1
|
Chen Y, Li T, Guo H, Wang X, Cui W. Revealing the Mechanism of Converting CO 2 into Methanol by the Cu 2O and Oxygen Vacancy on MgO: Experiments and Density Functional Theory. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47662-47673. [PMID: 39186803 DOI: 10.1021/acsami.4c09920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Given the great significance of defect and Cu compounds for the reduction of CO2 as well as the few reaction mechanisms of converting CO2 into different hydrocarbons, the effects of oxygen vacancies and Cu2O on the reduction of CO2 were thoroughly investigated, and possible mechanisms were also proposed. A series of Cu2O/Ov-MgO catalysts were synthesized for photothermal catalytic reduction of CO2 to methanol under visible-light irradiation, among which the 7%Cu2O/Ov-MgO composite exhibited the best reduction activity and the yield of methanol was 19.78 μmol·g-1·h-1. The successful composite of Cu2O and Ov-MgO can yield a loose and porous nanosheet, uniform distribution, favorable absorbance and photoelectric performance, and increased specific surface area and adsorption ability of CO2, which are all vital to the adsorption and conversion of CO2. The introduction of oxygen vacancy and Cu2O not only promotes the adsorption of CO2 but also provides more electron-triggered CO2 activation. Density functional theory (DFT) calculation was also performed to reveal the reaction mechanism for effective enhanced CO2 reduction to ethanol or methanol by the comparison of CuO/MgO and Cu2O/Ov-MgO composites, illustrating the reaction pathways of different products. By comparing the key steps in determining the selectivity of C1 or C2, the kinetic barriers of obtaining CH3OH for the Cu2O/Ov-MgO composite with CH3OH as the main product were found to be lower than those of generating CH2*, while the opposite is true for CuO/MgO composites, whereby it may be easier to obtain more C2 products. These insights into the reaction mechanism of converting CO2 into different hydrocarbons are expected to provide guidance for the further design of high-performance photothermal catalytic CO2 reduction catalysts.
Collapse
Affiliation(s)
- Yayu Chen
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, Hebei Iron and Steel Laboratory, North China University of Science and Technology, Tangshan 063210, P. R. China
| | - Ting Li
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, Hebei Iron and Steel Laboratory, North China University of Science and Technology, Tangshan 063210, P. R. China
| | - Hongxia Guo
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, Hebei Iron and Steel Laboratory, North China University of Science and Technology, Tangshan 063210, P. R. China
| | - Xiao Wang
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, Hebei Iron and Steel Laboratory, North China University of Science and Technology, Tangshan 063210, P. R. China
| | - Wenquan Cui
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, Hebei Iron and Steel Laboratory, North China University of Science and Technology, Tangshan 063210, P. R. China
| |
Collapse
|
2
|
Amer MS, AlOraij HA, Huang KW, Al-Mayouf AM. Gray mesoporous SnO 2 catalyst for CO 2 electroreduction with high partial current density and formate selectivity. ENVIRONMENTAL RESEARCH 2024; 252:118897. [PMID: 38621631 DOI: 10.1016/j.envres.2024.118897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024]
Abstract
The mesoporous metal oxide semiconductors exhibit unique chemical and physical characteristics, making them highly desirable for catalysis, electrochemistry, energy conversion, and energy storage applications. Here, we report the facial fabrication of mesoporous gray SnO2 (MGS) electrocatalysts employing an evaporation-induced co-assembly (EICA) approach, utilizing poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers Pluronic P123 (PEO-PPO-PEO) triblock copolymer as a template for electrochemical CO2 reduction reaction (eCO2RR). By sustaining the co-assembly conditions and utilizing a thermal treatment technique based on carbon, gray mesoporous SnO2 materials with a high density of active sites and oxygen vacancies can be constructed. The MGS materials were employed in eCO2RR in a flow cell type, which exhibits excellent catalytic activity and selectivity toward formate with a high partial current density of -234 mA cm-2 and Faradaic efficiency (FE) of 93.60 % at -1.3 V vs. reversible hydrogen electrode (RHE). Interestingly, the mesoporous SnO2 with a 1.5 wt% ratio of Sn precursor to P123 surfactant (MS-1.5@350N-400A) electrode exhibits a high level of Faradaic efficiency (FE) of (98%) at a low overpotential of -0.6 VRHE, which is a seldom recorded performance for similar systems. A stable FE of 96 ± 1% was observed in the range of -0.6 to -1.2 VRHE, which is the result of a large surface area (184 m2/g) and a high number of active sites and oxygen vacancies within the mesostructured framework.
Collapse
Affiliation(s)
- Mabrook S Amer
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Haneen A AlOraij
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Kuo-Wei Huang
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Abdullah M Al-Mayouf
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
3
|
Kalra P, Ghosh D, Ingole PP. Favoring Product Desorption by a Tailored Electronic Environment of Oxygen Vacancies in SrTiO 3 via Cr Doping for Enhanced and Selective Electrocatalytic CO 2 to CO Conversion. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37314759 DOI: 10.1021/acsami.3c04190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electrochemical CO2 reduction reaction (ECO2RR) into value-added products is crucial to address the herculean task of CO2 mitigation. Several efforts are being made to develop active ECO2RR catalysts, targeting enhanced CO2 adsorption and activation. A rational design of ECO2RR catalysts with a facile product desorption step is seldom reported. Herein, ensuing the Sabatier principle, we report a strategy for an enhanced ECO2RR with a faradaic efficiency of 85% for CO production by targeting the product desorption step. The energy barrier for product desorption was lowered via a tailored electronic environment of oxygen vacancies (Ovac) in Cr-doped SrTiO3. The substitutional doping of Cr3+ for Ti4+ into the SrTiO3 lattice favors the generation of more Ovac and modifies the local electronic environment. Density functional theory analysis evinces the spontaneous dissociation of COOH# intermediates over Ovac and lower CO intermediate binding on Ovac reducing the energy demand for CO release due to Cr doping.
