1
|
Mahmud E, Islam MR. Improved electrochemical performance of bio-derived plasticized starch/ reduced graphene oxide/ molybdenum disulfide ternary nanocomposite for flexible energy storage applications. Sci Rep 2023; 13:20967. [PMID: 38017146 PMCID: PMC10684543 DOI: 10.1038/s41598-023-48326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023] Open
Abstract
A ternary nanocomposite of plasticized starch (PS), reduced graphene oxide (rGO), and molybdenum disulfide (MoS2) was prepared via a solution casting process, with MoS2 concentrations ranging from 0.25 to 1.00 wt%. The structural, surface morphological, optical, and electrochemical properties of the nanocomposites were studied. FTIR analysis reveals the formation of new chemical bonds between PS, rGO, and MoS2, indicating strong interactions among them. The XRD analysis showed a reduction in the crystallinity of the nanocomposite from 40 to 21% due to the incorporation of nanofiller. FESEM micrograph showed an increment of the surface roughness due to the incorporation of rGO-MoS2 layers. UV-vis spectroscopy demonstrated a reduction of optical bandgap from 4.71 to 2.90 eV, resulting from enhanced charge transfer between the layers and defect states due to the addition of nanofillers. The incorporation of MoS2 increase the specific capacitance of the PS from 2.78 to 124.98 F g-1 at a current density of 0.10 mA g-1. The EIS analysis revealed that the nanofiller significantly reduces the charge transfer resistance from 4574 to 0 Ω, facilitating the ion transportation between the layers. The PS/rGO/MoS2 nanocomposite also exhibited excellent stability, retaining about 85% of its capacitance up to 10,000 charging-discharging cycles. These biocompatible polymer-based nanocomposites with improved electrochemical performance synthesized from an easy and economical route may offer a promising direction to fabricate a nature-friendly electrode material for energy storage applications.
Collapse
Affiliation(s)
- Eashika Mahmud
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Muhammad Rakibul Islam
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh.
| |
Collapse
|
2
|
Kaushik J, Sharma C, Lamba NK, Sharma P, Das GS, Tripathi KM, Joshi RK, Sonkar SK. 3D Porous MoS 2-Decorated Reduced Graphene Oxide Aerogel as a Heterogeneous Catalyst for Reductive Transformation Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12865-12877. [PMID: 37639338 DOI: 10.1021/acs.langmuir.3c01785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The MoS2-based reduced graphene oxide aerogel (MoS2-rGOA)-assisted organic transformation reactions are presented. MoS2-rGOA is used as a heterogeneous catalyst for the reduction of benzene derivatives such as benzaldehyde, nitrobenzene, and benzonitrile to benzyl alcohol, aniline, and benzamide and their derivatives, respectively, in green solvents (water/methanol) and green reducing agents (hydrazine hydrate having N2 and H2 as byproducts). The mechanistic features of the reduction pathway, substrate scope, and the best suitable conditions by varying the temperature, solvent, reducing agent, catalyst loading, time, etc. are optimized. All of the synthesized products are obtained in quantitative yield with purity and well characterized based on nuclear magnetic resonance analysis. Further, it is also observed that our catalyst is efficiently recyclable and works well checked up to 5 cycles.
Collapse
Affiliation(s)
- Jaidev Kaushik
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Charu Sharma
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Nicky Kumar Lamba
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Purshotam Sharma
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Gouri Sankar Das
- Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam 530003, Andhra Pradesh, India
| | - Kumud Malika Tripathi
- Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam 530003, Andhra Pradesh, India
| | - Raj Kumar Joshi
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| |
Collapse
|
3
|
Bao Y, Wang B, Du C, Shi Q, Xu W, Wang Z. 2D Nano-Mica Sheets Assembled Membranes for High-Efficiency Oil/Water Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2895. [PMID: 36079934 PMCID: PMC9457926 DOI: 10.3390/nano12172895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Oil-polluted water has become one of the most important environmental concerns nowadays due to the increasing industrial oily wastewater and frequent oil spill accidents. Herein, a novel two-dimensional (2D) nano-mica sheets assembled composite membrane with underwater super-oleophobic properties was developed for effective oil/water separation. A 2D nano-mica sheet was synthesized by a facile solvent-assisted ultrasonic exfoliation and then the obtained 2D nano-mica sheets were co-deposited with dopamine on polyvinylidene fluoride substrate to prepare nano-mica composite membranes (NCM). The NCM is hydrophilic in air and super-oleophobic underwater (the water contact angle in the air is 37.6°, and the oil contact angle in water is 151.4°). Furthermore, the prepared NCM provided outstanding stability in different acid-base environments (pH = 1-11). Noteworthily, the oil removal rate is higher than 99.5% as the sodium dodecyl sulfate SDS-stabilized oil (soya-bean oil, mineral oil and pump oil) -in-water emulsions. Meanwhile, the NCM showed excellent reusability, as the oil removal efficiency kept at 99.0% after ten soya-bean oil-in-water or mineral oil-in-water emulsion filtration cycles. The present work paved a new way for developing a low-cost and environmentally friendly strategy for oily wastewater treatment and developed a high-increment utilization application field for natural minerals.
