1
|
Chenxi Y, Haiou Z, Jian W, Yingguo W. Facile fabrication of sulfonated porous yeast carbon microspheres through a hydrothermal method and their application for the removal of cationic dye. Sci Rep 2024; 14:11326. [PMID: 38760428 PMCID: PMC11101640 DOI: 10.1038/s41598-024-62283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024] Open
Abstract
Water pollution containing dyes become increasingly serious environmental problem with the acceleration of urbanization and industrialization process. Renewable adsorbents for cationic dye wastewater treatment are becoming an obstacle because of the difficulty of desorbing the dye from the adsorbent surface after adsorption. To overcome this dilemma, herein, we report a hydrothermal method to fabricate sulfonic acid modified yeast carbon microspheres (SA/YCM). Different characterization techniques like scanning electron microscopy, FTIR spectroscopy, and X-ray diffraction have been used to test the SA/YCM. Decorated with sulfonic acid group, the modified yeast carbon microspheres possess excellent ability of adsorbing positively charged materials. The removal rate of Methyl blue (MB) by renewable adsorbent SA/YCM can reach 85.3% when the concentration is 500 mg/L. The SA/YCM regenerated by HCl showed excellent regeneration adsorption capacity (78.1%) after five cycles of adsorption-desorption regeneration experiment. Adsorption isotherm and kinetic behaviors of SA/YCM for methylene blue dyes removal were studied and fitted to different existing models. Owing to the numerous sulfonic acid groups on the surface, the SA/YCM showed prominent reusability after regeneration under acidic conditions, which could withstand repeated adsorption-desorption cycles as well as multiple practical applications.
Collapse
Affiliation(s)
- Yang Chenxi
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi'an, 710075, China.
- ShaanXi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China.
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural Resources. Ltd., Xi'an, 710075, China.
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China.
| | - Zhang Haiou
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi'an, 710075, China
- ShaanXi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural Resources. Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| | - Wang Jian
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi'an, 710075, China
- ShaanXi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural Resources. Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| | - Wang Yingguo
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi'an, 710075, China
- ShaanXi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural Resources. Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| |
Collapse
|
2
|
Yin R, Gao L, Qin D, Chen L, Niu N. Preparation of porous carbon-based molecularly imprinted polymers for separation of triazine herbicides in corn. Mikrochim Acta 2021; 189:23. [PMID: 34893943 DOI: 10.1007/s00604-021-05100-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
A synthesis route of using cellulose as the precursor to prepare porous carbon (PC) had been established in this study. The as-prepared PC was introduced as carriers in the synthesis process of porous carbon-molecularly imprinted polymers (PC-MIPs), which greatly improved the absorption capacity of MIPs. Triazine pesticides in corn were extracted with matrix solid-phase dispersion (MSPD) using the PC-MIPs as dispersants and determined by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Under the optimal MSPD condition for extracting six kinds of triazines (simazine, terbutryn, simetryne, prometryne, ametryn, and atrazine), the detection limits were 0.005-0.02 ng g-1, while the precisions were 1.2-5.9%, and the recoveries were 92.6-104.7%. The method has been extensively applied to analyze various corn samples. Atrazine residue (1.2 μg kg-1) was detected in one corn sample, which was lower than the maximum residual limit indicated by the Chinese stated standards (50 μg kg-1).
