1
|
Cha M, Xu A, Williams AJ. Structural study of a light chain mispaired bispecific predicts mechanism of downstream separation. J Chromatogr A 2024; 1730:465117. [PMID: 38972252 DOI: 10.1016/j.chroma.2024.465117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
Bispecific antibodies expressed and assembled from a single upstream culture require the correct balance and pairing of four different heavy and light chains (HC and LC). The increased potential for chain-mispaired species challenges the downstream purification of this new format. While clearance of HC-mispaired species, including homodimers and half-antibodies, has been assessed, removal of LC mispairs requires a more stringent approach. Here, we report two case studies in which separation is achieved, as well as the structural basis of these separations: (A) In the first case, a main species with a positively charged patch in the correctly formed variable fragment (Fv) is disrupted when paired with the wrong LC. This LC-mispaired variant binds more weakly to a cation exchange resin and can be washed off in a chromatography step. (B) A second molecule whose LC mispair introduces a negative-charge patch and hydrophobic patch in close proximity, presenting increased binding to a multimodal anion exchange resin. This LC-mispaired variant can be retained on the column under conditions in which the bispecific is recovered. In both case studies, the molecular structural analysis by protein surface properties models correlated well with the chromatography experiments. The comprehensive interpretation of experimental and computational results has provided a better understanding of strategies and potential applications for predicting the downstream purification of complex molecules.
Collapse
Affiliation(s)
- Minjeong Cha
- Department of Purification, Microbiology and Virology, Genentech, Inc, South San Francisco, CA, United States.
| | - Ankai Xu
- Department of Purification, Microbiology and Virology, Genentech, Inc, South San Francisco, CA, United States; Department of Cell & Gene Therapy E2E Value Chain, Genentech, Inc., South San Francisco, CA, United States
| | - Ambrose J Williams
- Department of Purification, Microbiology and Virology, Genentech, Inc, South San Francisco, CA, United States
| |
Collapse
|
2
|
Soon JW, Oohora K, Hayashi T. A disulphide bond-mediated hetero-dimer of a hemoprotein and a fluorescent protein exhibiting efficient energy transfer †. RSC Adv 2022; 12:28519-28524. [PMID: 36320522 PMCID: PMC9535469 DOI: 10.1039/d2ra05249k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
Artificial protein hetero-dimerization is one of the promising strategies to construct protein-based chemical tools. In this work, cytochrome b562, an electron transfer hemoprotein, and green fluorescent protein (GFP) mutants with cysteine residues added to their surfaces were conjugated via a pyridyl disulphide-based thiol–disulfide exchange reaction. The eight hetero-dimers, which have cysteine residues at different positions to form the disulphide bonds, were obtained and characterized by gel-electrophoresis, mass spectrometry and size exclusion chromatography. The fluorescence properties of the hetero-dimers were evaluated by fluorescence spectroscopy and fluorescence lifetime measurements. Efficient photoinduced energy transfer from the GFP chromophore to the heme cofactor was observed in each of the hetero-dimers. The energy transfer efficiency is strongly dependent on the cross-linking residues, reaching 96%. Furthermore, the estimated Förster distance and the structure-based maximum possible distances of the donor and acceptor suggest that one of the hetero-dimers has a rigid protein–protein structure with favourable properties for energy transfer. The disulphide bond-mediated protein hetero-dimerization is useful for screening functional protein systems towards further developments. Hetero-dimerization of a hemoprotein and green fluorescent protein via a thiol–disulphide exchange reaction is achieved. The heterodimer has suitable cross-linking points and displays efficient energy transfer.![]()
Collapse
Affiliation(s)
- Julian Wong Soon
- Department of Applied Chemistry, Graduate School of Engineering, Osaka UniversitySuita565-0871Japan
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka UniversitySuita565-0871Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka UniversitySuita565-0871Japan
| |
Collapse
|
3
|
Dong E, Lam C, Tang D, Louie S, Yim M, Williams AJ, Sawyer W, Yip S, Carver J, AlBarakat A, Tsukuda J, Snedecor B, Misaghi S. Concurrent transfection of randomized transgene configurations into targeted integration CHO host is an advantageous and cost-effective method for expression of complex molecules. Biotechnol J 2020; 16:e2000230. [PMID: 33259700 DOI: 10.1002/biot.202000230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Complex recombinant proteins are increasingly desired as potential therapeutic options for many disease indications and are commonly expressed in the mammalian Chinese hamster ovary (CHO) cells. Generally, stoichiometric expression and proper folding of all subunits of a complex recombinant protein are required to achieve the desired titers and product qualities for a complex molecule. Targeted integration (TI) cell line development (CLD), which entails the insertion of the desired transgene(s) into a predefined landing-pad in the CHO genome, enables the generation of a homogeneous pool of cells from which clonally stable and high titer clones can be isolated with minimal screening efforts. Despite these advantages, using a single transgene(s) configuration with predetermined gene dosage might not be adequate for the expression of complex molecules. The goal of this study is to develop a method for seamless screening of many vector configurations in a single TI CLD attempt. As testing vector configurations in transient expression systems is not predictive of protein expression in the stable cell lines and parallel TI CLDs with different transgene configurations is resource-intensive, we tested the concept of randomized configuration targeted integration (RCTI) CLD approach for expression of complex molecules. RCTI allows simultaneous transfection of multiple vector configurations, encoding a complex molecule, to generate diverse TI clones each with a single transgene configuration but clone specific productivity and product qualities. Our findings further revealed a direct correlation between transgenes' configuration/copy-number and titer/product quality of the expressed proteins. RCTI CLD enabled, with significantly fewer resources, seamless isolation of clones with comparable titers and product quality attributes to that of several parallel standard TI CLDs. Therefore, RCTI introduces randomness to the TI CLD platform while maintaining all the advantages, such as clone stability and reduced sequence variant levels, that the TI system has to offer.
Collapse
Affiliation(s)
- Emily Dong
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Cynthia Lam
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Danming Tang
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Salina Louie
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Mandy Yim
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Ambrose J Williams
- Purification Development Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - William Sawyer
- Biochemical and Cellular Pharmacology Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Shirley Yip
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Joseph Carver
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Ali AlBarakat
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Joni Tsukuda
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Brad Snedecor
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| |
Collapse
|
4
|
Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103. [PMID: 31173761 PMCID: PMC6891151 DOI: 10.1016/j.xphs.2019.05.031] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Antibody-based proteins have become an important class of biologic therapeutics, due in large part to the stability, specificity, and adaptability of the antibody framework. Indeed, antibodies not only have the inherent ability to bind both antigens and endogenous immune receptors but also have proven extremely amenable to protein engineering. Thus, several derivatives of the monoclonal antibody format, including bispecific antibodies, antibody-drug conjugates, and antibody fragments, have demonstrated efficacy for treating human disease, particularly in the fields of immunology and oncology. Reviewed here are considerations for the design of antibody-based therapeutics, including immunological context, therapeutic mechanisms, and engineering strategies. First, characteristics of antibodies are introduced, with emphasis on structural domains, functionally important receptors, isotypic and allotypic differences, and modifications such as glycosylation. Then, aspects of therapeutic antibody design are discussed, including identification of antigen-specific variable regions, choice of expression system, use of multispecific formats, and design of antibody derivatives based on fragmentation, oligomerization, or conjugation to other functional moieties. Finally, strategies to enhance antibody function through protein engineering are reviewed while highlighting the impact of fundamental biophysical properties on protein developability.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|