Collapse
Affiliation(s)
- Yan Bao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Bin Wang
- Informatization Office, Shandong University, Ji’nan 250100, China
| | - Conghui Du
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qiuhui Shi
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wenlong Xu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zhining Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
4
|
Yang Q, Su W, Hu J, Xu Y, Liu Z, Hui L. Synthesis of Superhydrophobic Cellulose Stearoyl Ester for Oil/Water Separation. NANOMATERIALS 2022; 12:nano12121964. [PMID: 35745303 PMCID: PMC9227421 DOI: 10.3390/nano12121964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023]
Abstract
Developing fluorine-free superhydrophobic and biodegradable materials for oil/water separation has already become an irresistible trend. In this paper, we designed two biopolymer oil/water separation routes based on cellulose stearoyl ester (CSE), which was obtained via the acylation reaction between dissolving pulp and stearoyl chloride homogeneously. The CSE showed a superhydrophobic property, which could selectively adsorb oil from the oil/water mixture. Additionally, the CSE was emulsified with an oxidized starch (OS) solution, and the resulting latex was used to impregnate commercial, filter base paper, finally obtaining a hydrophobic and oleophilic membrane. The SEM revealed the membrane had hierarchical micro/nanostructures, while the water contact angle indicated the low surface energy of the membrane, all of which were attributed to the CSE. The membrane had high strength and long durability due to the addition of OS/CSE, and the separation efficiency was more than 99% even after ten repeated uses.
Collapse
Affiliation(s)
| | | | | | | | - Zhong Liu
- Correspondence: (Z.L.); (L.H.); Tel.: +86-22-60602006 (Z.L. & L.H.)
| | - Lanfeng Hui
- Correspondence: (Z.L.); (L.H.); Tel.: +86-22-60602006 (Z.L. & L.H.)
| |
Collapse
|
5
|
Improved dyes separation performance of reduced graphene by incorporation MoS2 nanosheets. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Li C, Jiang L, Hu J, Xu C, Li Z, Liu W, Zhao X, Zhao B. Superhydrophilic-Superhydrophobic Multifunctional Janus Foam Fabrication Using a Spatially Shaped Femtosecond Laser for Fog Collection and Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9873-9881. [PMID: 35142217 DOI: 10.1021/acsami.1c24284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fog collection is an effective method for addressing water shortages in arid areas. By constructing a Janus structure with asymmetric wettability on its two sides, flexible and efficient fog capture can be achieved. However, in situ detection and fog collection on a Janus surface are still challenging tasks. Herein, a novel method for producing a superhydrophilic-superhydrophobic Janus fog collector is proposed; the method utilizes a combined process in which a spatially shaped femtosecond laser treatment (superhydrophilic) is applied to one side of a copper foam and a chemical replacement reaction (superhydrophobic) is applied to the other side of the copper foam. Two configurations of the Janus structure were designed to study different water transport behaviors. Furthermore, the Au micro-nanoparticle prepared adhered to the Janus structure, indicating the effectiveness of surface-enhanced Raman spectroscopy detection. The Janus foam shows excellent sensitivity and stability on testing the fog mixed with rhodamine 6G. This surface allows for the simultaneous collection and detection of fog, which can provide insights into the preparation of Janus multifunction structures and how such structures can play a key role in the subsequent purification and usage of water resources.
Collapse
Affiliation(s)
- Chen Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lan Jiang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, P. R. China
| | - Jie Hu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chenyang Xu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zihao Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wei Liu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiaoming Zhao
- Tianjin Navigation Instruments Research Institute, Tianjin 300131, P. R. China
| | - Bingquan Zhao
- Tianjin Navigation Instruments Research Institute, Tianjin 300131, P. R. China
| |
Collapse
|
7
|
Facile asymmetric modification of graphene nanosheets using κ-carrageenan as a green template. J Colloid Interface Sci 2021; 607:1131-1141. [PMID: 34571300 DOI: 10.1016/j.jcis.2021.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
The synthesis of Janus nanosheets using κ-carrageenan (κ-Ca) as a green template endows a greener and more straightforward method compared to traditional approaches of using wax template. We hypothesize that the hydrogen bonding interaction between κ-Ca and graphene oxide (GO) allows partial masking of GO's single facet, paving the way for the asymmetric modification of the exposed surface. GO is first encapsulated within the porous hydrogel matrix formed by κ-Ca to isolate one of the facets. The exposed surface was then selectively hydrophobized to produce an amphiphilic asymmetrically modified graphene oxide (AMGO). The properties of AMGO synthesized under different κ-Ca/GO ratios were studied. The κ-Ca/GO interactions and the properties of GO and AMGO were investigated and characterized. AMGO was successfully produced with a yield of 90.37 % under optimized synthesis conditions. The separation of κ-Ca and AMGO was conducted without organic solvents, and the κ-Ca could be subsequently recovered. Furthermore, the porous hydrogel matrix formed by κ-Ca and GO exhibited excellent shape-retaining properties with high thermal tolerance of up to 50 °C. Given these benefits, this newly developed method endows sustainability and open the possibility of formulating more flexible material synthesis protocols.
Collapse
|