Collapse
Affiliation(s)
- Ran Yin
- Key Laboratory of Forest Plant Ecology, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.,Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Lei Gao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 232 Hesong Street, Harbin, 150040, China
| | - Dongli Qin
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 232 Hesong Street, Harbin, 150040, China
| | - Ligang Chen
- Key Laboratory of Forest Plant Ecology, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Na Niu
- Key Laboratory of Forest Plant Ecology, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China. .,Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
3
|
Jiao J, Zhou Z, Tian S, Ren Z. Facile preparation of molecular-imprinted polymers for selective extraction of theophylline molecular from aqueous solution. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Zhang J, Qin L, Yang Y, Liu X. Porous carbon nanospheres aerogel based molecularly imprinted polymer for efficient phenol adsorption and removal from wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Chen S, Luo L, Wang L, Chen C, Gong H, Cai C. A sandwich sensor based on imprinted polymers and aptamers for highly specific double recognition of viruses. Analyst 2021; 146:3924-3932. [PMID: 33982684 DOI: 10.1039/d1an00155h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Highly selective and highly efficient identification of large viruses has been a major obstacle in the field of virus detection. In this work, a novel sandwich resonance light scattering sensor was designed based on molecularly imprinted polymers (MIPs) and aptamers for the first time. One of the recognition probes was obtained by molecular imprinting using environmentally friendly carbon spheres as carriers and the other by modification of the aptamer that can specifically recognize hepatitis B virus (HBV) on the surface of silicon spheres. In the presence of both probes, an MIP-HBV-aptamer sandwich structure was formed continuously in the system with the increase in HBV concentration, resulting in a strong resonance light scattering response. Finally, satisfactory selectivity and sensitivity were obtained, and the imprinting factor was as high as 7.56, which was higher than that reported in previous works of viral molecular imprinting sensor. In addition, it is of great significance to solve the problem of insufficient selectivity of traditional detection methods for macromolecular targets.
Collapse
Affiliation(s)
- Siyu Chen
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Lianghui Luo
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Lingyun Wang
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China and School of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| | - Chunyan Chen
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hang Gong
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Changqun Cai
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
6
|
Arabi M, Ostovan A, Bagheri AR, Guo X, Li J, Ma J, Chen L. Hydrophilic molecularly imprinted nanospheres for the extraction of rhodamine B followed by HPLC analysis: A green approach and hazardous waste elimination. Talanta 2020; 215:120933. [DOI: 10.1016/j.talanta.2020.120933] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
|
7
|
Qu Y, Qin L, Liu X, Yang Y. Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. CHEMOSPHERE 2020; 251:126376. [PMID: 32169694 DOI: 10.1016/j.chemosphere.2020.126376] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 05/13/2023]
Abstract
Highly selective surface molecularly imprinted polymer (SMIP) was prepared on glucose-derived microporous carbon nanospheres (GMCNs) by surface molecular imprinting technology for the removal of phenol from wastewater. GMCNs with rich pore structure and surface oxygenic functional groups were adopted as support materials, on which the active layers were constructed by grafting silane coupling agent 3-(methacryloyloxy) propyltrimethoxysilane. Then with phenol as template molecule, different types and amounts of functional monomer (including methacrylic acid and 4-vinylpyridine (4-VP)) were screened for optimizing imprinting conditions suitable for phenol adsorption, and a series of SMIP was obtained through crosslinking polymerization. The adsorption behaviors of SMIP were evaluated by UV spectrophotometry. The results show that, when 4-VP is used as functional monomer, the resultant 4-VP/SMIP exhibites an excellent adsorption capacity of 85.72 mg g-1. The relative selectivity factor for phenol against hydroquinone, p-nitrophenol and p-tert-butylphenol is 8.38, 7.96 and 6.67, respectively, indicating outstanding adsorption capacity and selectivity of 4-VP/SMIP. The pseudo-second-order model and Langmuir‒Freundlich model fit better than other models for the adsorption of phenol. 4-VP/SMIP is promising for selective removal and enrichment recovery towards phenol in wastewater.
Collapse
Affiliation(s)
- Yun Qu
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, China
| | - Lei Qin
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, China; Department of Chemical Engineering, Monash University, Australia
| | - Xuguang Liu
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, China.
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, China.
