between bimetallic components can promote the formation of high electron density active sites as well as active hydrogen with strong reducing properties on the Ag surface. The dispersed membrane pore can prevent nanoparticle aggregation, and the contact between the reaction fluid and catalyst is enhanced. The enhanced mass transfer can be achieved by the plug-flow mode during the process of hydrogenation catalysis. The p-NP conversion rate being over 95% can be obtained under the condition of a membrane flux of 1.59 mL·cm-2·min-1. This Cu-Ag/PES CMMR has good stability and has a potential application in industry.
Collapse
Affiliation(s)
- Yu Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Senqing Fan
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Boya Qiu
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Jiaojiao Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zenghui Mai
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Yilin Wang
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Ke Bai
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zeyi Xiao
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| |
Collapse
|