1
|
Afshariazar F, Morsali A. Mixed-valence metal-organic frameworks: concepts, opportunities, and prospects. Chem Soc Rev 2025; 54:1318-1383. [PMID: 39704326 DOI: 10.1039/d4cs01061b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Owing to increasing global demand for the development of multifunctional advanced materials with various practical applications, great attention has been paid to metal-organic frameworks due to their unique properties, such as structural, chemical, and functional diversity. Several strategies have been developed to promote the applicability of these materials in practical fields. The induction of mixed-valency is a promising strategy, contributing to exceptional features in these porous materials such as enhanced charge delocalization, conductivity, magnetism, etc. The current review provides a detailed study of mixed-valence MOFs, including their fundamental properties, synthesis challenges, and characterization methods. The outstanding applicability of these materials in diverse fields such as energy storage, catalysis, sensing, gas sorption, separation, etc. is also discussed, providing a roadmap for future design strategies to exploit mixed valency in advanced materials. Interestingly, mixed-valence MOFs have demonstrated fascinating features in practical fields compared to their homo-valence MOFs, resulting from an enhanced synergy between mixed-valence states within the framework.
Collapse
Affiliation(s)
- Farzaneh Afshariazar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, PO Box 14115-4838, Tehran, Islamic Republic of Iran.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, PO Box 14115-4838, Tehran, Islamic Republic of Iran.
| |
Collapse
|
2
|
Qian C, Jiang H, Chen Y, Zhao Y, Niu C, Liu C, Fang D, Chen Y, Peng Q, Wu K, Shen H, Shen B, Zhao J, Liu J, Ling H, Wang Y, Wu D, Sun H. Tuning Interaction and Diffusion for Dimethyl Disulfide Adsorption on Cu-BTC Frameworks via Low Transition-Metal Doping. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cheng Qian
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Jiang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxiang Chen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhao
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Niu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chuanlei Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Diyi Fang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Chen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qilong Peng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kongguo Wu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haitao Shen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Benxian Shen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jigang Zhao
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jichang Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Ling
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiming Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Di Wu
- Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99163, United States
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
- Materials Science and Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Hui Sun
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Zhu Y, Wu D, Chen J, Ma N, Dai W. Enhanced water-resistant performance of Cu-BTC through polyvinylpyrrolidone protection and its capture ability evaluation of methylene blue. NEW J CHEM 2022. [DOI: 10.1039/d1nj05561e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water instability issues greatly restrict the application of Cu-BTC for cationic dye (e.g. methylene blue (MB)) capture from wastewater.
Collapse
Affiliation(s)
- Yingzhi Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Danping Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jiehong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Na Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Wei Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
5
|
Drout RJ, Gaidimas MA, Farha OK. Thermochemical Investigation of Oxyanion Coordination in a Zirconium-Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51886-51893. [PMID: 34008408 DOI: 10.1021/acsami.1c05271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous materials possess high internal surface areas and void fractions that make them valuable in several applications, including gas storage, heterogeneous catalysis, and water purification. Despite the plentiful effort allocated to porous materials research annually, few methods exist to directly monitor and characterize chemical events occurring within a pore's confines. The crystalline nature of zeolites, covalent organic frameworks (COFs), and metal-organic frameworks (MOFs) permit structural characterization by X-ray diffraction; yet, quantifying the thermodynamics of chemical processes and transformations remains tedious and error ridden. Herein, we employ isothermal titration calorimetry (ITC) to determine the full thermodynamic profile of oxyanion adsorption in a zirconium-based MOF, NU-1000. To further validate this method, which we recently introduced to the field, we replicated ITC experiments as bulk adsorption measurements to demonstrate the correlation between the extracted stoichiometric parameter from ITC thermograms and the MOF uptake capacity. Moreover, based on the calculated association constants, we accurately predicted which analytes might be able to displace others. For example, dihydrogen phosphate can displace selenate and sulfate because of its higher association constant (ΔGphosphate = -5.41 kcal/mol; ΔGselenate = -4.98 kcal/mol; ΔGsulfate = -4.77 kcal/mol). We monitored the exchange processes by titrating oxyanion-functionalized MOF samples with a more strongly binding analyte.
Collapse
Affiliation(s)
- Riki J Drout
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Madeleine A Gaidimas
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|