1
|
Liu X, Poddar TK, Zhang J, Su X, Hawkins TR, Huang H. Techno-economic analysis and life cycle analysis of renewable natural gas production from brewery wastewater via ex-situ methanation processes. BIORESOURCE TECHNOLOGY 2025; 422:132234. [PMID: 39956521 DOI: 10.1016/j.biortech.2025.132234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/27/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
As sustainability becomes increasingly critical, the brewing industry encounters challenges in managing high-organic-content wastewater, a promising renewable energy source. This study evaluates the economic feasibility and environmental impacts of converting brewery wastewater into renewable natural gas (RNG) through anaerobic digestion and biogas upgrading, with an emphasis on different hydrogen sources for biomethanation. Four scenarios were analyzed: Scenario 1 uses purchased hydrogen, while Scenarios 2-4 use renewable hydrogen from microbial electrolysis cells and water electrolyzers. Results show that capital investments for processing 139 MT/h of wastewater, yielding 208 m3/h of RNG, range from 10.6 M to 31.9 M USD, with estimated minimum selling prices of RNG between 2.25 and 4.37 USD/m3. Life cycle greenhouse gas (GHG) emissions span from -21 to 32 g CO2-equivalent per MJ of RNG. This study presents key economic and environmental metrics for RNG production from brewery wastewater, offering insights to enhance sustainability in brewery wastewater management.
Collapse
Affiliation(s)
- Xuanbo Liu
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Tuhin K Poddar
- Systems Assessment Center, Energy Systems and Infrastructure Analysis Division, Argonne National Laboratory, Lemont, IL, USA
| | - Jingyi Zhang
- Systems Assessment Center, Energy Systems and Infrastructure Analysis Division, Argonne National Laboratory, Lemont, IL, USA
| | - Xueqian Su
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Troy R Hawkins
- Systems Assessment Center, Energy Systems and Infrastructure Analysis Division, Argonne National Laboratory, Lemont, IL, USA.
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
2
|
Bauzà M, Figuerola A, Turnes Palomino G, Palomino Cabello C. ZIF-8 derived carbon@3D-printed columns as efficient continuous-flow adsorbents of parabens from water. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136697. [PMID: 39637798 DOI: 10.1016/j.jhazmat.2024.136697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
In this study, we report a novel and cost-effective solution for removing parabens from water by combining MOF-derived porous carbons and 3D printing. In addition to being easy to prepare, the resulting 3D-printed device, with a cube-array structure, can also be fabricated in a robust column format for flow-through extraction of pollutants. Using an in-situ growth method, ZIF-8 MOF was directly deposited onto a 3D-printed device, achieving a stable and durable integration of the MOF onto the device. After the carbonization process, fully functional devices were obtained, entirely coated with a zinc-free carbon layer derived from ZIF-8, exhibiting both micro- and mesoporosity. c-ZIF-8@3D-printed cubes exhibited fast adsorption kinetics in batch conditions, achieving over 90 % extraction of ethylparaben within just 1 h, thanks to the mesoporosity of the obtained ZIF-8 derived carbon, as well as the possibility of establishing π-π interactions between it and the pollutant. Continuous-flow experiments demonstrated that c-ZIF-8@3D-printed columns showed high extraction efficiency for four parabens, maintaining removal rates between 83-92 % after 10 cycles. The columns also showed easy regeneration, enabling multiple uses of the 3D support and enhancing both the sustainability and efficiency of the water treatment process. Finally, the c-ZIF-8@3D-printed column was also tested for the simultaneous extraction of parabens from different real water samples with excellent results, confirming its potential for practical applications in water treatment.
