1
|
Kara G, Temel F, Özaytekin İ. Methylene blue removal using modified poly(glycidyl methacrylate) as a low-cost sorbent in batch mode: kinetic and equilibrium studies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:141. [PMID: 38212476 DOI: 10.1007/s10661-023-12275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Industrial textile wastewater contains large amounts of cationic dye material. Therefore, a new adsorbent was synthesized as modified poly(glycidyl methacrylate) (mPGMA) with a fluorine group-containing compound 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). mPGMA was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR). The proposed adsorbent has been used to remove methylene blue (MB) from aqueous solutions by the adsorption process. In further experiments, the removal efficiency of adsorbent in both powder (˂600 μm) and granular form was compared from aqueous solutions by adsorption process. Furthermore, the effects of changing parameters such as adsorbent dosage, contact time, pH, temperature, and initial dye concentration on methylene blue adsorption were investigated. Also, Langmuir, Freundlich, and Temkin isotherms have been used to describe the equilibrium characteristics of adsorption. Finally, the experimental data fitted well by Langmuir isotherm with a maximum adsorption capacity of 17.5 mg g-1. The experimental data were applied to pseudo-first- and second-order models. The experimental results were better fitted for the pseudo-second-order model than the other model. Consequently, the experimental results showed that mPGMA is a suitable low-cost adsorbent with great potential benefit in removing methylene blue from aqueous solutions.
Collapse
Affiliation(s)
- Gülnihal Kara
- Department of Environmental Engineering, Konya Technical University, 42130, Konya, Turkey.
| | - Farabi Temel
- Department of Chemical Engineering, Konya Technical University, 42130, Konya, Turkey
| | - İlkay Özaytekin
- Department of Chemical Engineering, Konya Technical University, 42130, Konya, Turkey
| |
Collapse
|
2
|
Mugo SM, Robertson SV, Lu W. A molecularly imprinted screen-printed carbon electrode for electrochemical epinephrine, lactate, and cortisol metabolites detection in human sweat. Anal Chim Acta 2023; 1278:341714. [PMID: 37709457 DOI: 10.1016/j.aca.2023.341714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
This study presents a novel approach to the detection of epinephrine, lactate, and cortisol biomarkers in human sweat using molecularly-imprinted polymers (MIP) embedded screen printed carbon electrode (SPCE) sensors. The epinephrine and lactate MIP SPCE sensors were fabricated by epinephrine or lactate-imprinted polyaniline co-polymerized with 3-aminophenylboronic acid and gold nanoparticles (PANI-co-PBA/AuNP) selective membrane on a commercial SPCE. The cortisol sensor was comprised of a cortisol-imprinted poly(glycidyl methacryate-co-ethylene glycol dimethacrylate) (poly (GMA-co-EGDMA)@AuNP selective membrane deposited on a SPCE. Both cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used as modes of analysis for the MIP SPCE sensors. All sensors exhibited a rapid (∼1 min) and selective response to the epinephrine, lactate, and cortisol target analytes, with excellent precision between scans for both CV and DPV analysis modes. For CV, the LOD for epinephrine, lactate, and cortisol was 8.2 nM, 13 mM, and 0.042 μM, respectively. The LOD for DPV were 0.60 nM, 2.2 mM, and 0.025 μM for epinephrine, lactate, and cortisol, respectively. The MIP SPCE sensor platforms were further validated through the successful quantification of epinephrine, lactate, and cortisol in human sweat.
Collapse
Affiliation(s)
- Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada.
