1
|
Wang T, Tao B, Zuo B, Yan G, Liu S, Wang R, Zhao Z, Chu F, Li Z, Yamauchi Y, Xu X. Challenges and Opportunities of Uranium Extraction From Seawater: a Systematic Roadmap From Laboratory to Industry. SMALL METHODS 2025; 9:e2401598. [PMID: 39663693 DOI: 10.1002/smtd.202401598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 12/13/2024]
Abstract
Uranium extraction from seawater (UES) is crucial for ensuring the sustainable development of nuclear power and has seen significant advancements in recent years. However, natural seawater is a highly complex biogeochemical system, characterized by an extremely low uranium (U) concentration (≈3.3 µg L-1), abundant competitive ions, and significant marine biological pollution, making UES a formidable challenge. This review addresses the challenges encountered in UES and explores potential methods for enhancing the industrial UES system, including membrane separation, electrochemistry, photocatalysis, and biosorption. Additionally, several representative marine tests are summarized and restrictive factors of large-scale UES are analyzed. Finally, the further development of UES from laboratory to industry applications is promoted, with a focus on technological innovation. The goal is to stimulate innovative ideas and provide fresh insights for the future development of the UES system, bridging the gap between laboratory research and industrial implementation.
Collapse
Affiliation(s)
- Tao Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Binbin Tao
- College of Innovation and Industrial Engineering, Wanjiang University of Technology, Maanshan, 243011, China
| | - Bin Zuo
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
- Key Laboratory of Xinjiang Coal Resources Green Mining, Ministry of Education, Xinjiang Institute of Engineering, Urumqi, 830023, China
| | - Guoze Yan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Shaoqing Liu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ruoyu Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhongzhou Zhao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Feifei Chu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhengtong Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
- Key Laboratory of Xinjiang Coal Resources Green Mining, Ministry of Education, Xinjiang Institute of Engineering, Urumqi, 830023, China
| |
Collapse
|
2
|
Xie G, Feng G, Li Q, Zhang K, Tang C, Chen H, Cai C, Mao P. Efficient uranium sequestration ability and mechanism of live and inactivated strain of Streptomyces sp. HX-1 isolated from uranium wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124307. [PMID: 38830528 DOI: 10.1016/j.envpol.2024.124307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/20/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Prokaryotes are effective biosorbents for the recovery of uranium and other heavy metals. However, the potential mechanism of uranium bioaccumulation by filamentous strain (actinobacteria) remains unclear. This study demonstrates the potential for and mechanism of uranium bioaccumulation by living (L-SS) and inactivated (I-SS) Streptomyces sp. HX-1 isolated from uranium mine waste streams. Uranium accumulation experiments showed that L-SS and I-SS had efficient uranium adsorption potentials, with removal rates of 92.93 and 97.42%, respectively. Kinetic and equilibrium data indicated that the bioaccumulation process was consistent with the pseudo-second-order kinetic, Langmuir, and Sips isotherm models. FTIR indicated that the main functional groups of L-SS and I-SS binding uranium were uranyl, carboxyl, and phosphate groups. Moreover, the results of XRD, XPS, SEM-EDS, and TEM-EDS analyses revealed for the first time that L-SS has biomineralization and bioreduction capacity against uranium. L-SS mineralize U(VI) into NH4UO2PO4 and [Formula: see text] through the metabolic activity of biological enzymes (phosphatases). In summary, Streptomyces sp. HX-1 is a novel and efficient uranium-fixing biosorbent for the treatment of uranium-contaminated wastewater.
Collapse
Affiliation(s)
- Gen Xie
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Guangwen Feng
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China.