Collapse
Affiliation(s)
- Marta Bauzà
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca E-07122, Spain
| | - Andreu Figuerola
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca E-07122, Spain
| | - Gemma Turnes Palomino
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca E-07122, Spain.
| | - Carlos Palomino Cabello
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca E-07122, Spain.
| |
Collapse
|
3
|
Molavi H, Mirzaei K, Barjasteh M, Rahnamaee SY, Saeedi S, Hassanpouryouzband A, Rezakazemi M. 3D-Printed MOF Monoliths: Fabrication Strategies and Environmental Applications. NANO-MICRO LETTERS 2024; 16:272. [PMID: 39145820 PMCID: PMC11327240 DOI: 10.1007/s40820-024-01487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024]
Abstract
Metal-organic frameworks (MOFs) have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials, thanks to their large specific surface area, high porosity, tailorable structures and compositions, diverse functionalities, and well-controlled pore/size distribution. However, most developed MOFs are in powder forms, which still have some technical challenges, including abrasion, dustiness, low packing densities, clogging, mass/heat transfer limitation, environmental pollution, and mechanical instability during the packing process, that restrict their applicability in industrial applications. Therefore, in recent years, attention has focused on techniques to convert MOF powders into macroscopic materials like beads, membranes, monoliths, gel/sponges, and nanofibers to overcome these challenges.Three-dimensional (3D) printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models. Therefore, this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications, emphasizing water treatment and gas adsorption/separation applications. Herein, the various strategies for the fabrication of 3D-printed MOF monoliths, such as direct ink writing, seed-assisted in-situ growth, coordination replication from solid precursors, matrix incorporation, selective laser sintering, and digital light processing, are described with the relevant examples. Finally, future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure, composition, and textural properties of 3D-printed MOF monoliths.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137-66731, Iran.
| | - Kamyar Mirzaei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Mahdi Barjasteh
- Center for Nano-Science and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, 15614, Iran
| | - Seyed Yahya Rahnamaee
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., P.O.Box 15875-4413, Tehran, Iran
| | - Somayeh Saeedi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137-66731, Iran
| | | | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, P.O. Box 3619995161, Iran.
| |
Collapse
|
4
|
Xu T, Jiang W, Tao Y, Abdellatief M, Cordova KE, Zhang YB. Popping and Locking: Balanced Rigidity and Porosity of Zeolitic Imidazolate Frameworks for High-Productivity Methane Purification. J Am Chem Soc 2024. [PMID: 38602012 DOI: 10.1021/jacs.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Zeolitic imidazolate frameworks (ZIFs) hold great promise in carbon capture, owing to their structural designability and functional porosity. However, intrinsic linker dynamics limit their pressure-swing adsorption application to biogas upgrading and methane purification. Recently, a functionality-locking strategy has shown feasibility in suppressing such dynamics. Still, a trade-off between structural rigidity and uptake capacity remains a key challenge for optimizing their high-pressure CO2/CH4 separation performance. Here, we report a sequential structural locking (SSL) strategy for enhancing the CO2 capture capacity and CH4 purification productivity in dynamic ZIFs (dynaZIFs). Specifically, we isolated multiple functionality-locked phases, ZIF-78-lt, -ht1, and -ht2, by activation at 50, 160, and 210 °C, respectively. We observed multiple-level locking through gas adsorption and powder X-ray diffraction. We uncovered an SSL mechanism dominated by linker-linker π-π interactions that transit to C-H···O hydrogen bonds with binding energies increasing from -0.64 to -2.77 and -5.72 kcal mol-1, respectively, as evidenced by single-crystal X-ray diffraction and density functional theory calculations. Among them, ZIF-78-ht1 exhibits the highest CO2 capture capacity (up to 18.6 mmol g-1) and CH4 purification productivity (up to 7.6 mmol g-1) at 298 K and 30 bar. These findings provide molecular and energetic insights into leveraging framework flexibility through the SSL mechanism to optimize porous materials' separation performance.
