1
|
Moni BM, Quaye JA, Gadda G. Biophysical investigation of metal-substituted D-2-hydroxyglutarate dehydrogenase. Arch Biochem Biophys 2025; 769:110397. [PMID: 40127709 DOI: 10.1016/j.abb.2025.110397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
D-2-Hydroxyglutarate dehydrogenase from Pseudomonas aeruginosa PAO1 (EC: 1.1.99.39; Uniprot ID: Q9I6H4) is a metallo-flavoenzyme that utilizes Zn2+ and FAD to catalyze the conversion of D-2-hydroxyglutarate to 2-ketoglutarate. The enzyme utilizes Co2+, Ni2+, Mn2+, and Cd2+ as alternative metal cofactors. To study how metal substitution impacts flavin properties, the enzyme was purified with different metal ions or treated with EDTA to generate the metallo-apoenzyme (EFAD-apo). Fluorescence assays revealed distinct metal ion binding sites in the enzyme: concentrations of metal ions up to ∼0.40 mM increased flavin fluorescence at 531 nm, whereas concentrations above ∼0.40 mM quenched flavin fluorescence with a 2-6 nm bathochromic shift. Concomitantly, enzyme-specific activity exhibited a sigmoidal increase, indicating a metal-induced conformational change. CD spectra showed no significant shifts at ∼209 and ∼220 nm but a ≤ 2-fold increase in mean residue ellipticity compared to EFAD-apo. Metal binding also caused a 2-9 nm bathochromic shift in flavin absorption and emission maxima, indicating stabilization of the excited-state flavin π-electron system. The binding of Zn2+, Co2+, Mn2+, or Cd2+ to the enzyme increased by ∼1 unit of the pKa value of the flavin N3 atom compared to the EFAD-apo, consistent with metal-hydrate perturbing flavin electronic properties. In contrast, Ni2+ binding decreased the pKa value, consistent with flavin N3 atom deprotonating before the Ni2+-hydrate in the enzyme active site. These findings reveal that metal ion substitution has minimal impact on the electronic properties of the flavin and the overall structural integrity of the enzyme, highlighting the potential use of metal-substituted variants of the enzyme as biomimetic catalysts.
Collapse
Affiliation(s)
- Bilkis Mehrin Moni
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Joanna Afokai Quaye
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Giovanni Gadda
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA; Departments of Biology, Georgia State University, Atlanta, GA, 30302-3965, USA; The Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302-3965, USA.
| |
Collapse
|
2
|
Rath SC, Bhagawati U, Goel A. Bionanoremediation of wastewater: an innovative and novel approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:510. [PMID: 40186751 DOI: 10.1007/s10661-025-13943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Water contamination from rapid urbanization, industrialization, and agricultural activities has emerged as a critical environmental challenge, leading to widespread waterborne diseases and millions of annual fatalities. Conventional water treatment methods such as coagulation, flocculation, and sedimentation exist; they are often hindered by high chemical and energy costs. The limitations of traditional water treatment approaches have necessitated the exploration of alternative technologies that can provide more efficient and cost-effective solutions for water purification. Nanotechnology-based water treatment methods, leveraging the unique physicochemical properties of nanoparticles, can potentially overcome the limitations of conventional water treatment techniques and provide enhanced pollutant removal efficiency. This review critically evaluates the latest advances in magnetic nanoadsorbent technologies for wastewater remediation, distinguishing itself from existing literature by integrating theoretical principles with practical application. The analysis reveals that nanoparticle-based treatment methods demonstrate superior wastewater remediation performance compared to conventional techniques. The unique properties of nanoparticles enable efficient removal of various contaminants, including heavy metals, organic compounds, and bacterial populations. These findings suggest that nanotechnology-based approaches represent a viable and sustainable solution for addressing current water treatment challenges, offering a promising direction for future water purification technologies.
Collapse
Affiliation(s)
- Somani Chandrika Rath
- Amity Institute of Microbial Technology, Amity University, Sector 125, Noida, 201313, Uttar Pradesh, India
| | - Upasana Bhagawati
- Amity Institute of Microbial Technology, Amity University, Sector 125, Noida, 201313, Uttar Pradesh, India
| | - Arti Goel
- Amity Institute of Microbial Technology, Amity University, Sector 125, Noida, 201313, Uttar Pradesh, India.
| |
Collapse
|
3
|
T L S, Rao KJ, Korumilli T. Natural Biogenic Templates for Nanomaterial Synthesis: Advances, Applications, and Environmental Perspectives. ACS Biomater Sci Eng 2025; 11:1291-1316. [PMID: 39928588 DOI: 10.1021/acsbiomaterials.4c02075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
This review explores the use of biogenic templates in nanomaterial synthesis, emphasizing their role in promoting environmentally sustainable nanotechnology. It categorizes various biogenic templates, including agricultural byproducts and microorganisms, stating their suitability for forming nanostructures due to their distinct properties. A comparative analysis of monostep and multistep synthesis methods is provided, focusing on their efficiencies and outcomes when using biogenic templates. Further, this review also highlights how these templates can generate complex nanostructures and hybrid materials with enhanced functionalities. Applications of biogenic templates across biomedicine, biotechnology, environmental science, and energy are discussed along with their utilization scope in agriculture and electronics. Benefits from nanostructures from biotemplates include sustainability, low cost, and reduced toxicity, but challenges like scalability, reproducibility, and regulatory compliance persist. Future research focuses on improving synthesis techniques, discovering new templates, and evaluating environmental and cytotoxic impacts, especially for biomedical uses. In conclusion, the review reaffirms the potential of biogenic templates in sustainable nanomaterial synthesis while highlighting the ongoing challenges that need to be addressed for broader adoption.