| | - Qin Li
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Keyong Zhang
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Chao Tang
- Research Center of Ion Beam Biotechnology and Biodiversity, Xi'an Technological University, Xi'an, Shaanxi, 710032, PR China
| | - Henglei Chen
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Changlong Cai
- Research Center of Ion Beam Biotechnology and Biodiversity, Xi'an Technological University, Xi'an, Shaanxi, 710032, PR China
| | - Peihong Mao
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| |
Collapse
|
3
|
Ahmed B, Ahmad Z, Khatoon A, Khan I, Shaheen N, Malik AA, Hussain Z, Khan MA. Recent developments and challenges in uranium extraction from seawater through amidoxime-functionalized adsorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103496-103512. [PMID: 37704807 DOI: 10.1007/s11356-023-29589-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
As per statistical estimations, we have only around 100 years of uranium life in terrestrial ores. In contrast, seawater has viable uranium resources that can secure the future of energy. However, to achieve this, environmental challenges need to be overcome, such as low uranium concentration (3.3 ppb), fouling of adsorbents, uranium speciation, oceanic temperature, and competition between elements for the active site of adsorbent (such as vanadium which has a significant influence on uranium adsorption). Furthermore, the deployability of adsorbent under seawater conditions is a gigantic challenge; hence, leaching-resistant stable adsorbents with good reusability and high elution rates are extremely needed. Powdered (nanostructured) adsorbents available today have limitations in fulfilling these requirements. An increase in the grafting density of functional ligands keeping in view economic sustainability is also a major obstacle but a necessity for high uranium uptake. To cope with these challenges, researchers reported hundreds of adsorbents of different kinds, but amidoxime-based polymeric adsorbents have shown some remarkable advantages and are considered the benchmark in uranium extraction history; they have a high affinity for uranium because of electron donors in their structure, and their amphoteric nature is responsible for effective uranium chelation under a wide range of pH. In this review, we have mainly focused on recent developments in uranium extraction from seawater through amidoxime-based adsorbents, their comparative analysis, and problematic factors that are needed to be considered for future research.
Collapse
Affiliation(s)
- Bilal Ahmed
- Department of Chemistry, Abbottabad University of Science and Technology, Havelian, Pakistan
| | - Zia Ahmad
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Amina Khatoon
- Department of Chemistry, Queen Mary University of London, London, UK
| | - Iqra Khan
- Department of Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Nusrat Shaheen
- Department of Chemistry, Abbottabad University of Science and Technology, Havelian, Pakistan
| | - Attiya Abdul Malik
- Department of Chemistry, Abbottabad University of Science and Technology, Havelian, Pakistan
| | - Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Muhammad Ali Khan
- Department of Chemistry, Abbottabad University of Science and Technology, Havelian, Pakistan.
| |
Collapse
|
4
|
Preparation of porous amidoximated nanofibers with antibacterial properties, and experiments on uranium extraction from seawater. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
5
|
Xie Y, Liu Z, Geng Y, Li H, Wang N, Song Y, Wang X, Chen J, Wang J, Ma S, Ye G. Uranium extraction from seawater: material design, emerging technologies and marine engineering. Chem Soc Rev 2023; 52:97-162. [PMID: 36448270 DOI: 10.1039/d2cs00595f] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Uranium extraction from seawater (UES), a potential approach to securing the long-term uranium supply and sustainability of nuclear energy, has experienced significant progress in the past decade. Promising adsorbents with record-high capacities have been developed by diverse innovative synthetic strategies, and scale-up marine field tests have been put forward by several countries. However, significant challenges remain in terms of the adsorbents' properties in complex marine environments, deployment methods, and the economic viability of current UES systems. This review presents an up-to-date overview of the latest advancements in the UES field, highlighting new insights into the mechanistic basis of UES and the methodologies towards the function-oriented development of uranium adsorbents with high adsorption capacity, selectivity, biofouling resistance, and durability. A distinctive emphasis is placed on emerging electrochemical and photochemical strategies that have been employed to develop efficient UES systems. The most recent achievements in marine tests by the major countries are summarized. Challenges and perspectives related to the fundamental, technical, and engineering aspects of UES are discussed. This review is envisaged to inspire innovative ideas and bring technical solutions towards the development of technically and economically viable UES systems.