Collapse
Affiliation(s)
- Tongtong Xu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Wentao Jiang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yu Tao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Mahmoud Abdellatief
- Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), Allan 19252, Jordan
| | - Kyle E Cordova
- Integrated Materials Systems (iMS) Research Unit, Advanced Research Center, Royal Scientific Society, Amman 11941, Jordan
| | - Yue-Biao Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Wang Y, Rim G, Song M, Holmes HE, Jones CW, Lively RP. Cold Temperature Direct Air CO 2 Capture with Amine-Loaded Metal-Organic Framework Monoliths. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1404-1415. [PMID: 38109480 PMCID: PMC10788822 DOI: 10.1021/acsami.3c13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
Zeolites, silica-supported amines, and metal-organic frameworks (MOFs) have been demonstrated as promising adsorbents for direct air CO2 capture (DAC), but the shaping and structuring of these materials into sorbent modules for practical processes have been inadequately investigated compared to the extensive research on powder materials. Furthermore, there have been relatively few studies reporting the DAC performance of sorbent contactors under cold, subambient conditions (temperatures below 20 °C). In this work, we demonstrate the successful fabrication of adsorbent monoliths composed of cellulose acetate (CA) and adsorbent particles such as zeolite 13X and MOF MIL-101(Cr) by a 3D printing technique: solution-based additive manufacturing (SBAM). These monoliths feature interpenetrated macroporous polymeric frameworks in which microcrystals of zeolite 13X or MIL-101(Cr) are evenly distributed, highlighting the versatility of SBAM in fabricating monoliths containing sorbents with different particle sizes and density. Branched poly(ethylenimine) (PEI) is successfully loaded into the CA/MIL-101(Cr) monoliths to impart CO2 uptakes of 1.05 mmol gmonolith-1 at -20 °C and 400 ppm of CO2. Kinetic analysis shows that the CO2 sorption kinetics of PEI-loaded MIL-101(Cr) sorbents are not compromised in the monoliths compared to the powder sorbents. Importantly, these monoliths exhibit promising working capacities (0.95 mmol gmonolith-1) over 14 temperature swing cycles with a moderate regeneration temperature of 60 °C. Dynamic breakthrough experiments at 25 °C under dry conditions reveal a CO2 uptake capacity of 0.60 mmol gmonolith-1, which further increases to 1.05 and 1.43 mmol gmonolith-1 at -20 °C under dry and humid (70% relative humidity) conditions, respectively. Our work showcases the successful implementation of SBAM in making DAC sorbent monoliths with notable CO2 capture performance over a wide range of sorption temperatures, suggesting that SBAM can enable the preparation of efficient sorbent contactors in various form factors for other important chemical separations.
Collapse
Affiliation(s)
- Yuxiang Wang
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Guanhe Rim
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - MinGyu Song
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Hannah E. Holmes
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Ryan P. Lively
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Sutens B, De Vos Y, Verougstraete B, Denayer JFM, Rombouts M. Potassium Silicate as Low-Temperature Binder in 3D-Printed Porous Structures for CO 2 Separation. ACS OMEGA 2023; 8:4116-4126. [PMID: 36743005 PMCID: PMC9893461 DOI: 10.1021/acsomega.2c07074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Activated carbon sorbents were directly 3D-printed into highly adaptable monolithic/multi-channel systems by using potassium silicate as a low-temperature binder. By employing emerging 3D-printing technologies, monolithic structured sorbents were printed and fully characterized using N2, Ar, and CO2-sorption and Hg-intrusion porosimetry. The CO2-capture performance and the required temperature for active-site regeneration were evaluated by thermogravimetric analysis-looping experiments. A mechanically stable activated carbon sorbent was developed with an increased carbon capture performance, even when a room-temperature regeneration by N2 purging was applied. Although the CO2 uptake slightly dropped after several cycles due to incomplete recovery at room temperature, a capacity increase of 25% was observed in comparison with the original activated carbon powder. To improve the recovery of the active sorbent, an optimization of the desorption step was performed by increasing the regeneration temperature up to 150 °C. This resulted in a CO2 uptake of the composite material of 0.76 mmol/g, almost tripling the working capacity of the original activated carbon powder (0.28 mmol/g). An in situ X-ray diffraction study was carried out to confirm the proposed sorption mechanism, indicating the presence of potassium bicarbonates and confirming the combination of physisorption and chemisorption in our composites. Finally, the structured adsorbent was heated homogeneously by applying a current through the monolith. These results describe the development of a new type of 3D-printed regenerable CO2 sorbents by using potassium silicate as a low-temperature binder, providing high mechanical strength, good chemical and thermal stability, and improving the total CO2 capacity. Moreover, the developed monolith is showing a homogeneous resistivity, leading to uniform Joule heating of the CO2 adsorbent.