| | - Scott V Robertson
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Weihao Lu
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| |
Collapse
|
3
|
Fait F, Steinbach JC, Kandelbauer A, Mayer HA. Incorporation of silica nanoparticles into porous templates to fabricate mesoporous silica microspheres for high performance liquid chromatography applications. J Chromatogr A 2023; 1705:464190. [PMID: 37419014 DOI: 10.1016/j.chroma.2023.464190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
High-performance liquid chromatography is one of the most important analytical tools for the identification and separation of substances. The efficiency of this method is largely determined by the stationary phase of the columns. Although monodisperse mesoporous silica microspheres (MPSM) represent a commonly used material as stationary phase their tailored preparation remains challenging. Here we report on the synthesis of four MPSMs via the hard template method. Silica nanoparticles (SNPs) which form the silica network of the final MPSMs were generated in situ from tetraethyl orthosilicate (TEOS) in the presence of (3-aminopropyl) triethoxysilane (APTES) functionalized p(GMA-co-EDMA) as hard template. Methanol, ethanol, 2-propanol, and 1-butanol were applied as solvents to control the size of the SNPs in the hybrid beads (HB). After calcination, MPSMs with different sizes, morphology and pore properties were obtained and characterized by scanning electron microscopy, nitrogen adsorption and desorption measurements, thermogravimetric analysis, solid state NMR and DRIFT IR spectroscopy. Interestingly, the 29Si NMR spectra of the HBs show T and Q group species which suggests that there is no covalent linkage between the SNPs and the template. The MPSMs were functionalized with trimethoxy (octadecyl) silane and used as stationary phases in reversed-phase chromatography to separate a mixture of eleven different amino acids. The separation characteristics of the MPSMs strongly depend on their morphology and pore properties which are controlled by the solvent during the preparation of the MPSMs. Overall, the separation behavior of the best phases is comparable with those of commercially available columns. The phases even achieve faster separation of the amino acids without loss of quality.
Collapse
Affiliation(s)
- Fabio Fait
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany; Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, Reutlingen 72762, Germany
| | - Julia C Steinbach
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany; Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, Reutlingen 72762, Germany
| | - Andreas Kandelbauer
- Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, Reutlingen 72762, Germany; Institute of Wood Technology and Renewable Materials, Department of Material Sciences and Process Engineering (MAP), University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, Vienna 1180, Austria
| | - Hermann A Mayer
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany.
| |
Collapse
|
4
|
Simsek EB, Saloglu D, Aydın AA. Investigation of adsorption and biosorption features of bio-functionalized poly(GMA-Co-EGDMA) polymer beads in the treatment of nicotine from tobacco industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65801-65821. [PMID: 37093383 DOI: 10.1007/s11356-023-26938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The investigation of multifunctional materials for modern enzyme immobilization is an attractive subject in advanced adsorption and biosorption applications. In the present study, the feasibility of immobilization of Lipozyme TL 100L (LPZM) on 3-aminopropyltriethoxysilane (APTES) modified poly-(GMA-co-EGDMA) (PEGDMA) was investigated for adsorption and biosorption of nicotine from aqueous solution. Characterization tests confirmed successful immobilization of lipozyme which significantly altered thermal behavior, surface characteristics, and surface morphology of PEGDMA and PEGDMA/APTES. In addition, the immobilization yields were calculated as 85.0% and 72.0% onto PEGDMA/APTES using physical adsorption and covalent immobilization methods, respectively. The nicotine removal efficiencies were calculated to be 66.4%, 79.0%, 98.9%, and 85.7%, using raw PEGDMA, PEGDMA/APTES, PEGDMA/APTES@LPZM, and PEGDMA/APTES/GU@LPZM, respectively. For the raw PEGDMA, the Langmuir isotherm was best fitted to the adsorption data, while Langmuir-Freundich model described well the adsorption process on PEGDMA/APTES and PEGDMA/APTES@LPZM. The maximum adsorption capacities of Langmuir-Freundlich model increased from 8.118 to 17.32 mg/g after enzyme immobilization. The negative enthalpy value, ΔH° (- 10.37 kJ/mol), revealed that the nicotine adsorption on PEGDMA/APTES@LPZM was exothermic in nature, which was corroborated by the decrease observed in the number of adsorbed molecules with increasing temperature. In the kinetic experiments, the adsorption on PEGDMA and PEGDMA/APTES@LPZM reached equilibrium with the removal percentages as 66.4% and 98.9% at the end of 3 h, respectively. The nicotine adsorption performances in real water matrices were also investigated, and PEGDMA/APTES@LPZM showed satisfactory reusability with removal percentage decreased from 98.9% (1st cycle) to 83.0% (6th cycle).