Collapse
Affiliation(s)
- Yi Xie
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Zeyu Liu
- AVIC Manufacturing Technology Institute, Beijing 100024, China
| | - Yiyun Geng
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Hao Li
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China. .,China Academy of Engineering Physics, Mianyang 621900, China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yanpei Song
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Xiaolin Wang
- China Academy of Engineering Physics, Mianyang 621900, China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Jianchen Wang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Highly selective adsorption of
Pt(IV)
from spent catalyst by polyethyleneimine functionalized polyethylene/polypropylene non‐woven fabric. J Appl Polym Sci 2022. [DOI: 10.1002/app.53322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
U(VI) immobilization properties on porous dual metallic M/Co(II) zeolitic imidazolate framework (ZIF-67) (M = Fe(III), Ni(II), Cu(II)) nanoparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Preparation and performance of amidoximated silver-silica core–shell nanoparticles for uranium extraction from seawater. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Mussel-inspired polydopamine microspheres self-adhered on natural hemp fibers for marine uranium harvesting and photothermal-enhanced antifouling properties. J Colloid Interface Sci 2022; 622:109-116. [DOI: 10.1016/j.jcis.2022.04.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 11/20/2022]
|
10
|
Zhang D, Li X, Liang T, Niu S, He Y, Song P, Wang R. Construction of antibacterial fabrics with polymer cationic broccolo‐shaped nanoparticles. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Duoxin Zhang
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Xuemei Li
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Tingyu Liang
- College of Life Science College of Life Science, Northwest Normal University Lanzhou China
| | - Shiquan Niu
- College of Life Science College of Life Science, Northwest Normal University Lanzhou China
| | - Yufeng He
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Pengfei Song
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Rongmin Wang
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| |
Collapse
|
11
|
Nie X, Zhang Y, Jiang Y, Pan N, Liu C, Wang J, Ma C, Xia X, Liu M, Zhang H, Li X, Dong F. Efficient extraction of U(VI) from uranium enrichment process wastewater by amine-aminophosphonate-modified polyacrylonitrile fibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154743. [PMID: 35337879 DOI: 10.1016/j.scitotenv.2022.154743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The enrichment and recovery of U(VI) from low-level radioactive wastewater in the process of uranium enrichment is important for the sustainable development of nuclear energy and environmental protection. Herein, a novel amine-aminophosphonate bifunctionalized polyacrylonitrile fiber (AAP-PAN), was prepared for the extraction of U(VI) from simulated and real uranium-containing process wastewater. The AAP-PAN fiber demonstrated a maximum adsorption capacity of 313.6 mg g-1 at pH = 6.0 and 318 K in the batch experiments. During the dynamic column experiment, over 99.99% removal of U(VI) could be achieved by the fiber using multi-ion simulated solution and real wastewater with an excellent saturation adsorption capacity of 132.0 mg g-1 and 72.5 mg g-1, respectively. It also exhibited an outstanding reusability for at least 5 cycles of adsorption process. The mechanism for U(VI) removal was studied by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis in the assist of simulation calculation. It suggested that the amine and aminophosphonate groups can easily bind uranyl ions due to U(VI) is more likely to combine with oxygen atoms of CO and PO, respectively.
Collapse
Affiliation(s)
- Xiaoqin Nie
- National Coinnovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621000, China; Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yujing Zhang
- National Coinnovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yating Jiang
- National Coinnovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ning Pan
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621000, China
| | - Chang Liu
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Junling Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621000, China
| | - Chunyan Ma
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621000, China
| | - Xue Xia
- National Coinnovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
| | - Mingxue Liu
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hongping Zhang
- State Key Laboratory of Environmental Friendly Energy Materials, School of Materials Science, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoan Li
- Mianyang Central Hospital, NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang 621000, China.
| | - Faqin Dong
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621000, China; Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
12
|
Wang H, Xu T, Zheng B, Cao M, Gao F, Zhou G, Ma C, Dang J, Yao W, Wu K, Liu T, Yuan Y, Fu Q, Wang N. Cuttlefish ink loaded polyamidoxime adsorbent with excellent photothermal conversion and antibacterial activity for highly efficient uranium capture from natural seawater. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128789. [PMID: 35358815 DOI: 10.1016/j.jhazmat.2022.128789] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Owing to the abundant uranium reserves in the oceans, the collection of uranium from seawater has aroused the widespread interest. Compared to the uranium extraction from ore, uranium collection from seawater is a more environmentally friendly strategy. The amidoxime (AO) functional group has been considered as one of the most efficient chelating groups for uranium capture. In this work, by drawing upon the photothermal character and antibacterial activity of cuttlefish ink, a cuttlefish ink loaded polyamidoxime (CI-PAO) membrane adsorbent is developed. Under one-sun illumination, the CI-PAO membrane shows a high extraction capacity of 488.76 mg-U/g-Ads in 500 mL 8 ppm uranium spiked simulated seawater, which is 1.24 times higher than PAO membrane. The adsorption rate of CI-PAO membrane is increased by 32.04%. Furthermore, exhibiting roughly 75% bacteriostatic rate in composite marine bacteria, the CI-PAO shows a dramatically antibacterial activity, which effectively prevents the functional sites on the adsorbent surface from being occupied by the biofouling blocks. After immersing in natural seawater for 4 weeks, light-irradiated CI-PAO gave high uranium uptake capacity of 6.17 mg-U/g-Ads. Hence, the CI-PAO membrane adsorbent can be considered as a potential candidate for the practical application for uranium extraction from seawater.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China
| | - Taohong Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China
| | - Binhui Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China
| | - Meng Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China
| | - Feng Gao
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China
| | - Guanbing Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China
| | - Chong Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China
| | - Jia Dang
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China
| | - Weikun Yao
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China
| | - Kechen Wu
- Fujian Key Laboratory of Functional Marine Sensing Materials Minjiang University, Fuzhou 350108, China
| | - Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China.