Collapse
Affiliation(s)
- Ben Sutens
- Sustainable
Materials Department, Flemish Institute
for Technological Research—VITO, Boeretang 200, 2400Mol, Belgium
| | - Yoran De Vos
- Sustainable
Materials Department, Flemish Institute
for Technological Research—VITO, Boeretang 200, 2400Mol, Belgium
| | - Brieuc Verougstraete
- Department
of Chemical Engineering, Vrije Universiteit
Brussel, 1050Brussels, Belgium
| | - Joeri F. M. Denayer
- Department
of Chemical Engineering, Vrije Universiteit
Brussel, 1050Brussels, Belgium
| | - Marleen Rombouts
- Sustainable
Materials Department, Flemish Institute
for Technological Research—VITO, Boeretang 200, 2400Mol, Belgium
| |
Collapse
|
7
|
Wang L, Fan S, Li X, Tadé MO, Liu S. Rational Design of Carbon-Based Porous Aerogels with Nitrogen Defects and Dedicated Interfacial Structures toward Highly Efficient CO 2 Greenhouse Gas Capture and Separation. ACS OMEGA 2022; 7:40184-40194. [PMID: 36385835 PMCID: PMC9647782 DOI: 10.1021/acsomega.2c05072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
CO2 capture from flowing flue gases through adsorption technology is essential to reduce the emission of CO2 to the atmosphere. The rational design of highly efficient carbon-based absorbents with interfacial structures containing interconnected porous structures and abundant adsorption sites might be one of the promising strategies. Here, we report the synthesis of nitrogen-doped carbon aerogels (NCAs) via prepolymerized phenol-melamine-formaldehyde organic aerogels (PMF) by controlling the addition amount of ZnCl2 and the precursor M/P ratio. It has been revealed that NCAs with a higher specific surface area and interconnected porous structures contain a large amount of pyridinic nitrogen and pyrrolic nitrogen. These would act as the intrinsic adsorption sites for highly effective CO2 capture and further improve the CO2/N2 separation efficiencies. Among the prepared samples, NCA-1-2 with a high micropore surface area and high nitrogen content exhibits a high CO2 adsorption capacity (4.30 mmol g-1 at 0 °C and 1 bar) and CO2/N2 selectivity (36.5 at 25 °C, IAST). Under typical flue gas conditions (25 °C and 1.01 bar), equilibrium gas adsorption analysis and dynamic breakthrough measurement associated with a high adsorption capacity of 2.65 mmol g-1 at 25 °C and 1.01 bar and 0.81 mmol g-1 at 25 °C and 0.15 bar. This rationally designed N-doped carbon aerogel with specific interfacial structures and high CO2 adsorption capacity, high selectivity, and adsorption performance remained pretty stable after multiple uses.