| |
Collapse
|
8
|
Gholami H, Ghaedi M, Ostovan A, Arabi M, Bagheri AR. Preparation of hollow porous molecularly imprinted and aluminum(III) doped silica nanospheres for extraction of the drugs valsartan and losartan prior to their quantitation by HPLC. Mikrochim Acta 2019; 186:702. [DOI: 10.1007/s00604-019-3794-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/07/2019] [Indexed: 12/15/2022]
|
9
|
Folic acid-conjugated magnetic ordered mesoporous carbon nanospheres for doxorubicin targeting delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109939. [PMID: 31500062 DOI: 10.1016/j.msec.2019.109939] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 01/01/2023]
Abstract
Folic acid-conjugated magnetic ordered mesoporous carbon nanospheres (FA-MOMCNs) are developed as a targeting delivery vehicle of doxorubicin (DOX) in this work. Investigations on DOX loading mechanism show that the loading capacity of FA-MOMCNs is up to 577.12 mg g-1 by means of both physical porous adsorption and covalent interactions, and the pH-dependent drug release is achieved. Excellent biocompatibility of FA-MOMCNs with blood and cells is confirmed by hemolysis and cytotoxicity assays. With the assistance of effective passive and active targeting, DOX-loading FA-MOMCNs can be readily internalized into cancer cell, where the carried DOX can be efficiently released in the acidic microenvironment of the cancer cell for its proliferation inhibition. This controlled release and targeting vehicle of DOX makes it possible to reduce the toxic effect to normal tissues during circulation in the body and is promising for highly efficient chemotherapy.
Collapse
|
10
|
Vosoughi MS, Fallah-Darrehchi M, Zahedi P. Expanded graphene oxide-supported molecularly imprinted polymer nanoparticles based on polystyrene for dibenzothiophene removal. J Sulphur Chem 2019. [DOI: 10.1080/17415993.2019.1629439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mohammad Saleh Vosoughi
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahshid Fallah-Darrehchi
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Payam Zahedi
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Yu Z, Wang D, Yang Y, Meng X, Liu N, Shi L. Excellent adsorption performance of dibenzothiophene on functionalized low-cost activated carbons with different oxidation methods. ENVIRONMENTAL TECHNOLOGY 2019; 40:1686-1696. [PMID: 29363408 DOI: 10.1080/09593330.2018.1427802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
Low-cost activated carbon (KAC) was functionalized by HNO3, (NH4)2S2O8 and air oxidation, respectively, to remove dibenzothiophene (DBT) from model fuel. The changes in physical and chemical properties of these activated carbons were characterized by thermal analysis, elemental analysis, nitrogen adsorption apparatus, Raman spectra, scanning electron microscope and Boehm's titration method. HNO3 and (NH4)2S2O8 oxidation result in a significant decrease in pore structure, while air oxidation only causes slight pore reduction due to the re-activation by O2. The oxygen-containing functional groups (OFGs) increase markedly after oxidative modification, in which (NH4)2S2O8 oxidation is considered as the most efficient method with respect to the introduction of OFGs. HNO3 and (NH4)2S2O8 oxidation are more selective to generate carboxyls and lactones, whereas air oxidation creates more phenols, carbonyls and ethers. The DBT adsorption capacity follows the order: NAC (HNO3-oxidized KAC) > OAC (air-oxidized KAC) > KAC > SAC ((NH4)2S2O8-oxidized KAC), implying the introduction of OFGs is beneficial for the DBT adsorption process, especially for selectivity, but excessive OFGs have a negative effect on the removal of DBT. Thus, to achieve high DBT adsorption performance, there should be a trade-off between the micropore volume and the OFGs amount.