Collapse
Affiliation(s)
- Srujana T L
- Centre for Interfaces & Nanomaterials, Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
| | - K Jagajjanani Rao
- Centre for Interfaces & Nanomaterials, Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
| | - Tarangini Korumilli
- Centre for Biomaterials & Environmental Biotechnology, Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
| |
Collapse
|
4
|
Zahed Nasab S, Akbari B, Mostafavi E, Zare I. Chitosan nanoparticles in tumor imaging and therapy. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:405-445. [DOI: 10.1016/b978-0-443-14088-4.00006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Banazadeh M, Ilaghi M, Abadi B, Joushi S, Pishbin E, Dabiri S, Ramezani Farani M, Rahi A, Mostafavi E, Zare I. Chitosan nanoparticles-hydrogel composites for biomedical applications. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:633-678. [DOI: 10.1016/b978-0-443-14088-4.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Somda D, Bargul JL, Wesonga JM, Wachira SW. Green synthesis of Brassica carinata microgreen silver nanoparticles, characterization, safety assessment, and antimicrobial activities. Sci Rep 2024; 14:29273. [PMID: 39587236 PMCID: PMC11589588 DOI: 10.1038/s41598-024-80528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
Nanotechnology has been a central focus of scientific investigation over the past decades owing to its versatile applications. The synthesis of silver nanoparticles (AgNPs) through plant secondary metabolites is a cost-effective and eco-friendly approach. The present study employed Brassica carinata microgreen extracts (BCME) to promote the reduction of silver nitrate (AgNO3) salt into Brassica carinata microgreen silver nanoparticles (BCM-AgNPs). The physicochemical properties of the biosynthesized AgNPs were characterized through both spectroscopy and microscopy techniques. Furthermore, the antimicrobial property of the biosynthesized AgNPs was assessed against six selected pathogenic microorganisms, and finally, their safety was evaluated on a normal Vero cell line through an MTT cytotoxicity assay. The UV-visible spectrum revealed that BCM-AgNPs exhibited an absorption peak at 420 nm. The potential functional groups involved in the biosynthesis of AgNPs were identified by Fourier transform infrared (FTIR) analysis. Scanning electron microscopy (SEM) revealed a spherical nature of the biosynthesized AgNPs. Transmission electron microscopy (TEM) analysis revealed the crystallinity of the AgNPs, averaging 34.68 nm in size. X-ray diffraction (XRD) investigation further confirmed the crystalline structure of the AgNPs. The zeta potential exhibited a significant value of - 22.5 ± 1.16 mV. Regarding the antimicrobial potential, BCM-AgNPs exhibited promising antimicrobial activity against the tested pathogens, with a minimum inhibitory concentration (MIC) of 62.5 µg/mL observed in Pseudomonas aeruginosa. Further cytotoxicity assessment of BCM-AgNPs conducted on Vero cells demonstrated their safety. This study presents a novel approach to synthesizing AgNPs using a nutraceutical microgreen, offering a biocompatible and promising alternative for combating multi-drug resistance.
Collapse
Affiliation(s)
- Dogfounianalo Somda
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology, and Innovation (PAUSTI), P.O. Box 62000-00200, Nairobi, Kenya.
