1
|
Jiao Z, Kuang L, Komori M, Hirono M, Komuro R, Wang Y, Hasebe Y. Glucose oxidase, horseradish peroxidase and phenothiazine dyes-co-adsorbed carbon felt-based amperometric flow-biosensor for glucose. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5883-5895. [PMID: 39157883 DOI: 10.1039/d4ay01028k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
To develop an amperometric flow-biosensor for glucose, the stabilizing effect of methylene blue (MB) toward adsorbed glucose oxidase (GOx) on carbon felt (CF) was successfully applied to prepare the GOx-modified CF-based enzyme reactor combined with a horseradish peroxidase (HRP)-modified CF-based H2O2 detector. Upon mixing MB in the GOx-adsorption solution, the O2-dependent GOx-activity was significantly increased with increasing concentration of MB in the GOx-adsorption solution. The GOx-immobilization protocol on CF is very straightforward [i.e., adsorption of the GOx/MB mixed aqueous solution for 5 min under ultrasound (US)-irradiation]. Under the optimized operational conditions (i.e., applied potential, 0 vs. Ag/AgCl; carrier pH, 5.0; carrier flow rate, 4.0 mL min-1), the resulting GOx/MB-CF-reactor and HRP/TN-CF-detector combined amperometric flow-biosensor exhibited sensitive, selective, reproducible and stable cathodic peak current responses to glucose with the following analytical performances: sensitivity, 6.22 μA mM-1; linear range, 0.01 to 1 mM; limit of detection, 9.6 μM (S/N = 3, noise level, 20 nA); sample throughput, 46-96 samples per h for 10-0.1 mM glucose. The developed amperometric flow-biosensor allowed the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by conventional spectrophotometry.
Collapse
Affiliation(s)
- Zeting Jiao
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan.
| | - Lichuan Kuang
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan.
| | - Masahito Komori
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan.
| | - Masaki Hirono
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan
| | - Ryota Komuro
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology LiaoNing, Anshan, LiaoNing 114501, China
| | - Yasushi Hasebe
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan.
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan
| |
Collapse
|
2
|
Ni JB, Luo SY, Bi YX, Zielinska S, Ding CJ, Tao JL, Ning Z, Tian WL, Peng WJ, Fang XM. The combined effects of ultrasound and plasma-activated water on silkworm pupae:Physicochemical properties, microbiological diversity and ultrastructure. ULTRASONICS SONOCHEMISTRY 2024; 107:106927. [PMID: 38820934 PMCID: PMC11179245 DOI: 10.1016/j.ultsonch.2024.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
A novel technique was proposed for processing silkworm pupae by combining plasma- activated water (PAW) with ultrasound (US). The microbial diversity and quality characteristics of the silkworm pupae were also evaluated. The results of the microbial diversity analysis indicated that PAW combined with US treatment significantly reduced the relative abundance of Streptococcaceae, Leuconostocaceae, and Acetobacteraceae from 32%, 18% and 16% to 27%, 11% and 11%, respectively. Microstructural analysis demonstrated that the collapse of the internal structure of chitin in silkworm pupae facilitated the release of nutrients and flavour compounds including fatty acids, water-soluble proteins (WSP), amino acids, phenolics, and volatile compounds. Furthermore, the increase in antioxidant capacity and the decrease in catalase activity and malondialdehyde content confirmed the mechanism of quality change. These findings provide new insights into the possible mechanism of PAW combined with US to improve the quality of edible insects.
Collapse
Affiliation(s)
- Jia-Bao Ni
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China; College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Shi-Ye Luo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Yan-Xiang Bi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Sara Zielinska
- Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Chang-Jiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot, China
| | - Jia-Li Tao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Zhen Ning
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Wen-Li Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Wen-Jun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China.
| | - Xiao-Ming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China.