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China.
| | - Qiongyao Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine Hainan Medical University, Haikou, Hainan, 571199, China.
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China.
| |
Collapse
|
13
|
Gu H, Yu J, Zhang H, Sun G, Li R, Liu P, Li Y, Wang J. Theory-Guided Design of a Method to Obtain Competitive Balance between U(VI) Adsorption and Swaying Zwitterion-Induced Fouling Resistance on Natural Hemp Fibers. Int J Mol Sci 2022; 23:6517. [PMID: 35742958 PMCID: PMC9223365 DOI: 10.3390/ijms23126517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
The competitive balance between uranium (VI) (U(VI)) adsorption and fouling resistance is of great significance in guaranteeing the full potential of U(VI) adsorbents in seawater, and it is faced with insufficient research. To fill the gap in this field, a molecular dynamics (MD) simulation was employed to explore the influence and to guide the design of mass-produced natural hemp fibers (HFs). Sulfobetaine (SB)- and carboxybetaine (CB)-type zwitterions containing soft side chains were constructed beside amidoxime (AO) groups on HFs (HFAS and HFAC) to form a hydration layer based on the terminal hydrophilic groups. The soft side chains were swayed by waves to form a hydration-layer area with fouling resistance and to simultaneously expel water molecules surrounding the AO groups. HFAS exhibited greater antifouling properties than that of HFAO and HFAC. The U(VI) adsorption capacity of HFAS was almost 10 times higher than that of HFAO, and the max mass rate of U:V was 4.3 after 35 days of immersion in marine water. This paper offers a theory-guided design of a method to the competitive balance between zwitterion-induced fouling resistance and seawater U(VI) adsorption on natural materials.
Collapse
Affiliation(s)
- Huiquan Gu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Hongsen Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Gaohui Sun
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Peili Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Ying Li
- Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023, China;
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| |
Collapse
|
14
|
Jiang H, Luo J, Liu Z, Liu S, Li F, Zuo L, Ma J, Luo M. Porous nanofiber membrane from phase separation electronspun for selectively recovering uranium from seawater. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Zhang G, Wang Y, Zhang X, Liu L, Ma F, Zhang C, Dong H. Synthesis of a porous amidoxime modified hypercrosslinked benzil polymer and efficient uranium extraction from water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Zhu B, Li L, Dai Z, Tang S, Zhen D, Sun L, Chen L, Tuo C, Tang Z. Synthesis of amidoximated polyacrylonitrile/sodium alginate composite hydrogel beed and its use in selective and recyclable removal of U(VI). J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08233-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Yu Q, Yuan Y, Feng L, Sun W, Lin K, Zhang J, Zhang Y, Wang H, Wang N, Peng Q. Highly efficient immobilization of environmental uranium contamination with Pseudomonas stutzeri by biosorption, biomineralization, and bioreduction. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127758. [PMID: 34801303 DOI: 10.1016/j.jhazmat.2021.127758] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Uranium is a heavy metal with both chemotoxicity and radiotoxicity. Due to the increasing consumption of uranium, the remediation of uranium contamination and recovery of uranium from non-conventional approach is highly needed. Microorganism exhibits high potential for immobilization of uranium. This study for the first time isolated a marine Pseudomonas stutzeri strain MRU-UE1 with high uranium immobilization capacity of 308.72 mg/g, which is attributed to the synergetic mechanisms of biosorption, biomineralization, and bioreduction. The uranium is found to be immobilized in forms of tetragonal chernikovite (H2(UO2)2(PO4)2·8H2O) by biomineralization and CaU(PO4)2 by bioreduction under aerobic environment, which is rarely observed and would broaden the application of this strain in aerobic condition. The protein, phosphate group, and carboxyl group are found to be essential for the biosorption of uranium. In response to the stress of uranium, the strain produces inorganic phosphate group, which transformed soluble uranyl ion to insoluble uranium-containing precipitates, and poly-β-hydroxybutyrate (PHB), which is observed for the first time during the interaction between microorganism and uranium. In summary, P. stutzeri strain MRU-UE1 would be a promising alternative for environmental uranium contamination remediation and uranium extraction from seawater.