- Laboratory of Molecular Biology and Genetics (LABIOGENE), Joseph Ki-Zerbo University, P.O. Box 7021, Ouagadougou 03, Burkina Faso.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya
| | - John M Wesonga
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya
| | - Sabina Wangui Wachira
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute (KEMRI), P.O. Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
7
|
Ezhumalai N, Nanthagopal M, Kasthuri J, Rajendiran N. Synthesis of N-acetylcysteine functionalized cholic acid based triarmed poly DL-Lactide and encapsulation of gold nanoparticles: Studies on the antimicrobial activity and biocompatibility for drug delivery applications. Int J Biol Macromol 2024; 279:135085. [PMID: 39197626 DOI: 10.1016/j.ijbiomac.2024.135085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Cholic acid based biodegradable reverse polymeric micelles have been widely utilized as preclinically suitable drug delivery system for poorly water-soluble drugs. In this report, we developed N-acetylcysteine functionalized cholic acid based triarmed poly (Dl-lactide) (ACyCA-triarmed (DLL)n as reversed polymeric micelles for drug delivery studies. ACyCA was synthesized via thiol-yne click reaction and subsequently used as an initiator for the synthesis of ACyCA-triarmed (DLL)n through ring opening polymerization (ROP) using Sn (Oct)2 as a catalyst. The synthesized ACyCA-triarmed (DLL)n was characterized using GPC, FT-IR, 1H NMR, 13C NMR, spectrofluorometer, HR-TEM, DSC, TGA, XRD, DLS, and zeta potential techniques. The reverse critical micellar concentration of the polymer was determined to be 1.99 mg/mL using a spectrofluorometer. The synthesized reverse micelles (RMs) were utilized as a reducing and capping agent for the preparation of AuNPs under sunlight exposure. The formed AuNPs exhibited spherical in shape with an average size of ∼ 23.4 nm and Dh was found to be 86.8 ± 1.3 nm as evidenced by the TEM and DLS analysis. Furthermore, the antimicrobial activity, hemolytic activity, anti-oxidant activity, and in-vitro drug release studies were examined for the RMs-AuNPs and compared with RMs. The hydrophobic nature of RMs and RMs-AuNPs had better haemocompatibility at above the reversed CMC. The antioxidant activity RMs-AuNPs showed better inhibitory effect in a dose-dependent manner as compared to RMs. The RMs-AuNPs formulation act as reservoir for solubilization of hydrophobic doxorubicin (Dox.HCl) drugs and can be used as therapeutic platform for slow and sustained release of drugs in biological medium.
Collapse
Affiliation(s)
- Nishanthi Ezhumalai
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Manivannan Nanthagopal
- Department of Microbiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, India
| | - Jayapalan Kasthuri
- Department of Chemistry, Quaid-E-Millath Government College for Women, Chennai 600002, Tamil Nadu, India
| | - Nagappan Rajendiran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| |
Collapse
|
8
|
Hajebi S, Chamanara M, Nasiri SS, Ghasri M, Mouraki A, Heidari R, Nourmohammadi A. Advances in stimuli-responsive gold nanorods for drug-delivery and targeted therapy systems. Biomed Pharmacother 2024; 180:117493. [PMID: 39353321 DOI: 10.1016/j.biopha.2024.117493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
In recent years, the use of gold nanorods (AuNRs) has garnered considerable attention in biomedical applications due to their unique optical and physicochemical properties. They have been considered as potential tools for the advanced treatment of diseases by various stimuli such as magnetic fields, pH, temperature and light in the fields of targeted therapy, imaging and drug delivery. Their biocompatibility and tunable plasmonic properties make them a versatile platform for a range of biomedical applications. While endogenous stimuli have limited cargo delivery control at specific sites, exogenous stimuli are a more favored approach despite their circumscribed penetration depth for releasing the cargo at the specific target. Dual/multi-stimuli responsive AuNTs can be triggered by multiple stimuli for enhanced control and specificity in biomedical applications. This review provides to provide a summary of the biomedical applications of stimuli-responsive AuNRs, including their endogenous and exogenous properties, as well as their dual/multi-functionality and potential for clinical delivery. This review provides a comprehensive review on the improvement of therapeutic efficacy and the effective control of drug release with AuNRs, highlights AuNRs design strategies in recent years, discusses the advantages or challenges so far in the field of AuNRs. Finally, we have addressed the clinical translation bio-integrated nanoassemblies (CTBNs) in this field.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran
| | - Shadi Sadat Nasiri
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Mahsa Ghasri
- Adhesive and Resin Department, Polymer Processing Faculty, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Alireza Mouraki
- Department of Surface Coating and Corrosion, Institute for Color Science and Technology, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran; Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran.
| | - Abbas Nourmohammadi
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran; Research Center of Aerospace Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
El-Seedi HR, Omara MS, Omar AH, Elakshar MM, Shoukhba YM, Duman H, Karav S, Rashwan AK, El-Seedi AH, Altaleb HA, Gao H, Saeed A, Jefri OA, Guo Z, Khalifa SAM. Updated Review of Metal Nanoparticles Fabricated by Green Chemistry Using Natural Extracts: Biosynthesis, Mechanisms, and Applications. Bioengineering (Basel) 2024; 11:1095. [PMID: 39593755 PMCID: PMC11591867 DOI: 10.3390/bioengineering11111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Metallic nanoparticles have found wide applications due to their unique physical and chemical properties. Green biosynthesis using plants, microbes, and plant/microbial extracts provides an environmentally friendly approach for nanoparticle synthesis. This review discusses the mechanisms and factors governing the biosynthesis of metallic nanoparticles such as silver, gold, and zinc using various plant extracts and microorganisms, including bacteria, fungi, and algae. The phytochemicals and biomolecules responsible for reducing metal ions and stabilizing nanoparticles are discussed. Key process parameters like pH, temperature, and precursor concentration affecting particle size are highlighted. Characterization techniques for confirming the formation and properties of nanoparticles are also mentioned. Applications of biosynthesized nanoparticles in areas such as antibacterial delivery, cancer therapy, biosensors, and environmental remediation are reviewed. Challenges in scaling up production and regulating nanoparticle properties are addressed. Power Point 365 was used for creating graphics. Overall, green biosynthesis is an emerging field with opportunities for developing eco-friendly nanomanufacturing platforms using abundant natural resources. Further work on optimizing conditions, standardizing protocols, and exploring new biosources is needed to realize the full potential of this approach.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32111, Egypt
| | - Mohamed S. Omara
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Abdulrahman H. Omar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Mahmoud M. Elakshar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Yousef M. Shoukhba
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey; (H.D.); (S.K.)