Collapse
Affiliation(s)
- Esra Bilgin Simsek
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, Yalova, Turkey
| | - Didem Saloglu
- Disaster and Emergency Management Department, Disaster Management Institute, Istanbul Technical University, Istanbul, Turkey.
| | - Ahmet Alper Aydın
- Chemical Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
5
|
Karabıyık M, Cihanoğlu G, Ebil Ö. CVD Deposited Epoxy Copolymers as Protective Coatings for Optical Surfaces. Polymers (Basel) 2023; 15:652. [PMID: 36771952 PMCID: PMC9920665 DOI: 10.3390/polym15030652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Copolymer thin films of glycidyl methacrylate (GMA), ethylene glycol dimethacrylate (EGDMA) and 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (V4D4) were synthesized via initiated chemical vapor deposition (iCVD) as protective coatings for optical surfaces. Chemical durability in various solvents, corrosion resistance, adhesion to substrate, thermal resistance and optical transmittance of the films were evaluated. Crosslinked thin films exhibited high chemical resistance to strong organic solvents and excellent adhesion to substrates. Poly(GMA-co-EGDMA) and poly(GMA-co-V4D4) copolymers demonstrated protection against water (<1% thickness loss), high salt resistance (<1.5% thickness loss), and high optical transparency (~90% in visible spectrum) making them ideal coating materials for optical surfaces. Combining increased mechanical properties of GMA and chemical durability V4D4, the iCVD process provides a fast and low-cost alternative for the fabrication of protective coatings.
Collapse
Affiliation(s)
| | | | - Özgenç Ebil
- Department of Chemical Engineering, İzmir Institute of Technology, 35430 Urla, Turkey
| |
Collapse
|
6
|
Mugo SM, Lu W, Robertson S. A Wearable, Textile-Based Polyacrylate Imprinted Electrochemical Sensor for Cortisol Detection in Sweat. BIOSENSORS 2022; 12:bios12100854. [PMID: 36290991 PMCID: PMC9599184 DOI: 10.3390/bios12100854] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/12/2023]
Abstract
A wearable, textile-based molecularly imprinted polymer (MIP) electrochemical sensor for cortisol detection in human sweat has been demonstrated. The wearable cortisol sensor was fabricated via layer-by-layer assembly (LbL) on a flexible cotton textile substrate coated with a conductive nanoporous carbon nanotube/cellulose nanocrystal (CNT/CNC) composite suspension, conductive polyaniline (PANI), and a selective cortisol-imprinted poly(glycidylmethacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) decorated with gold nanoparticles (AuNPs), or plated with gold. The cortisol sensor rapidly (<2 min) responded to 9.8−49.5 ng/mL of cortisol, with an average relative standard deviation (%RSD) of 6.4% across the dynamic range, indicating excellent precision. The cortisol sensor yielded an excellent limit of detection (LOD) of 8.00 ng/mL, which is within the typical physiological levels in human sweat. A single cortisol sensor patch could be reused 15 times over a 30-day period with no loss in performance, attesting to excellent reusability. The cortisol sensor patch was successfully verified for use in quantification of cortisol levels in human sweat.
Collapse
|
7
|
Bozbay R, Orakdogen N. Temperature-regulated elasticity and multifunctionality in n-alkyl methacrylate ester-based ternary gels: optimizing adsorption and pH/temperature dual sensitivity. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04963-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Steinbach JC, Fait F, Wagner S, Wagner A, Brecht M, Mayer HA, Kandelbauer A. Rational Design of Pore Parameters in Monodisperse Porous Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) Particles Based on Response Surface Methodology. Polymers (Basel) 2022; 14:polym14030382. [PMID: 35160371 PMCID: PMC8840536 DOI: 10.3390/polym14030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Monodisperse porous poly(glycidyl methacrylate-co–ethylene glycol dimethacrylate) particles are widely applied in different fields, as their pore properties can be influenced and functionalization of the epoxy group is versatile. However, the adjustment of parameters which control morphology and pore properties such as pore volume, pore size and specific surface area is scarcely available. In this work, the effects of the process factors monomer:porogen ratio, GMA:EDMA ratio and composition of the porogen mixture on the response variables pore volume, pore size and specific surface area are investigated using a face centered central composite design. Non-linear effects of the process factors and second order interaction effects between them were identified. Despite the complex interplay of the process factors, targeted control of the pore properties was possible. For each response a response surface model was derived with high predictive power (all R2predicted > 0.85). All models were tested by four external validation experiments and their validity and predictive power was demonstrated.
Collapse
Affiliation(s)
- Julia C. Steinbach
- Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany; (J.C.S.); (F.F.); (A.W.); (M.B.)
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany; (S.W.); (H.A.M.)
| | - Fabio Fait
- Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany; (J.C.S.); (F.F.); (A.W.); (M.B.)
