1
|
Bordet A, Leitner W, Chaudret B. Magnetically Induced Catalysis: Definition, Advances, and Potential. Angew Chem Int Ed Engl 2025:e202424151. [PMID: 40249118 DOI: 10.1002/anie.202424151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/10/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
The rapidly growing importance of electrification in the chemical industry opens room for disruptive innovations regarding energy input into catalytic processes. Energy efficiency and dynamics of renewable energy supplies represent important challenges, but the design of catalytic systems to cope with such new frameworks may also stimulate the discovery of new catalyst materials and reaction pathways. In this context, many opportunities arise when catalysts are activated in a rapid, localized, and energy-efficient manner. Among the various concepts to achieve adaptivity in catalysis, magnetic induction heating applied directly at the catalyst or in vicinity of the active site has gained increasing attention recently. In this Scientific Perspective, we provide a coherent framework to the emerging field of catalysis using magnetic fields-and in particular alternating current magnetic fields-to activate catalytic materials and define it as magnetically induced catalysis. Promising approaches and selected examples are described to illustrate the scientific concept and to highlight its broad potential for innovation in catalysis from laboratory to industrial scale.
Collapse
Affiliation(s)
- A Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - W Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - B Chaudret
- Université de Toulouse, INSA, LPCNO, Laboratoire de Physique et Chimie des Nano-Objets, CNRS, UMR 5215, 135 Avenue de Rangueil, Toulouse, 31077, France
| |
Collapse
|
2
|
Wang X, Liu Y, Wang Z, Song J, Li X, Xu C, Xu Y, Zhang L, Bao W, Sun B, Wang L, Liu D. [Ce 3+-O V-Ce 4+] Located Surface-Distributed Sheet Cu-Zn-Ce Catalysts for Methanol Production by CO 2 Hydrogenation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15140-15149. [PMID: 38978384 DOI: 10.1021/acs.langmuir.4c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The metal-support interaction is crucial for the performance of Cu-based catalysts. However, the distinctive properties of the support metal element itself are often overlooked in catalyst design. In this paper, a sheet Cu-Zn-Ce with [Ce3+-OV-Ce4+] located on the surface was designed by the sol-gel method. Through EPR and X-ray photoelectron spectroscopy (XPS), the relationship between the content of oxygen vacancies and Ce was revealed. Ce itself induces the generation of [Ce3+-OV-Ce4+]. Through ICP-MS, XPS, and SEM-mapping, the Ce-induced formation of [Ce3+-OV-Ce4+] located on the catalyst surface was demonstrated. CO2-TPD and DFT calculations further revealed that [Ce3+-OV-Ce4+] enhanced CO2 adsorption, leading to a 10% increase in methanol selectivity compared to Cu-Zn-Ce synthesized via the coprecipitation method.
Collapse
Affiliation(s)
- Xuguang Wang
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Yaxin Liu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Wang
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Jianhua Song
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Xue Li
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Xu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxiang Xu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Ling Zhang
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Weizhong Bao
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Bin Sun
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Lei Wang
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Dianhua Liu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Solid-State Synthesis of Pd/In2O3 Catalysts for CO2 Hydrogenation to Methanol. Catal Letters 2022. [DOI: 10.1007/s10562-022-04030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Sancho-Sanz I, Korili S, Gil A. Catalytic valorization of CO 2 by hydrogenation: current status and future trends. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1968197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- I. Sancho-Sanz
- INAMAT^2, Departamento De Ciencias, Edificio De Los Acebos, Universidad Pública De Navarra, Pamplona, Spain
| | - S.A. Korili
- INAMAT^2, Departamento De Ciencias, Edificio De Los Acebos, Universidad Pública De Navarra, Pamplona, Spain
| | - A. Gil
- INAMAT^2, Departamento De Ciencias, Edificio De Los Acebos, Universidad Pública De Navarra, Pamplona, Spain
| |
Collapse
|
5
|
Sha F, Han Z, Tang S, Wang J, Li C. Hydrogenation of Carbon Dioxide to Methanol over Non-Cu-based Heterogeneous Catalysts. CHEMSUSCHEM 2020; 13:6160-6181. [PMID: 33146940 DOI: 10.1002/cssc.202002054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/03/2020] [Indexed: 06/11/2023]
Abstract
The increasing atmospheric CO2 level makes CO2 reduction an urgent challenge facing the world. Catalytic transformation of CO2 into chemicals and fuels utilizing renewable energy is one of the promising approaches toward alleviating CO2 emissions. In particular, the selective hydrogenation of CO2 to methanol utilizing renewable hydrogen potentially enables large scale transformation of CO2 . The Cu-based catalysts have been extensively investigated in CO2 hydrogenation. However, it is not only limited by long-term instability but also displays unsatisfactory catalytic performance. The supported metal-based catalysts (Pd, Pt, Au, and Ag) can achieve high methanol selectivity at low temperatures. The mixed oxide catalysts represented by Ma ZrOx (Ma =Zn, Ga, and Cd) solid solution catalysts present high methanol selectivity and catalytic activity as well as excellent stability. This Review focuses on the recent advances in developing Non-Cu-based heterogeneous catalysts and current understandings of catalyst design and catalytic performance. First, the thermodynamics of CO2 hydrogenation to methanol is discussed. Then, the progress in supported metal-based catalysts, bimetallic alloys or intermetallic compounds catalysts, and mixed oxide catalysts is discussed. Finally, a summary and a perspective are presented.