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Awg H. El-Seedi
- International IT College of Sweden, Stockholm, Hälsobrunnsgatan 6, Arena Academy, 11361 Stockholm, Sweden;
| | - Hamud A. Altaleb
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Ohoud A. Jefri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Biology, College of Science, Taibah University, Al-Madinah Al Munawarah 42353, Saudi Arabia
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Shaden A. M. Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Neurology and Psychiatry Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 11219 Stockholm, Sweden
| |
Collapse
|
10
|
Hefayathullah M, Singh S, Ganesan V, Maduraiveeran G. Metal-organic frameworks for biomedical applications: A review. Adv Colloid Interface Sci 2024; 331:103210. [PMID: 38865745 DOI: 10.1016/j.cis.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Metal-organic frameworks (MOFs) are emergent materials in diverse prospective biomedical uses, owing to their inherent features such as adjustable pore dimension and volume, well-defined active sites, high surface area, and hybrid structures. The multifunctionality and unique chemical and biological characteristics of MOFs allow them as ideal platforms for sensing numerous emergent biomolecules with real-time monitoring towards the point-of-care applications. This review objects to deliver key insights on the topical developments of MOFs for biomedical applications. The rational design, preparation of stable MOF architectures, chemical and biological properties, biocompatibility, enzyme-mimicking materials, fabrication of biosensor platforms, and the exploration in diagnostic and therapeutic systems are compiled. The state-of-the-art, major challenges, and the imminent perspectives to improve the progressions convoluted outside the proof-of-concept, especially for biosensor platforms, imaging, and photodynamic therapy in biomedical research are also described. The present review may excite the interdisciplinary studies at the juncture of MOFs and biomedicine.
Collapse
Affiliation(s)
- Mohamed Hefayathullah
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Smita Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
11
|
Esmailzadeh F, Taheri-Ledari R, Salehi MM, Zarei-Shokat S, Ganjali F, Mohammadi A, Zare I, Kashtiaray A, Jalali F, Maleki A. Bonding states of gold/silver plasmonic nanostructures and sulfur-containing active biological ingredients in biomedical applications: a review. Phys Chem Chem Phys 2024; 26:16407-16437. [PMID: 38807475 DOI: 10.1039/d3cp04131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.
Collapse
Affiliation(s)
- Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd, Shiraz 7178795844, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
12
|
Zhou B, Khan IM, Ding X, Niazi S, Zhang Y, Wang Z. Fluorescent DNA-Silver nanoclusters in food safety detection: From synthesis to application. Talanta 2024; 273:125834. [PMID: 38479031 DOI: 10.1016/j.talanta.2024.125834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/09/2024]
Abstract
In recent years, the conventional preparation of silver nanoclusters (AgNCs) has attracted much attention due to their ultra-small size, tunable fluorescence, easy-to-engineer, as well as biocompatible material. Moreover, its great affinity towards cytosine bases on single-stranded DNA has led to the construction of biosensors, especially aptamers, for a broad variety of applications in food safety and environmental protection. In past years, numerous researchers paid attention to the construction of AgNCs aptasensor. Therefore, this review will be an effort to summarize the synthetic strategy along with the influences of factors on synthesis, categorize the sensing mechanism of aptamer-functionalized AgNCs biosensors, as well as their specific applications in food safety detection including heavy metal, toxin, and foodborne pathogenic bacteria. Furthermore, a brief conclusion and outlook regarding the prospects and challenges of their applications in food safety were drawn in line with the developments in DNA-AgNCs.
Collapse
Affiliation(s)
- Bingxuan Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Xiaowei Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, PR China.