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany; (S.W.); (H.A.M.)
| | - Stefanie Wagner
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany; (S.W.); (H.A.M.)
| | - Alexandra Wagner
- Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany; (J.C.S.); (F.F.); (A.W.); (M.B.)
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Marc Brecht
- Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany; (J.C.S.); (F.F.); (A.W.); (M.B.)
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Hermann A. Mayer
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany; (S.W.); (H.A.M.)
| | - Andreas Kandelbauer
- Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany; (J.C.S.); (F.F.); (A.W.); (M.B.)
- Department of Material Sciences and Process Engineering (MAP), Institute of Wood Technology and Renewable Materials, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
- Correspondence: ; Tel.: +49-(0)7-12-1271-2009
| |
Collapse
|
9
|
Chitosan-based hydrogel crosslinked through an aza-Michael addition catalyzed by boric acid. Int J Biol Macromol 2021; 193:1032-1042. [PMID: 34800516 DOI: 10.1016/j.ijbiomac.2021.11.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023]
Abstract
Polysaccharide-based hydrogels are particularly attractive materials for biomedical applications. However, their use is restricted due to their brittleness and poor mechanical properties. Here, to overcome such limitations, we report an original, green, simple, and efficient strategy to synthesize a polysaccharide-based hydrogel of chitosan (Cht) and a vinyl-functionalized PVA (PVA-MA), a non-toxic synthetic polymer that is widely known to improve the mechanical properties and stability of materials containing polysaccharides. The hydrogel was crosslinked through an aza-Michael addition among the amino groups of Cht with the vinyl moieties of PVA-MA catalyzed by boric acid (B(OH)3), an eco-friendly inorganic compound. Characterization analyses revealed that the prepared hydrogel has a porous-like morphology, an outstanding liquid uptake capacity (>665%), and improved stability in a physiological fluid for long periods. In summary, this original and simple strategy showed to be efficient in the synthesis of hydrogels with attractive properties for the biomedical field application.
Collapse
|
10
|
Aminzadeh H, Shahabi Nejad M, Mohammadzadeh I, Sheibani H. Assembly of CuO nanorods onto poly(glycidylmethacrylate)@polyaniline core–shell microspheres: Photocatalytic degradation of paracetamol. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hossein Aminzadeh
- Department of Chemistry Shahid Bahonar University of Kerman Kerman Iran
| | | | - Iman Mohammadzadeh
- Oral and Dental Disease Research Center Kerman University of Medical Sciences Kerman Iran
| | - Hassan Sheibani
- Department of Chemistry Shahid Bahonar University of Kerman Kerman Iran
| |
Collapse
|
11
|
Glycidyl methacrylate functionalized star-shaped polylactide for electron beam modification of polylactic acid: Synthesis, irradiation effects and microwave-resistant studies. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Shahabi Nejad M, Soltani Nejad H, Arabnejad S, Sheibani H. Enhanced adsorption of perfluorooctanoic acid using functionalized imidazolium iodide ionic
liquid‐based
poly (glycidyl methacrylate). J Appl Polym Sci 2021. [DOI: 10.1002/app.50962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Saeid Arabnejad
- Department of Chemistry Shahid Bahonar University of Kerman Kerman Iran
- Research and Development R&D of Dandehkar Company Kerman Iran
| | - Hassan Sheibani
- Department of Chemistry Shahid Bahonar University of Kerman Kerman Iran
| |
Collapse
|
13
|
Mugo SM, Lu W, Wood M, Lemieux S. Wearable microneedle dual electrochemical sensor for simultaneous pH and cortisol detection in sweat. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Samuel M. Mugo
- Physical Sciences Department MacEwan University Edmonton Canada
| | - Weihao Lu
- Physical Sciences Department MacEwan University Edmonton Canada
| | - Marika Wood
- Physical Sciences Department MacEwan University Edmonton Canada
| | - Stephane Lemieux
- Department of Decision Sciences MacEwan University Edmonton Canada
| |
Collapse
|
14
|
Zhang X, Wang X, Qiu H, Kong D, Han M, Guo Y. Poly(methacrylate citric acid) with good biosafety as nanoadsorbents of heavy metal ions. Colloids Surf B Biointerfaces 2019; 187:110656. [PMID: 31796243 DOI: 10.1016/j.colsurfb.2019.110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
Heavy metal ion in aqueous solutions has been a challenge to human health. Discovering efficient adsorbents to remove heavy metal ion from water can help address this problem. In this study, poly(methacrylate citric acid) (PCA) with a well-defined structure based on a hydrophilic citric acid monomer was synthesized and then applied as a nanoadsorbent to remove several heavy metal ion. PCA presented excellent solubility in aqueous solution, and after freeze-drying, a loose porous structure was observed. PCA exhibited higher adsorption capacity for all the heavy metal ions (Cu2+, Pb2+, and Cd2+) than citric acid, and had a selectivity for Pb2+ ions with a removal efficiency of >90%. PCA also showed a good selectivity for adsorption of Pb2+ in a Chinese medicine decoction, with a removal rate >50%, while the concentration of active ingredient was maintained. Cell cytotoxicity in a cell model and system toxicity in mice indicated good biosafety of PCA. These results suggested that PCA with a good biosafety could be utilized as nanoadsorbent to remove Pb2+ ion from aqueous solution and decoction.