Collapse
Affiliation(s)
- Qiuhan Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China.
| | - Lijuan Feng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Wenyan Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Ke Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Jiacheng Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Yibin Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, PR China
| | - Hui Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China.
| | - Qin Peng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, PR China.
| |
Collapse
|
18
|
Wenzel M, Steup J, Ohto K, Weigand JJ. Recent Advances in Guanidinium Salt Based Receptors and Functionalized Materials for the Recognition of Anions. CHEM LETT 2022. [DOI: 10.1246/cl.210527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marco Wenzel
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Johannes Steup
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Keisuke Ohto
- Department of Chemistry and Applied Chemistry, Saga University, 1-Honjo, Saga 840-8502, Japan
| | - Jan J. Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
19
|
Gu H, Ju P, Liu Q, Sun G, Liu J, Chen R, Yu J, Zhu J, Wang J. Constructing an Amino-reinforced amidoxime swelling layer on a Polyacrylonitrile surface for enhanced uranium adsorption from seawater. J Colloid Interface Sci 2021; 610:1015-1026. [PMID: 34865738 DOI: 10.1016/j.jcis.2021.11.152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022]
Abstract
Polyacrylonitrile (PAN)-based materials have been studied for decades as uranium (U(VI)) adsorbents, because the further products of abundant nitrile groups, amidoxime (AO) groups, show great affinity for U(VI) ions. However, excessive amidoximation could cause the shrinkage of PAN fibers, resulting in decreased adsorption performance. Hence, an amino-reinforced amidoxime (ARAO) swelling layer was constructed on the PAN fiber surface (PAN-NH2-AO) by modification of the strongly hydrophilic amino group to prevent shrinkage. The molecular chains in the ARAO swelling layer would be swelled due to the adsorption of a large amount of water. Simultaneously, U(Ⅵ) ions can penetrate into the ARAO swelling layer with water molecules and coordinate with amino or AO groups, leading to increased adsorption performance. PAN-NH2-AO exhibited maximum U(VI) and water adsorption capacities of 492.61 mg g-1 and 20.32 g g-1 at 25 ℃ with a swelling ratio of 20.73%, respectively. The adsorption capacity of PAN-NH2-AO was 0.312 mg g-1 after a 91-day immersion in Yellow Sea, China. The study of the adsorption thermodynamics and kinetics of PAN-NH2-AO showed that the adsorption process was spontaneous homogeneous chemical adsorption. This paper proposes a novel method to obstruct amidoximation induced shrinkage and to maximize the potential application of PAN-based materials.
Collapse
Affiliation(s)
- Huiquan Gu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Peihai Ju
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co. Ltd, Hainan 572427, China; Harbin Engineering University Capital Management Co. Ltd, Harbin 150001, China.
| | - Gaohui Sun
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Harbin Engineering University Capital Management Co. Ltd, Harbin 150001, China.
| |
Collapse
|
20
|
Wang X, Zhou J, Zhang Z, Li J, Zhang H. Synthesis of PAO NFs and the adsorption for uranium (VI) in alkaline solution. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-08083-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Li S, Hu Y, Shen Z, Cai Y, Ji Z, Tan X, Liu Z, Zhao G, Hu S, Wang X. Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst. Sci China Chem 2021; 64:1323-1331. [DOI: doi.org/10.1007/s11426-021-9987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 06/25/2023]
|
22
|
Li S, Hu Y, Shen Z, Cai Y, Ji Z, Tan X, Liu Z, Zhao G, Hu S, Wang X. Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9987-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Synthesis of selective biodegradable amidoxime chitosan for absorption of Th(IV) and U(VI) ions in solution. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2020-0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Radionuclide extraction from wastewater is a long-term process, in which the study on the reuse and decomposition of adsorbents provides the ability to complete the post-treatment after adsorption. Herein, A novel biodegradable amidoxime chitosan has been synthesized through one-step without crosslinking agent and characterized by FT-IR, SEM, XPS, TGA and element analysis. The batch adsorption experiments of U(VI) and Th(IV) on AO-CTS adsorbent were studied and maximum adsorption of U(VI) and Th(IV) were 97 and 56 mg/g, respectively. The U(VI) and Th(Ⅳ) can be effectively desorbed from the AO-CTS materials at low acidity, The AO-CTS can be reused 6 times without reducing absorbency for U(VI) and Th(Ⅳ). When finish the adsorption process, the AO-CTS can be degraded by lysozyme at room temperature, there were no toxic or harmful substances are produced.