| |
Collapse
|
13
|
Ahmad S, Ahmad S, Ali S, Esa M, Khan A, Yan H. Recent Advancements and Unexplored Biomedical Applications of Green Synthesized Ag and Au Nanoparticles: A Review. Int J Nanomedicine 2024; 19:3187-3215. [PMID: 38590511 PMCID: PMC10999736 DOI: 10.2147/ijn.s453775] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Green synthesis of silver (Ag) and gold (Au) nanoparticles (NPs) has acquired huge popularity owing to their potential applications in various fields. A large number of research articles exist in the literature describing the green synthesis of Ag and Au NPs for biomedical applications. However, these findings are scattered, making it time-consuming for researchers to locate promising advancements in Ag and Au NPs synthesis and their unexplored biomedical applications. Unlike other review articles, this systematic study not only highlights recent advancements in the green synthesis of Ag and Au NPs but also explores their potential unexplored biomedical applications. The article discusses the various synthesis approaches for the green synthesis of Ag and Au NPs highlighting the emerging developments and novel strategies. Then, the article reviews the important biomedical applications of green synthesized Ag and Au NPs by critically evaluating the expected advantages. To expose future research direction in the field, the article describes the unexplored biomedical applications of the NPs. Finally, the articles discuss the challenges and limitations in the green synthesis of Ag and Au NPs and their biomedical applications. This article will serve as a valuable reference for researchers, working on green synthesis of Ag and Au NPs for biomedical applications.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Muhammad Esa
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
14
|
Bouchal W, Djani F, Eddine Mazouzi D, Tiri RNE, Makhloufi S, Laiadi C, Martínez-Arias A, Aygün A, Sen F. Bi-doped BaBiO 3 ( x = 0%, 5%, 10%, 15%, and 20%) perovskite oxides by a sol-gel method: comprehensive biological assessment and RhB photodegradation. RSC Adv 2024; 14:7359-7370. [PMID: 38433933 PMCID: PMC10906365 DOI: 10.1039/d3ra06354b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The BaBiO3 (BBO) perovskite oxide was prepared via a sol-gel method with different concentrations of Bi nitrate and examined as a photocatalyst for RhB degradation under sunlight, and its antioxidant and antibacterial activities were examined. X-ray diffraction (XRD) indicated the formation of a BaBiO3-BaCO3 (BBO-BCO) binary composite. For the degradation of RhB under solar radiation, high photocatalytic activity (73%) was observed. According to the antibacterial activity study, the addition of Bi enhanced the antibacterial activity of the resulting material against both Gram-positive and Gram-negative microorganisms. The Bi%-BBO (Bi 20%) inhibited 96.23% S. aureus. 10% Bi-BBO as an antioxidant agent had the most efficacious IC50 value of 2.50 mg mL-1. These results seem to suggest that BBO-BCO is a promising catalytic material with potential application in the fields of catalysis and medicine.
Collapse
Affiliation(s)
- Wissam Bouchal
- Molecular Chemistry and Environment Laboratory, Mohammed KHIDER University Biskra BP:145 RP Biskra 07000 Algeria
| | - Faiçal Djani
- Molecular Chemistry and Environment Laboratory, Mohammed KHIDER University Biskra BP:145 RP Biskra 07000 Algeria
| | - Djamel Eddine Mazouzi
- Molecular Chemistry and Environment Laboratory, Mohammed KHIDER University Biskra BP:145 RP Biskra 07000 Algeria
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Department of Biochemistry, University of Dumlupınar 43000 Kütahya Turkey
- SRG Incorporated Company Kutahya Design & Technopole, Calca OSB Neighbourhood 43100 Kutahya Turkey
| | - Soufiane Makhloufi
- Molecular Chemistry and Environment Laboratory, Mohammed KHIDER University Biskra BP:145 RP Biskra 07000 Algeria
| | - Chaker Laiadi
- Department of Chemical Engineering, Mohammed KHIDER University Biskra 07000 Algeria
| | - Arturo Martínez-Arias
- Instituto de Catálisis y Petroleoquímica, CSIC C/Marie Curie 2, Campus de Cantoblanco 28049 Madrid Spain
| | - Ayşenur Aygün
- Sen Research Group, Department of Biochemistry, University of Dumlupınar 43000 Kütahya Turkey
- SRG Incorporated Company Kutahya Design & Technopole, Calca OSB Neighbourhood 43100 Kutahya Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, University of Dumlupınar 43000 Kütahya Turkey
- SRG Incorporated Company Kutahya Design & Technopole, Calca OSB Neighbourhood 43100 Kutahya Turkey
| |
Collapse
|
15
|
Ma X, Tang W, Yang R. Bioinspired nanomaterials for the treatment of bacterial infections. NANO RESEARCH 2024; 17:691-714. [DOI: 10.1007/s12274-023-6283-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/04/2025]
|
16
|
Rocha V, Ferreira-Santos P, Aguiar C, Neves IC, Tavares T. Valorization of plant by-products in the biosynthesis of silver nanoparticles with antimicrobial and catalytic properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14191-14207. [PMID: 38278998 PMCID: PMC10881659 DOI: 10.1007/s11356-024-32180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Biosynthesis based on natural compounds has emerged as a sustainable approach for the production of metallic nanoparticles (MNP). The main objective of this study was to biosynthesize stable and multifunctional silver nanoparticles (AgNP) using different plant by-products as reducers and capping agents. Extracts obtained from Eucalyptus globulus, Pinus pinaster, Citrus sinensis, Cedrus atlantica and Camellia sinensis by-products, were evaluated. From all plant by-products tested, aqueous extract of eucalyptus leaves (EL), green tea (GT) and black tea (BT) were selected due to their higher antioxidant phenolic content and were individually employed as reducers and capping agents to biosynthesize AgNP. The green AgNP showed zeta potential values of -31.8 to -36.3 mV, with a wide range of particle sizes (40.6 to 86.4 nm), depending on the plant extract used. Green AgNP exhibited an inhibitory effect against various pathogenic bacteria, including Gram-negative (P. putida, E. coli, Vibrio spp.) and Gram-positive (B. megaterium, S. aureus, S. equisimilis) bacteria with EL-AgNP being the nanostructure with the greatest antimicrobial action. EL-AgNP showed an excellent photodegradation of indigo carmine (IC) dye under direct sunlight, with a removal percentage of up to 100% after 75 min. A complete cost analysis revealed a competitive total cost range of 8.0-9.0 €/g for the biosynthesis of AgNP.