Collapse
Affiliation(s)
- Feng Sha
- School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Zhe Han
- School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Shan Tang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jijie Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| |
Collapse
|
6
|
De S, Dokania A, Ramirez A, Gascon J. Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO2 Utilization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04273] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sudipta De
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Abhay Dokania
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Adrian Ramirez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
7
|
Song Y, Serikawa K, Imamura K, Imai H, Li X. Direct Synthesis of C 5–C 13 iso-Paraffins from Carbon Dioxide over Hybrid Catalyst in a Near-Critical n-Hexane Fluid. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Song
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan
| | - Kenta Serikawa
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan
| | - Kazuma Imamura
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan
| | - Hiroyuki Imai
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan
| | - Xiaohong Li
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan
| |
Collapse
|
8
|
Gao J, Song F, Li Y, Cheng W, Yuan H, Xu Q. Cu2In Nanoalloy Enhanced Performance of Cu/ZrO2 Catalysts for the CO2 Hydrogenation to Methanol. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06956] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jia Gao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Fujiao Song
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Yue Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wenqiang Cheng
- Sinopec Yangzi Petrochemical Company Ltd., Nanjing 210048, PR China
| | - Haiyan Yuan
- Interconnection Environmental Technology (JiangSu) Co., Ltd., Yancheng 224051, PR China
| | - Qi Xu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| |
Collapse
|
9
|
Jiang X, Nie X, Guo X, Song C, Chen JG. Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem Rev 2020; 120:7984-8034. [DOI: 10.1021/acs.chemrev.9b00723] [Citation(s) in RCA: 456] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao Jiang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332, United States
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research, Pennsylvania State University, 209 Academic Projects Building, University Park, Pennsylvania 16802, United States
| | - Jingguang G. Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
10
|
CO2 Hydrogenation to Methanol by a Liquid-Phase Process with Alcoholic Solvents: A Techno-Economic Analysis. Processes (Basel) 2019. [DOI: 10.3390/pr7070405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Synthesis of methanol from recirculated CO2 and H2 produced by water electrolysis allows sustainable production of fuels and chemical storage of energy. Production of renewable methanol has, however, not achieved commercial breakthrough, and novel methods to improve economic feasibility are needed. One possibility is to alter the reaction route to methanol using catalytic alcoholic solvents, which makes the process possible at lower reaction temperatures. To estimate the techno-economic potential of this approach, the feasibilities of the conventional gas-phase process and an alternative liquid-phase process employing 2-butanol or 1-butanol solvents were compared by means of flowsheet modelling and economic analysis. As a result, it was found that despite improved methanol yield, the presence of solvent adds complexity to the process and increases separation costs due to the high volatility of the alcohols and formation of azeotropes. Hydrogen, produced from wind electricity, was the major cost in all processes. The higher cost of the present, non-optimized liquid-phase process is largely explained by the heat required in separation. If this heat could be provided by heat integration, the resulting production costs approach the costs of the gas-phase process. It is concluded that the novel reaction route provides promising possibilities, but new breakthroughs in process synthesis, integration, optimization, and catalysis are needed before the alcoholic solvent approach surpasses the traditional gas-phase process.
Collapse
|
11
|
|
12
|
Microwave, Ultrasound, and Mechanochemistry: Unconventional Tools that Are Used to Obtain “Smart” Catalysts for CO2 Hydrogenation. Catalysts 2018. [DOI: 10.3390/catal8070262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Stangeland K, Li H, Yu Z. Thermodynamic Analysis of Chemical and Phase Equilibria in CO2 Hydrogenation to Methanol, Dimethyl Ether, and Higher Alcohols. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04866] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kristian Stangeland
- Department of Petroleum Engineering, University of Stavanger, 4036 Stavanger, Norway
| | - Hailong Li
- Department of Energy, Building and Environment, Mälardalen University, 73123 Västerås, Sweden
| | - Zhixin Yu
- Department of Petroleum Engineering, University of Stavanger, 4036 Stavanger, Norway
| |
Collapse
|