Collapse
|
24
|
Wang F, Song Y, Liang S, Yu Y, Liang J, Jiang M. Polyamidoxime nanoparticles/polyvinyl alcohol composite chelating nanofibers prepared by centrifugal spinning for uranium extraction. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Zhou Y, Li Y, Liu D, Wang X, Liu D, Xu L. Synthesis of the inorganic-organic hybrid of two-dimensional polydopamine-functionalized titanate nanosheets and its efficient extraction of U(VI) from aqueous solution. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Peng X, Liu X, Cui Y, Li Y, Ma J, Sun G. Adsorption of uranyl ion with polymer spheres modified by diamide. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Wang Y, Wang J, Wang J, Liang J, Pan D, Li P, Fan Q. Efficient recovery of uranium from saline lake brine through photocatalytic reduction. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Tu Y, Ren LF, Lin Y, Shao J, He Y, Gao X, Shen Z. Adsorption of antimonite and antimonate from aqueous solution using modified polyacrylonitrile with an ultrahigh percentage of amidoxime groups. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121997. [PMID: 31955022 DOI: 10.1016/j.jhazmat.2019.121997] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/12/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Porous modified polyacrylonitrile (PAN) with an ultrahigh percentage of amidoxime groups (UAPAN) was synthesized for the first time and used to adsorb antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution. Fourier transform infrared (FT-IR), Zeta potential, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) were adopted to characterize UAPAN and explore adsorption mechanism. Moreover, batch experiments were performed to investigate the influence of various adsorption parameters, including initial pH, contact time, temperature, coexisting ions and reusability on adsorption capacities. Results showed that the maximum adsorption capacities for Sb(III) and Sb(V) were 125.4 and 177.3 mg g-1, respectively, which were much higher than those of other adsorbents reported in literature. The adsorption thermodynamics was evaluated, indicating the spontaneous and endothermic adsorption. The adsorption isotherm was suitable to be modeled by Langmuir isotherm (R2 > 0.96). Results of FT-IR, Zeta potential and XPS indicated that adsorption was involved with electric charge attraction and ligand exchange. DFT further explained that better adsorption of Sb(V) on UAPAN than that of Sb(III) was caused by the higher adsorption energy, more favorable bond lengths and atom charge density. Accordingly, UAPAN is expected to be a compelling candidate for antimony decontamination from aqueous environment.
Collapse
Affiliation(s)
- Yonghui Tu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China
| | - Yuanxin Lin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China.
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China
| | - Xiaoping Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China
| |
Collapse
|
29
|
Yang S, Cao Y, Wang T, Cai S, Xu M, Lu W, Hua D. Positively charged conjugated microporous polymers with antibiofouling activity for ultrafast and highly selective uranium extraction from seawater. ENVIRONMENTAL RESEARCH 2020; 183:109214. [PMID: 32044572 DOI: 10.1016/j.envres.2020.109214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/23/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Uranium high-efficiency separation from seawater still has some obstacles such as slow sorption rate, poor selectivity and biofouling. Herein, we report a strategy for ultrafast and highly selective uranium extraction from seawater by positively charged conjugated microporous polymers (CMPs). The polymers are synthesized by Sonogashira-Hagihara cross-coupling reaction of 1,3-dibromo-5,5-dimethylhydantoin and 1,3,5-triethynylbenzene, and then modified with oxime and carboxyl via click reaction. The CMPs show an ultrafast sorption (0.46 mg g-1 day-1) for uranium, and possess an outstanding selectivity with a high sorption capacity ratio of U/V (8.4) in real seawater. The study of adsorption process and mechanism indicate that the CMPs skeleton exhibits high affinity for uranium and can accelerate the sorption, and uranium(VI) is adsorbed on the materials by the interaction of oxime/carboxyl ligands and hydantoin. Moreover, the material can be simply loaded onto the filter membrane, and shows remarkable antibiofouling properties against E. coli and S. aureus and excellent uptake capacity for uranium with low concentration in real seawater. This work may provide a promising approach to design adsorbents with fast adsorption rate, high selectivity and antibacterial activity, and expand the thinking over the development of novel and highly efficient adsorbents for uranium extraction from seawater.