Collapse
Affiliation(s)
- Verónica Rocha
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering, Faculty of Science, University of Vigo, As Lagoas, 32004, Ourense, Spain
| | - Cristina Aguiar
- CBMA-Centre of Molecular and Environmental Biology, University of Minho, 4710-057, Braga, Portugal
| | - Isabel C Neves
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- CQ-UM - Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Teresa Tavares
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS -Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| |
Collapse
|
17
|
Mohseni N, Moodi M, Kefayat A, Shokati F, Molaabasi F. Challenges and Opportunities of Using Fluorescent Metal Nanocluster-Based Colorimetric Assays in Medicine. ACS OMEGA 2024; 9:3143-3163. [PMID: 38284078 PMCID: PMC10809695 DOI: 10.1021/acsomega.3c06884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
Development of rapid colorimetric methods based on novel optical-active metal nanomaterials has provided methods for the detection of ions, biomarkers, cancers, etc. Fluorescent metal nanoclusters (FMNCs) have gained a lot of attention due to their unique physical, chemical, and optical properties providing numerous applications from rapid and sensitive detection to cellular imaging. However, because of very small color changes, their colorimetric applications for developing rapid tests based on the naked eye or simple UV-vis absorption spectrophotometry are still limited. FMNCs with peroxidase-like activity have significant potential in a wide variety of applications, especially for point-of-care diagnostics. In this review, the effect of using various capping agents and metals for the preparation of nanoclusters in their colorimetric sensing properties is explored, and the synthesis and detection mechanisms and the recent advances in their application for ultrasensitive chemical and biological analysis regarding human health are highlighted. Finally, the challenges that remain as well as the future perspectives are briefly discussed. Overcoming these limitations will allow us to expand the nanocluster's application for colorimetric diagnostic purposes in medical practice.
Collapse
Affiliation(s)
- Nasim Mohseni
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Moodi
- Department
of Materials Science and Engineering, Ferdowsi
University of Mashhad, Mashhad, Iran
| | - Amirhosein Kefayat
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
- Department
of Oncology, Isfahan University of Medical
Sciences, Isfahan, Iran
| | - Farhad Shokati
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Molaabasi
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
18
|
Mollania H, Oloomi-Buygi M, Mollania N. Catalytic and anti-cancer properties of platinum, gold, silver, and bimetallic Au-Ag nanoparticles synthesized by Bacillus sp. bacteria. J Biotechnol 2024; 379:33-45. [PMID: 38049076 DOI: 10.1016/j.jbiotec.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Metallic nanoparticles play a significant role in the catalysis of chemical processes, besides, bimetallic nanoparticles with abundant active sites can reduce metallic nanoparticles toxicity in addition to increasing their catalytic performances. In this work, the platinum, gold, and silver nanoparticles are bio-synthesized using a native bacterium (GFCr-4). Also, the Au-Ag and Au@Ag bimetallic nanoparticles with alloy and core-shell structures, respectively, are biologically synthesized. To improve the synthesis, the effects of various factors like pH, temperature, electron donor, and ionic liquids were investigated. The as-synthesized nanoparticles were characterized with different techniques. The microscope images and dynamic light scattering (DLS) analysis confirm the uniform distribution of as-synthesized nanoparticles with average sizes of 25, 30, 47, 77, and 86 nm obtained for Ag, Au, Pt, Au-Ag alloy, and Au@Ag core-shell, respectively. The catalytic performances of as-synthesized nanoparticles were investigated. The Au-Ag alloy nanoparticles exhibit better catalytic performance than the as-synthesized metallic Au nanoparticles, according to the Gewald reaction. According to the photocatalytic study, the yield can be increased by up to 92% by using PtNPs in the presence of a green LED. Additionally, for the first time, PtNPs were utilized as an effective catalyst in a peroxyoxalate chemiluminescence (POCL) system in the presence of nuclear fast red (NFR) as a novel fluorophore. In addition, the results of the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay revealed that the synthesized eco-friendly nanoparticles have a low effect on the lethality of 3T3 normal cells whereas MCF-7 cancer cells were inhibited up to 77.3% after treatment by PtNPs nanoparticles.