Collapse
Affiliation(s)
- Zhan Yu
- a The State Key Laboratory of Chemical Engineering , East China University of Science and Technology , Shanghai , People's Republic of China
| | - Dan Wang
- a The State Key Laboratory of Chemical Engineering , East China University of Science and Technology , Shanghai , People's Republic of China
| | - Yue Yang
- a The State Key Laboratory of Chemical Engineering , East China University of Science and Technology , Shanghai , People's Republic of China
| | - Xuan Meng
- a The State Key Laboratory of Chemical Engineering , East China University of Science and Technology , Shanghai , People's Republic of China
| | - Naiwang Liu
- a The State Key Laboratory of Chemical Engineering , East China University of Science and Technology , Shanghai , People's Republic of China
| | - Li Shi
- a The State Key Laboratory of Chemical Engineering , East China University of Science and Technology , Shanghai , People's Republic of China
| |
Collapse
|
12
|
Wang L, Zhi K, Zhang Y, Liu Y, Zhang L, Yasin A, Lin Q. Molecularly Imprinted Polymers for Gossypol via Sol⁻Gel, Bulk, and Surface Layer Imprinting-A Comparative Study. Polymers (Basel) 2019; 11:E602. [PMID: 30960586 PMCID: PMC6523233 DOI: 10.3390/polym11040602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/23/2019] [Accepted: 03/24/2019] [Indexed: 11/16/2022] Open
Abstract
Three gossypol molecularly imprinted polymers (MIPs) were prepared by bulk polymerization (MIP1), surface layer imprinting using silica gel as the support (MIP2), and the sol-gel process (MIP3). The as-prepared MIPs were characterized by SEM and nitrogen adsorption-desorption techniques to study the morphology structure. The adsorption experiments exhibited that MIP1 had adsorption capacity as high as 564 mg·g-1. The MIP2 showed faster adsorption kinetics than MIP1 and MIP3. The adsorption equilibrium could be reached for gossypol in 40 min. A selectivity study showed that the adsorption capacity of MIPs for gossypol was about 1.9 times higher than that of the structurally-similar analogs ellagic acid and 6.6 times higher than that of the quercetin. It was found that the pseudo-second-order kinetic model and the Freundlich isotherm model were more applicable for the adsorption kinetics and adsorption isotherm of gossypol binding onto the MIP1 and MIP2, respectively. Results suggested that among those three, the MIP2 was a desirable sorbent for rapid adsorption and MIP1 was suitable for selective recognition of gossypol.
Collapse
Affiliation(s)
- Lulu Wang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Keke Zhi
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yagang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi 830026, China.
| | - Yanxia Liu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Akram Yasin
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qifeng Lin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
13
|
Zhi K, Wang L, Zhang Y, Jiang Y, Zhang L, Yasin A. Influence of Size and Shape of Silica Supports on the Sol⁻Gel Surface Molecularly Imprinted Polymers for Selective Adsorption of Gossypol. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E777. [PMID: 29751648 PMCID: PMC5978154 DOI: 10.3390/ma11050777] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 01/03/2023]
Abstract
The influence of various silica gel supports with different shapes and sizes on the recognition properties of surface molecular imprinted polymers (MIPs) was investigated. MIPs for selective recognition and adsorption of gossypol were synthesized via the sol⁻gel process with a surface imprinting technique on silica gel substrates. 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) were chosen as the functional monomer and the cross-linker. The morphology and structure of the gossypol-MIPs were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a standard Brunauer⁻Emett⁻Teller (BET) analysis. Results indicated that the surface imprinted polymer layer facilitated the removal and rebinding of the template, and thus, achieved fast binding kinetics. Compared with the MIPs prepared on irregularly shaped silica with a broad particle size distribution, the MIPs using regularly-shaped silica of uniform size showed higher imprinting factor (IF), and the MIP made with a relatively larger sized (60 μm) spherical silica, demonstrated higher adsorption capacity compared to the MIPs made with smaller sized, spherical silica. The MIP prepared with 60 μm spherically shaped silica, featured a fast adsorption kinetic of 10 min, and a saturated adsorption capacity of 204 mg·g−1. The gossypol-MIP had higher selectivity (IF = 2.20) for gossypol over its structurally-similar analogs ellagic acid (IF = 1.13) and quercetin (IF = 1.20). The adsorption data of the MIP correlated well with the pseudo-second-order kinetic model and the Freundlich isotherm model, which implied that chemical adsorption dominated, and that multilayer adsorption occurred. Furthermore, the MIP exhibited an excellent regeneration performance, and the adsorption capacity of the MIP for gossypol only decreased by 6% after six reused cycles, indicating good application potential for selective adsorption of gossypol.