Collapse
Affiliation(s)
- Sen Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Yu Cao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Tao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Suya Cai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Meiyun Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Weihong Lu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| |
Collapse
|
30
|
Ao J, Han J, Xu X, Qi S, Ma L, Wang Z, Zhang L, Li Q, Xu L, Ma H. Enhanced Performance in Uranium Extraction by Quaternary Ammonium-Functionalized Amidoxime-Based Fibers. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junxuan Ao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiaguang Han
- Guangxi Key laboratory of Optoeletronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xiao Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Shumao Qi
- Jining University, Qufu 273155, China
| | - Lin Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Ziqiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Lan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Qingnuan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Lu Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Hongjuan Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
31
|
Li W, Zhang H, Li X, Yu H, Che C, Luan S, Ren Y, Li S, Liu P, Yu X, Li X. Multifunctional Antibacterial Materials Comprising Water Dispersible Random Copolymers Containing a Fluorinated Block and Their Application in Catheters. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7617-7630. [PMID: 31951700 DOI: 10.1021/acsami.9b22206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inhibiting the attachment of bacteria and the formation of biofilms on surfaces of materials and devices is the key to ensure public safety and is also the focus of attention and research. Here we report on the synthesis of multifunctional antibacterial materials based on water dispersible random copolymers containing a fluorinated block, poly(acrylic acid-co-1H,1H,2H,2H-perfluorododecyl acrylate) (PAA-co-PFDA), and poly(hexamethylene biguanide) hydrochloride (PHMB). PAA-co-PFDA copolymers were synthesized through a simple free radical polymerization. After lightly cross-linking of PAA-co-PFDA and complexation with PHMB, multifunctional antibacterial PAA-co-PFDA/PHMB complex nanoparticles were generated, which can form transparent coatings on various substrates. The resultant coating has aggregation-induced emission character which can be used to observe the uniformity of the coating on a catheter and has a potential application as a fluorescence probe. It has been demonstrated that the PAA-co-PFDA/PHMB complex nanoparticle coatings can resist bacterial adhesion in physiological environment and exhibit excellent antibacterial activity in infection environment. In vitro and in vivo experiments indicated that the PAA-co-PFDA/PHMB complex nanoparticle coated catheters exhibited excellent antibacterial activity and possessed good biocompatibility. This method is simple and scalable, which is important for future commercialization. The attractive multifunctional properties of the PAA-co-PFDA/PHMB complex nanoparticles, such as antifouling, antimicrobial, emission, and pH-responsive release character, have great potential application in a wide range of biomedical fields.
Collapse
Affiliation(s)
- Wenting Li
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| | - Hongxia Zhang
- The No.4 Hospital of Jinan , 50 Shifan Road , Jinan 250031 , People's Republic of China
| | - Xuelian Li
- The No.4 Hospital of Jinan , 50 Shifan Road , Jinan 250031 , People's Republic of China
| | - Huan Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , People's Republic of China
| | - Chaoyue Che
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , People's Republic of China
| | - Yufang Ren
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| | - Sen Li
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| | - Peng Liu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| | - Xiaoting Yu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| | - Xue Li
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| |
Collapse
|
32
|
Bai Z, Liu Q, Zhang H, Liu J, Chen R, Yu J, Li R, Liu P, Wang J. Mussel-inspired anti-biofouling and robust hybrid nanocomposite hydrogel for uranium extraction from seawater. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120984. [PMID: 31430638 DOI: 10.1016/j.jhazmat.2019.120984] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
A major challenge of uranium extraction from seawater (UES) is to effectively block the biofouling without destroying the ecological balance, especially prevent the attachment of macroalgae on the surface of the adsorbent. Herein, a robust montmorillonite-polydopamine/polyacrylamide nanocomposite hydrogel is reported by a two-step method, including PDA intercalation MMT and further free radical polymerization with AM monomers. The interpenetrating structure of hydrogel lead to high water permeability with the swelling ratio of 51, which could fully facilitate the internal accessible sites exposure and increase the uranium diffusion. As a result, a high adsorption capacity of 44 mg g-1 was achieved in lab-scale dynamic adsorption. Most importantly, the prepared anti-biofouling hydrogel adsorbents display excellent anti-adhesion ability towards Nitzschia after 8 days contact. The adsorption capacity of uranium can reach 2130 μg g-1 in algae-contained simulated seawater. This hydrogel also exhibited a long service life of acceptable mechanical strength and adsorption capacity after at least 6 adsorption-desorption cycles. This new anti-biofouling nanocomposite hydrogel shows great potential as a new generation adsorbent for UES.
Collapse
Affiliation(s)
- Zhenyuan Bai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China; Harbin Engineering University Capital Management Co. Ltd, Harbin, 150001, China.
| | - Hongsen Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China; Institute of Advanced Marine Materials, Harbin Engineering University, 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China; Harbin Engineering University Capital Management Co. Ltd, Harbin, 150001, China; Institute of Advanced Marine Materials, Harbin Engineering University, 150001, China
| | - Peili Liu
- Institute of Advanced Marine Materials, Harbin Engineering University, 150001, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China; Harbin Engineering University Capital Management Co. Ltd, Harbin, 150001, China; Institute of Advanced Marine Materials, Harbin Engineering University, 150001, China.