Collapse
Affiliation(s)
- Hamid Mollania
- Ferdowsi University of Mashhad, Department of Electrical Engineering, Mashhad, Iran
| | - Majid Oloomi-Buygi
- Ferdowsi University of Mashhad, Department of Electrical Engineering, Mashhad, Iran.
| | - Nasrin Mollania
- Hakim Sabzevari University, Faculty of Basic Sciences, Department of Biology, Sabzevar, Iran.
| |
Collapse
|
19
|
Bhuyan T, Mohanta YK, Patowary K, Maity S, Nayak D, Deka K, Meenakshi Sundaram K, Muthupandian S, Sarma H. Therapeutic potential of lipopeptide biosurfactant-fabricated copper oxide nanoparticles: Mechanistic insight into their biocompatibility using zebra fish. CURRENT RESEARCH IN BIOTECHNOLOGY 2024; 7:100227. [DOI: 10.1016/j.crbiot.2024.100227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
20
|
Shukla AK, Morya V, Datta B. Bacteria-derived topologies of Cu 2O nanozymes exert a variable antibacterial effect. RSC Adv 2023; 13:28767-28772. [PMID: 37790108 PMCID: PMC10543649 DOI: 10.1039/d3ra05411j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
The ability of bacteria to facilitate fabrication of nanomaterials has been adapted towards bacterial sensing applications. In this work, we fabricate spherical, cubic and truncated octahedron topologies of Cu2O nanoparticles via E. coli-facilitated redox reaction in an electrochemical setup. The Cu2O nanoparticles exhibit cytochrome c oxidase-like activity with the spherical topology displaying higher catalytic rate compared to the other geometries. The topology-dependent catalytic behavior of Cu2O nanoparticles has not been reported previously. The Cu2O nanozymes also display E. coli killing activity in a topology-correlated manner. The E. coli mediated redox reaction in an electrochemical setup is being reported for the first time for synthesis of different topologies of Cu2O which also exert a variable antibacterial effect.
Collapse
Affiliation(s)
- Ashish Kumar Shukla
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
| | - Vinod Morya
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
| | - Bhaskar Datta
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
- Department of Chemistry, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
| |
Collapse
|
21
|
Muza UL, Ehrlich L, Pospiech D, Lederer A. High-Resolution Tracking of Multiple Distributions in Metallic Nanostructures: Advanced Analysis Was Carried Out with Novel 3D Correlation Thermal Field-Flow Fractionation. Anal Chem 2023. [PMID: 37441802 DOI: 10.1021/acs.analchem.3c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to their hybrid nature. In this study, we present a novel photoreduction-based protocol for augmenting the inherent properties of imidazolium-containing ionic polymers (IIP)s through orthogonal functionalization with gold nanoparticles (Au NPs) to produce IIP_Au NPs, as well as novel and advanced characterization via three-dimensional correlation thermal field-flow fractionation (3DCoThFFF). Coordination chemistry is applied to anchor Au3+ onto the nitrogen atom of the imidazolium rings, for subsequent photoreduction to Au NPs using UV irradiation. Thermal field-flow fractionation (ThFFF) and the localized surface plasmon resonance (LSPR) of Au NPs are both dependent on size, shape, and composition, thus synergistically co-opted herein to develop mutual correlation for the advanced analysis of 3D spectral data. With 3DCoThFFF, multiple sizes, shapes, compositions, and their respective distributions are synchronously correlated using time-resolved LSPR, as derived from multiple two-dimensional UV-vis spectra per unit ThFFF retention time. As such, higher resolutions and sensitivities are observed relative to those of regular ThFFF and batch UV-vis. In addition, 3DCoThFFF is shown to be highly suitable for monitoring and evaluating the thermostability and dynamics of the metallic nanostructures through the sequential correlation of UV-vis spectra measured under incremental ThFFF temperature gradients. Comparable sizes are measured for IIP and IIP_Au NPs. However, distinct elution profiles and UV-vis absorbances are recorded, thereby reaffirming the versatility of ThFFF as a robust tool for validating the successful functionalization of IIP with Au to produce IIP_Au NPs.
Collapse
Affiliation(s)
- Upenyu L Muza
- Leibniz-Institut für Polymerforschung Dresden e.V., Center Macromolecular Structure Analysis, Hohe Straße 6, 01069 Dresden, Germany
| | - Lisa Ehrlich
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute Macromolecular Chemistry, Hohe Straße 6, 01069 Dresden, Germany
| | - Doris Pospiech
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute Macromolecular Chemistry, Hohe Straße 6, 01069 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Center Macromolecular Structure Analysis, Hohe Straße 6, 01069 Dresden, Germany
- Stellenbosch University, Department of Chemistry and Polymer Science, 7602 Matieland, South Africa
| |
Collapse
|
22
|
Shuai Y. A tumor-microenvironment-activated nanoplatform of modified SnFe 2O 4 nanozyme in scaffold for enhanced PTT/PDT tumor therapy. Heliyon 2023; 9:e18019. [PMID: 37483724 PMCID: PMC10362236 DOI: 10.1016/j.heliyon.2023.e18019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Phototherapy has attracted widespread attention for cancer treatment due to its noninvasiveness and high selectivity. However, severe hypoxia, overexpressed glutathione and high levels of hydrogen peroxide (H2O2) of tumor microenvironment limit the antitumor efficiency of phototherapy. Herein, inspired by the specific response of nanozymes to the tumor microenvironment, a simple and versatile nanozyme-mediated synergistic dual phototherapy nanoplatform is constructed. In this study, tin ferrite (SnFe2O4, SFO) nanozyme as a photosensitizer was surface modified with polydopamine (denoted as P-SFO) and incorporated into poly(l-lactide) to fabricate an antitumor scaffold fabricated by selective laser sintering. On one hand, SFO nanozyme could act as a photoabsorber to convert light energy into heat for photothermal therapy (PTT). On the other hand, it played a role of photosensitizer in transferring the photon energy to generate reactive oxygen species (ROS) for photodynamic therapy (PDT). Importantly, its multivalent metal ions redox couples would decompose H2O2 into O2 for enhancing O2-dependent PDT and consume glutathione to relieve antioxidant capability of the tumors. Besides, polydopamine as a photothermal conversion agent further enhanced the photothermal performance of SFO. The results revealed the PLLA/P-SFO scaffold possessed a photothermal conversion efficiency of 43.52% for PTT and a high ROS generation capacity of highly toxic ·O2- and ·OH for PDT. Consequently, the scaffold displayed a prominent phototherapeutic effect with antitumor rate of 96.3%. In addition, the PLLA/P-SFO scaffolds possessed good biocompatibility for cell growth. These advantages endow PLLA/P-SFO scaffold with extensive applications in biomedical fields and opened up new avenue towards nanozyme-mediated synergistic phototherapy.