Collapse
Affiliation(s)
- Liang Wang
- State
Key Laboratory of Fine Chemicals and Key Laboratory of Industrial
Ecology and Environmental Engineering, School of Environmental Science
& Technology, Dalian University of Technology, Dalian 116024, China
| | - Shiying Fan
- State
Key Laboratory of Fine Chemicals and Key Laboratory of Industrial
Ecology and Environmental Engineering, School of Environmental Science
& Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinyong Li
- State
Key Laboratory of Fine Chemicals and Key Laboratory of Industrial
Ecology and Environmental Engineering, School of Environmental Science
& Technology, Dalian University of Technology, Dalian 116024, China
| | - Moses O. Tadé
- Department
of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Shaomin Liu
- Department
of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
8
|
Baamran K, Al-Naddaf Q, Lawson S, Ali Rownaghi A, Rezaei F. Kinetic Process Assessment of H2 Purification over Highly Porous Carbon Sorbents Under Multicomponent Feed Conditions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Hu G, Xiao G, Guo Y, Manning M, Chen L, Yu L, Li KG, May EF. Separation of methane and nitrogen using ionic liquidic zeolites (
ILZ
) by pressure vacuum swing adsorption (
PVSA
). AIChE J 2022. [DOI: 10.1002/aic.17668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guoping Hu
- Fluid Science & Resources Division, Department of Chemical Engineering The University of Western Australia Crawley Western Australia Australia
- Department of Chemical Engineering The University of Melbourne Parkville Victoria Australia
| | - Gongkui Xiao
- Fluid Science & Resources Division, Department of Chemical Engineering The University of Western Australia Crawley Western Australia Australia
| | - Yalou Guo
- Department of Chemical Engineering The University of Melbourne Parkville Victoria Australia
| | - Mitch Manning
- Gas Capture Technologies Pty., Ltd Cockburn Western Australia Australia
| | - Li Chen
- DKT Energy Technology Co., Ltd Chengdu Sichuan China
| | - Lanjin Yu
- DKT Energy Technology Co., Ltd Chengdu Sichuan China
| | - Kevin Gang Li
- Department of Chemical Engineering The University of Melbourne Parkville Victoria Australia
| | - Eric F. May
- Fluid Science & Resources Division, Department of Chemical Engineering The University of Western Australia Crawley Western Australia Australia
| |
Collapse
|
10
|
Lawson S, Baamran K, Newport K, Rezaei F, Rownaghi A. Screening of Adsorbent/Catalyst Composite Monoliths for Carbon Capture-Utilization and Ethylene Production. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55198-55207. [PMID: 34757709 DOI: 10.1021/acsami.1c17668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Combining CO2 adsorption and utilization in oxidative dehydrogenation of ethane (ODHE) into a single bed is an exciting way of converting a harmful greenhouse gas into marketable commodity chemicals while reducing energy requirements from two-bed processes. However, novel materials should be developed for this purpose because most adsorbents are incapable of capturing CO2 at the temperatures required for ODHE reactions. Some progress has been made in this area; however, previously reported dual-functional materials (DFMs) have always been powdered-state composites and no efforts have been made toward forming these materials into practical contactors. In this study, we report the first-generation of structured DFM adsorbent/catalyst monoliths for combined CO2 capture and ODHE utilization. Specifically, we formulated M-CaO/ZSM-5 monoliths (M = In, Ce, Cr, or Mo oxides) by 3D-printing inks with CaCO3 (CaO precursor), insoluble metal oxides, and ZSM-5. The physiochemical properties of the monoliths were vigorously characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 physisorption, elemental mapping, pyridine Fourier transform infrared spectroscopy (Py-FTIR), H2-temperature-programmed reduction (H2-TPR), and NH3-temperature-programmed desorption (NH3-TPD). Their performances for combined CO2 adsorption at 600 °C and ODHE reaction at 700 °C under 25 mL/min of 7% C2H6 were then investigated. The combined adsorption/catalysis experiments revealed the best performance in Cr-CaO/ZSM-5, which achieved 56% CO2 conversion, 91.2% C2H4 selectivity, and 33.8% C2H4 yield. This exceptional performance, which was improved from powdered-state DFMs, was attributed to the high acidity and numerous oxidation states of the Cr2O3 dopant which were verified by NH3-TPD and H2-TPR. Overall, this study reports the first-ever proof-of-concept for 3D-printed DFM adsorbent/catalyst materials and furthers the area of CO2 capture and ODHE utilization by providing a simple pathway to structure these composites.
Collapse
Affiliation(s)
- Shane Lawson
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Khaled Baamran
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Kyle Newport
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Ali Rownaghi
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| |
Collapse
|