Collapse
Affiliation(s)
- Paras Kalra
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Dibyajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pravin P Ingole
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
4
|
Recent Progress in Surface-Defect Engineering Strategies for Electrocatalysts toward Electrochemical CO2 Reduction: A Review. Catalysts 2023. [DOI: 10.3390/catal13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Climate change, caused by greenhouse gas emissions, is one of the biggest threats to the world. As per the IEA report of 2021, global CO2 emissions amounted to around 31.5 Gt, which increased the atmospheric concentration of CO2 up to 412.5 ppm. Thus, there is an imperative demand for the development of new technologies to convert CO2 into value-added feedstock products such as alcohols, hydrocarbons, carbon monoxide, chemicals, and clean fuels. The intrinsic properties of the catalytic materials are the main factors influencing the efficiency of electrochemical CO2 reduction (CO2-RR) reactions. Additionally, the electroreduction of CO2 is mainly affected by poor selectivity and large overpotential requirements. However, these issues can be overcome by modifying heterogeneous electrocatalysts to control their morphology, size, crystal facets, grain boundaries, and surface defects/vacancies. This article reviews the recent progress in electrochemical CO2 reduction reactions accomplished by surface-defective electrocatalysts and identifies significant research gaps for designing highly efficient electrocatalytic materials.
Collapse
|
5
|
Ren T, Miao Z, Ren L, Xie H, Li Q, Xia C. Nanostructure Engineering of Sn-Based Catalysts for Efficient Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205168. [PMID: 36399644 DOI: 10.1002/smll.202205168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Excessive anthropogenic CO2 emission has caused a series of ecological and environmental issues, which threatens mankind's sustainable development. Mimicking the natural photosynthesis process (i.e., artificial photosynthesis) by electrochemically converting CO2 into value-added products is a promising way to alleviate CO2 emission and relieve the dependence on fossil fuels. Recently, Sn-based catalysts have attracted increasing research attentions due to the merits of low price, abundance, non-toxicity, and environmental benignancy. In this review, the paradigm of nanostructure engineering for efficient electrochemical CO2 reduction (ECO2 R) on Sn-based catalysts is systematically summarized. First, the nanostructure engineering of size, composition, atomic structure, morphology, defect, surficial modification, catalyst/substrate interface, and single-atom structure, are systematically discussed. The influence of nanostructure engineering on the electronic structure and adsorption property of intermediates, as well as the performance of Sn-based catalysts for ECO2 R are highlighted. Second, the potential chemical state changes and the role of surface hydroxides on Sn-based catalysts during ECO2 R are introduced. Third, the challenges and opportunities of Sn-based catalysts for ECO2 R are proposed. It is expected that this review inspires the further development of highly efficient Sn-based catalysts, meanwhile offer protocols for the investigation of Sn-based catalysts.
Collapse
Affiliation(s)
- Tiyao Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P. R. China
| | - Zhengpei Miao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Huan Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P. R. China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P. R. China
| |
Collapse
|
6
|
Tan X, Nielsen J. The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chem Soc Rev 2022; 51:4763-4785. [PMID: 35584360 DOI: 10.1039/d2cs00309k] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dependence on fossil fuels has caused excessive emissions of greenhouse gases (GHGs), leading to climate changes and global warming. Even though the expansion of electricity generation will enable a wider use of electric vehicles, biotechnology represents an attractive route for producing high-density liquid transportation fuels that can reduce GHG emissions from jets, long-haul trucks and ships. Furthermore, to achieve immediate alleviation of the current environmental situation, besides reducing carbon footprint it is urgent to develop technologies that transform atmospheric CO2 into fossil fuel replacements. The integration of bio-catalysis and electrocatalysis (bio-electrocatalysis) provides such a promising avenue to convert CO2 into fuels and chemicals with high-chain lengths. Following an overview of different mechanisms that can be used for CO2 fixation, we will discuss crucial factors for electrocatalysis with a special highlight on the improvement of electron-transfer kinetics, multi-dimensional electrocatalysts and their hybrids, electrolyser configurations, and the integration of electrocatalysis and bio-catalysis. Finally, we prospect key advantages and challenges of bio-electrocatalysis, and end with a discussion of future research directions.
Collapse
Affiliation(s)
- Xinyi Tan
- Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden. .,BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark
| |
Collapse
|
7
|
Cheng H, Fan Z, Wu X, Feng M, Zheng W, Lei G, Li X, Cui F, He G. Coordination engineering of the hybrid Co-C and Co-N active sites for efficient catalyzing CO2 electroreduction. J Catal 2022. [DOI: 10.1016/j.jcat.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|