Collapse
Affiliation(s)
- Xuejie Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hanhong Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Dandan Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
15
|
Vasiliu S, Lungan M, Racovita S, Popa M. Porous microparticles based on methacrylic copolymers and gellan as drug delivery systems. POLYM INT 2019. [DOI: 10.1002/pi.5917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Silvia Vasiliu
- ‘Petru Poni’ Institute of Macromolecular Chemistry Iasi Romania
| | | | | | - Marcel Popa
- Gheorghe Asachi Technical University of Iasi Faculty of Chemical Engineering and Environmental Protection ‘Cristofor Simionescu’, Department of Natural and Synthetic Polymers Iasi Romania
- Academy of Romanian Scientists Bucuresti Romania
| |
Collapse
|
16
|
Wu X, Jiang W, Luo Y, Li J. Poly(aspartic acid) surface modification of macroporous poly(glycidyl methacrylate) microspheres. J Appl Polym Sci 2019. [DOI: 10.1002/app.47441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xiaoyuan Wu
- College of Chemical Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Wenwei Jiang
- College of Chemical Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Yu Luo
- College of Chemical Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Jingjing Li
- College of Chemical Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| |
Collapse
|
17
|
Jiang S, Wang W, Huang T, Ma J, Ding Y, Yu Q. Microporous membrane fabricated by AMS-GMA-TPE terpolymer grafted polypropylene prepared via extrusion. J Appl Polym Sci 2017. [DOI: 10.1002/app.46020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shan Jiang
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 China
| | - Wei Wang
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 China
| | - Tianya Huang
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 China
| | - Jie Ma
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 China
| | - Yonghong Ding
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 China
| | - Qiang Yu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 China
| |
Collapse
|
18
|
Marković BM, Stefanović IS, Hercigonja RV, Pergal MV, Marković JP, Onjia AE, Nastasović AB. Novel hexamethylene diamine-functionalized macroporous copolymer for chromium removal from aqueous solutions. POLYM INT 2017. [DOI: 10.1002/pi.5306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bojana M Marković
- University of Belgrade, Institute of Chemistry Technology and Metallurgy; Department of Chemistry; Njegoševa 12 Belgrade Republic of Serbia
| | - Ivan S Stefanović
- University of Belgrade, Institute of Chemistry Technology and Metallurgy; Department of Chemistry; Njegoševa 12 Belgrade Republic of Serbia
| | - Radmila V Hercigonja
- University of Belgrade; Faculty of Physical Chemistry; Studentski trg 12-16 11001 Belgrade Republic of Serbia
| | - Marija V Pergal
- University of Belgrade, Institute of Chemistry Technology and Metallurgy; Department of Chemistry; Njegoševa 12 Belgrade Republic of Serbia
| | - Jelena P Marković
- University of Belgrade; Vinča Institute of Nuclear Sciences; PO Box 522 11001 Belgrade Republic of Serbia
| | - Antonije E Onjia
- University of Belgrade; Vinča Institute of Nuclear Sciences; PO Box 522 11001 Belgrade Republic of Serbia
| | - Aleksandra B Nastasović
- University of Belgrade, Institute of Chemistry Technology and Metallurgy; Department of Chemistry; Njegoševa 12 Belgrade Republic of Serbia
| |
Collapse
|