Collapse
Affiliation(s)
- Keke Zhi
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lulu Wang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yagang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi 830026, China.
| | - Yingfang Jiang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Akram Yasin
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Ostovan A, Ghaedi M, Arabi M, Yang Q, Li J, Chen L. Hydrophilic Multitemplate Molecularly Imprinted Biopolymers Based on a Green Synthesis Strategy for Determination of B-Family Vitamins. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4140-4150. [PMID: 29299926 DOI: 10.1021/acsami.7b17500] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A novel green synthesis strategy was proposed for preparation of multitemplate molecularly imprinted biopolymers (mt-MIBP) in aqueous media with less consumption of organic solvents, which were subsequently used as sorbents of ultrasound-assisted dispersive solid-phase extraction (d-SPE) for simultaneous recognition and efficient separation of B-family vitamins in juice samples, followed by high performance liquid chromatography (HPLC) determination. The obtained mt-MIBP was fully characterized by SEM, FT-IR, TEM, and BET. It offered high binding capacity, good selectivity, and fast dynamics toward all the templates. Involved parameters in the d-SPE efficiency such as mt-MIBP mass, sonication time, and eluting/washing solvents' types and volumes were concurrently investigated by central composite design with rapidity and reliability. Under the optimum conditions, the developed mt-MIBP-d-SPE-HPLC method exhibited wide linear range, low limits of detection and quantification (LOQs) within 1.2-5.5 μg L-1 and 4.0-18.4 μg L-1, respectively, and appropriate repeatability (relative standard deviation values below 4.2%, n = 4). The high selectivity of this method makes it suitable for successful monitoring of vitamins in juice samples with satisfactory recoveries of 75.8-92.7%, 81.1-92.5%, and 84.7-93.8% for vitamins riboflavin (B2), nicotinamide (B3), and pyridoxine (B6), respectively. The present study implied highly promising perspectives of water-compatible eco-friendly mt-MIBP for highly effective multiresidue analysis in complicated matrixes.
Collapse
Affiliation(s)
- Abbas Ostovan
- Department of Chemistry, Kerman Branch, Islamic Azad University , Kerman, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University , Yasouj 75918-74831, Iran
| | - Maryam Arabi
- Chemistry Department, Yasouj University , Yasouj 75918-74831, Iran
| | - Qian Yang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| |
Collapse
|
15
|
Wu Y, Ma Y, Pan J, Gu R, Luo J. Porous and Magnetic Molecularly Imprinted Polymers via Pickering High Internal Phase Emulsions Polymerization for Selective Adsorption of λ-Cyhalothrin. Front Chem 2017; 5:18. [PMID: 28401145 PMCID: PMC5368171 DOI: 10.3389/fchem.2017.00018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/03/2017] [Indexed: 11/23/2022] Open
Abstract
A novel macroporous magnetic molecularly imprinted polymer (MMIPs) of was prepared by W/O Pickering (high internal phase emulsions) HIPEs polymerization, and then it was adopted as adsorbent for selective adsorption of λ-cyhalothrin (LC). In static conditions, adsorption capacity of LC increased rapidly in the first 60 min and reached to equilibrium in ~2.0 h. Excellent conformity of the second-order model confirmed the chemical nature of the interaction between the LC and imprinted sites. The fitting adsorption isotherm was a Langmuir type, and the maximum monolayer adsorption capacity at 298 K was 404.4 μmol g−1. Thermodynamic parameters suggested the specific adsorption at 298 K was an exothermic, spontaneous, and entropy decreased process. Competitive recognition studies of the MMIPs were performed with diethyl phthalate (DEP) and the structurally similar compound fenvalerate (FL), and the MMIPs, which displayed high selectivity for LC.
Collapse
Affiliation(s)
- Yunlong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang, China
| | - Runxing Gu
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang, China
| | - Jialu Luo
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang, China
| |
Collapse
|
16
|
Zhou Z, Lu K, Wei X, Hao T, Xu Y, Lv X, Zhang Y. A mesoporous fluorescent sensor based on ZnO nanorods for the fluorescent detection and selective recognition of tetracycline. RSC Adv 2016. [DOI: 10.1039/c6ra14890e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic for preparation of the mesoporous MIPs-ZnO NRs and non-mesoporous MIPs-ZnO NRs.
Collapse
Affiliation(s)
- Zhiping Zhou
- School of Material Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Kai Lu
- School of Material Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xiao Wei
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- Chang'an University
- P. R. China
| | - Tongfan Hao
- School of Material Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yeqing Xu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xiaodong Lv
- School of School of Mechanical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yufeng Zhang
- School of Material Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|