Collapse
Affiliation(s)
- Yang Shuai
- College of Life Science and Technology, Huazhong University of Science and Technology. 430074, China
| |
Collapse
|
23
|
Yuan X, Cao H, Zhang H, Mao G, Wei L. Color-encoded Escherichia coli assay via enzyme-induced etching of Au@MnO 2 nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122888. [PMID: 37216818 DOI: 10.1016/j.saa.2023.122888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Au@MnO2 nanoparticles (NPs), as core-shell nanostructures, have been widely used in ions, molecules and enzyme activities detection due to their stable properties and easy preparation, but their application in bacterial pathogens detection is rarely reported. In this work, Au@MnO2 NPs is employed for Escherichia coli (E. coli) detection through monitoring and measuring β-galactosidase (β-gal) activity based enzyme-induced color-code single particle enumeration (SPE) method. In the existence of E. coli, p-aminophenylβ-D-galactopyranoside (PAPG) can be hydrolyzed to generate p-aminophenol (AP) by the endogenous β-gal of E. coli. MnO2 shell reacts with AP and produces Mn2+, causing the blue shift of the localized surface plasmon resonance (LSPR) peak and color change of the probe from bright yellow to green. With the SPE method, the amount of E. coli can be quantified readily. The detection limit reaches 15 CFU/mL with dynamic range from 100 to 2900 CFU/mL. Besides, this assay is effectively employed to monitor E. coli in river water sample. The designed sensing strategy provides an ultrasensitive and low cost way for E. coli detection and has the possibility to detect other bacteria in environmental monitoring and food quality analysis.
Collapse
Affiliation(s)
- Xiang Yuan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Huijuan Cao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Huiling Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Guojiang Mao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Lin Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
24
|
Ashkezari S, Abtahi MS, Sattari Z, Tavakkoli Yaraki M, Hosseini F, Inanloo Salehi R, Afzali E, Hajihosseini S, Mousavi-Niri N. Antibiotic and inorganic nanoparticles co-loaded into carboxymethyl chitosan-functionalized niosome: Synergistic enhanced antibacterial and anti-biofilm activities. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
25
|
Dahri M, Sadeghi MM, Abolmaali SS. A computational study of metal-organic frameworks (MOFs) as potential nanostructures to combat SARS-CoV-2. Sci Rep 2022; 12:15678. [PMID: 36127369 PMCID: PMC9489710 DOI: 10.1038/s41598-022-19845-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022] Open
Abstract
The COVID-19 causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has a critical surface protein called spike protein (S protein), which is the target of many vaccines and drugs developments. Among non-structural proteins of SARS-CoV-2, main protease (Mpro) has drawn much attention to itself for designing antiviral drugs since it is very crucial for the virus replication in host cells. In the first part of the present study, the application of metal-organic frameworks (MOFs), one of the developing nanomaterials in the deformation and consequently inhibition of S protein binding to the receptor, angiotensin-converting enzyme 2 (ACE 2), is investigated. In this line, various S protein inhibitors were designed virtually, including ZIF, UIO, and IRMOF that their interactions with S protein and were investigated using molecular dynamics (MD) simulation. The results revealed that ZIF is the best candidate among the investigated MOFs with the least amount of energy interference with S protein. In the second part, the interaction of three-dimensional (3D) MOFs (such as ZIF, IRMOF, and HKUST) with SARS-CoV-2 Mpro was investigated. HKUST had the most potent interaction with Mpro and showed more promise in deforming this protein's secondary structure among all materials tested. Furthermore, we investigated the interaction of HKUST-OH with Mpro to determine the effect of functionalization. The findings of this study could be used in future studies to introduce bioconjugates of MOFs and biological molecules (e.g., antibody or nanobody) or to use MOFs as carriers for antiviral drug delivery.
Collapse
Affiliation(s)
- Mohammad Dahri
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
26
|
Preface for the Jim Yang Lee Festschrift. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|