1
|
Hussain J, Kim DK, Park S, Khalid MW, Hussain SS, Ali A, Lee B, Song M, Kim TS. Experimental and Computational Study of Optimized Gas Diffusion Layer for Polymer Electrolyte Membrane Electrolyzer. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4554. [PMID: 37444868 DOI: 10.3390/ma16134554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) and PEM electrolyzer are emerging technologies that produce energy with zero carbon emissions. However, the commercial feasibility of these technologies mostly relies on their efficiency, which is determined by individual parts, including the gas diffusion layer (GDL). GDL transfers fluid and charges while protecting other components form flooding and corrosion. As there is a very limited attention toward the simulation work, in this work, a novel approach was utilized that combines simulation and experimental techniques to optimize the sintering temperature of GDL. Ti64 GDL was produced through tape casting, a commercial method famous for producing precise thickness, uniform, and high-quality films and parameters such as slurry composition and rheology, casting parameters, drying, and debinding were optimized. The porosity and mechanical properties of the samples were tested experimentally at various sintering temperatures. The experimental results were compared with the simulated results achieved from the GeoDict simulation tool, showing around 96% accuracy, indicating that employing GeoDict to optimize the properties of Ti64 GDL produced via tape casting is a critical step towards the commercial feasibility of PEMFCs and electrolyzer. These findings significantly contribute to the development of sustainable energy solutions.
Collapse
Affiliation(s)
- Javid Hussain
- Industrial Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Dae-Kyeom Kim
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Sangmin Park
- Industrial Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Muhammad Waqas Khalid
- Industrial Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Sayed-Sajid Hussain
- Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ammad Ali
- Industrial Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Bin Lee
- Industrial Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Myungsuk Song
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Taek-Soo Kim
- Industrial Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| |
Collapse
|
2
|
Hussain J, Kim DK, Park S, Khalid MW, Hussain SS, Lee B, Song M, Kim TS. Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods & GeoDict: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4515. [PMID: 37444828 DOI: 10.3390/ma16134515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components, which are heavily influenced by the material and design. High-efficiency GDL must have excellent thermal conductivity, electrical conductivity, permeability, corrosion resistance, and high mechanical characteristics. The first step in creating a high-performance GDL is selecting the appropriate material. Therefore, titanium is a suitable substitute for steel or carbon due to its high strength-to-weight and superior corrosion resistance. The second crucial parameter is the fabrication method that governs all the properties. This review seeks to comprehend numerous fabrication methods such as tape casting, 3D printing, freeze casting, phase separation technique, and lithography, along with the porosity controller in each process such as partial sintering, input design, ice structure, pore agent, etching time, and mask width. Moreover, other GDL properties are being studied, including microstructure and morphology. In the future, GeoDict simulation is highly recommended for optimizing various GDL properties, as it is frequently used for other porous materials. The approach can save time and energy compared to intensive experimental work.
Collapse
Affiliation(s)
- Javid Hussain
- Industrial Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Dae-Kyeom Kim
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Sangmin Park
- Industrial Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Muhammad-Waqas Khalid
- Industrial Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Sayed-Sajid Hussain
- Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bin Lee
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Myungsuk Song
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Taek-Soo Kim
- Industrial Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| |
Collapse
|
3
|
He W, Low ZX, Feng S, Zhou Q, Zhang F, Zhong Z, Xing W. Prediction and Optimization of Interlayer-Interface Resistance for Expanded Polytetrafluoroethylene-Laminated Polyphenylene Sulfide Composite Membranes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wentai He
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Ze-Xian Low
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Shasha Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Qun Zhou
- Jiangsu Jiulang High-Tech Co., Ltd., Nanjing 210009, China
| | - Feng Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Jiulang High-Tech Co., Ltd., Nanjing 210009, China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
4
|
High-Performance photoinduced antimicrobial membrane toward efficient PM2.5-0.3 capture and Oil-Water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Lee K, Jung YW, Park H, Kim D, Kim J. Sequential Multiscale Simulation of a Filtering Facepiece for Prediction of Filtration Efficiency and Resistance in Varied Particulate Scenarios. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57908-57920. [PMID: 34802233 DOI: 10.1021/acsami.1c16850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This study explores a novel approach of multiscale modeling and simulation to characterize the filtration behavior of a facepiece in varied particulate conditions. Sequential multiscale modeling was performed for filter media, filtering facepiece, and testing setup. The developed virtual models were validated for their morphological characteristics and filtration performance by comparing with the data from the physical experiments. Then, a virtual test was conducted in consideration of a time scale, simulating diverse particulate environments with different levels of particle size distribution, particle concentration, and face velocity. An environment with small particles and high mass concentration resulted in a rapid buildup of resistance, reducing the service life. Large particles were accumulated mostly at the entrance of the filter layer, resulting in a lower penetration and slower buildup of resistance. This study is significant in that the adopted virtual approach enables the prediction of filtration behavior and service life, applying diverse environmental conditions without involving the costs of extra setups for the physical experiments. This study demonstrates a novel and economic research method that can be effectively applied to the research and development of filters.
Collapse
Affiliation(s)
- Kyeongeun Lee
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Reliability Assessment Center, FITI Testing & Research Institute, Seoul 07791, Korea
| | - Yeon-Woo Jung
- Reliability Assessment Center, FITI Testing & Research Institute, Seoul 07791, Korea
| | - Hanjou Park
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
| | - Dongmi Kim
- Digital Material Laboratory, Trinity Engineering, Seoul 07997, Korea
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|