| |
Collapse
|
3
|
Mu Y, Meng F, Ju X, Li L. Inactivation and process intensification of β-glucosidase in biomass utilization. Appl Microbiol Biotechnol 2023; 107:3191-3204. [PMID: 37058231 DOI: 10.1007/s00253-023-12483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 04/15/2023]
Abstract
Lignocellulosic biomass has emerged as a promising environmental resource. Enzyme catalysis, as one of the most environmentally friendly and efficient tools among various treatments, is used for the conversion of biomass into chemicals and fuels. Cellulase is a complex enzyme composed of β-glucosidase (BGL), endo-β-1,4-glucanase (EG), and exo-β-1,4-glucanase (CBH), which synergistically hydrolyzes cellulose into monosaccharides. BGL, which further deconstructs cellobiose and short-chain cellooligosaccharides obtained by EG and CBH catalysis into glucose, is the most sensitive component of the synergistic enzyme system constituted by the three enzymes and is highly susceptible to inactivation by external conditions, becoming the rate-limiting component in biomass conversion. This paper firstly introduces the source and catalytic mechanism of BGL used in the process of biomass resource utilization. The focus is on the review of various factors affecting BGL activity during hydrolysis, including competitive adsorption of lignin, gas-liquid interface inactivation, thermal inactivation, and solvent effect. And the methods to improve BGL inactivation are proposed from two aspects-substrate initiation and enzyme initiation. In particular, the screening, modification, and alteration of the enzyme molecules themselves are discussed with emphasis. This review can provide novel ideas for studies of BGL inactivation mechanism, containment of inactivation, and activity enhancement. KEY POINTS: • Factors affecting β-glucosidase inactivation are described. • Process intensification is presented in terms of substrate and enzyme. • Solvent selection, protein engineering, and immobilization remain topics of interest.
Collapse
Affiliation(s)
- Yinghui Mu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Fanjin Meng
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Xin Ju
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Liangzhi Li
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| |
Collapse
|
4
|
Atilgan H, Unal B, Yalcinkaya EE, Evren G, Atik G, Ozturk Kirbay F, Kilic NM, Odaci D. Development of an Enzymatic Biosensor Using Glutamate Oxidase on Organic-Inorganic-Structured, Electrospun Nanofiber-Modified Electrodes for Monosodium Glutamate Detection. BIOSENSORS 2023; 13:bios13040430. [PMID: 37185504 PMCID: PMC10135961 DOI: 10.3390/bios13040430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Herein, dendrimer-modified montmorillonite (Mt)-decorated poly-Ɛ-caprolactone (PCL) and chitosan (CHIT)-based nanofibers were prepared. Mt was modified with a poly(amidoamine) generation 1 (PAMAMG1) dendrimer, and the obtained PAMAMG1-Mt was incorporated into the PCL-CHIT nanofiber's structure. The PCL-CHIT/PAMAMG1-Mt nanofibers were conjugated with glutamate oxidase (GluOx) to design a bio-based detection system for monosodium glutamate (MSG). PAMAMG1-Mt was added to the PCL-CHIT backbone to provide a multipoint binding side to immobilize GluOx via covalent bonds. After the characterization of PCL-CHIT/PAMAMG1-Mt/GluOx, it was calibrated for MSG. The linear ranges were determined from 0.025 to 0.25 mM MSG using PCL-CHIT/Mt/GluOx and from 0.0025 to 0.175 mM MSG using PCL-CHIT/PAMAMG1-Mt/GluOx (with a detection limit of 7.019 µM for PCL-CHIT/Mt/GluOx and 1.045 µM for PCL-CHIT/PAMAMG1-Mt/GluOx). Finally, PCL-CHIT/PAMAMG1-Mt/GluOx was applied to analyze MSG content in tomato soup without interfering with the sample matrix, giving a recovery percentage of 103.125%. Hence, the nanofiber modification with dendrimer-intercalated Mt and GluOx conjugation onto the formed nanocomposite structures was performed, and the PCL-CHIT/PAMAMG1-Mt/GluOx system was successfully developed for MSG detection.
Collapse
Affiliation(s)
- Hamdiye Atilgan
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Betul Unal
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Esra Evrim Yalcinkaya
- Department of Chemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Gizem Evren
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Gozde Atik
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Fatma Ozturk Kirbay
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Nur Melis Kilic
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Dilek Odaci
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| |
Collapse
|
5
|
Dong Z, Tan J, Pinelo M, Zhang H, Wan Y, Luo J. Engineering Mussel-Inspired Coating on Membranes for Green Enzyme Immobilization and Hyperstable Reuse. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhe Dong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Tan
- COFCO Nutrition and Health Research Institute CO., LTD, Beijing, 102209, China
| | - Manuel Pinelo
- Process and Systems Engineering Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Hao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|