| |
Collapse
|
33
|
High efficiency biosorption of Uranium (VI) ions from solution by using hemp fibers functionalized with imidazole-4,5-dicarboxylic. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111739] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Polypropylene nonwoven fabric modified with oxime and guanidine for antibiofouling and highly selective uranium recovery from seawater. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06578-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Ao JX, Yuan YH, Xu X, Xu L, Xing Z, Li R, Wu GZ, Guo XJ, Ma HJ, Li QN. Trace Zinc-Preload for Enhancement of Uranium Adsorption Performance and Antifouling Property of AO-Functionalized UHMWPE Fiber. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06455] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jun-Xuan Ao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Hui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xiao Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lu Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhe Xing
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Rong Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Guo-Zhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiao-Jing Guo
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hong-Juan Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qing-Nuan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
36
|
Ma H, Zhang F, Li Q, Chen G, Hu S, Cheng H. Preparation of ZnO nanoparticle loaded amidoximated wool fibers as a promising antibiofouling adsorbent for uranium(vi) recovery. RSC Adv 2019; 9:18406-18414. [PMID: 35515235 PMCID: PMC9064825 DOI: 10.1039/c9ra03777b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, nano-ZnO loaded amidoxime-functionalized wool fibers (wool-AO@ZnO) were synthesized by radiation-induced copolymerization and in situ co-precipitation as a novel adsorbent with good antibiofouling properties for uranium recovery.
Collapse
Affiliation(s)
- Haichuan Ma
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- China
| | - Fan Zhang
- Institute of Nuclear Physics and Chemistry
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Qiaoyu Li
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- China
| | - Guobing Chen
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- China
| | - Sheng Hu
- Institute of Nuclear Physics and Chemistry
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Haiming Cheng
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- China
- National Engineering Laboratory for Clean Technology of Leather Manufacture
| |
Collapse
|
37
|
Zhang M, Li Y, Bai C, Guo X, Han J, Hu S, Jiang H, Tan W, Li S, Ma L. Synthesis of Microporous Covalent Phosphazene-Based Frameworks for Selective Separation of Uranium in Highly Acidic Media Based on Size-Matching Effect. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28936-28947. [PMID: 30068077 DOI: 10.1021/acsami.8b06842] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
On the basis of high stability of phosphorus-oxygen linkage, we constructed two microporous covalent phosphazene-based frameworks (CPFs), for the first time, by choosing hexachlorocyclotriphosphazene as a core unit and polyhydroxy aromatic compounds (hydroquinone or phloroglucinol) as monomers, named CPF-D and CPF-T, respectively. Characterization studies by using Fourier transform infrared, nuclear magnetic resonance, thermal gravimetric analysis, 60Co γ-ray irradiation, and so forth, demonstrated that both of the CPF materials have excellent acid and radiation stability and relatively higher thermal stability. The results of batch adsorption experiments show that CPF-T is significantly more capable of sorbing uranium than CPF-D. In a pure uranium system with higher acidity (pH 1), the uranium sorption amount of CPF-T can reach up to 140 mg g-1. Distinctively, in mixed-metal solution with 12 coexisting cations, CPF-T shows relatively stable and excellent uranium adsorption capability over a wide range of acidity (pH 4 to 3 M HNO3), and the difference in uranium sorption amounts is less than 30% with the maximum of 0.26 mmol g-1 at pH 4 and the minimum of 0.20 mmol g-1 at 3 M HNO3, which is far superior to that of the conventional solid-phase extractant (SPE) materials previously reported. The research results suggested that the sorption model based on the speculated mechanism of size-matching plus hydrogen bond network has played a dominant role in the process of uranium adsorption. The proposed strategy for the one-pot fabrication of an acid-resistant microporous framework materials by bridging the aromatic monomers via P-O bonds provides an alternative approach for the design and synthesis of new SPE materials with size-matching function desired for effective separation of uranium or other valuable metals from highly acidic environments.
Collapse
Affiliation(s)
- Meicheng Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education , Sichuan University , Chengdu 610064 , P. R. China
| | - Yang Li
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education , Sichuan University , Chengdu 610064 , P. R. China
| | - Chiyao Bai
- Chengdu New Radiomedicine Technology CO. LTD. , Chengdu 610207 , P. R. China
| | - Xinghua Guo
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education , Sichuan University , Chengdu 610064 , P. R. China
| | - Jun Han
- Institute of Nuclear Physics and Chemistry , China Academy of Engineering Physics , Mianyang 621900 , P. R. China
| | - Sheng Hu
- Institute of Nuclear Physics and Chemistry , China Academy of Engineering Physics , Mianyang 621900 , P. R. China
| | - Hongquan Jiang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education , Sichuan University , Chengdu 610064 , P. R. China
| | - Wang Tan
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education , Sichuan University , Chengdu 610064 , P. R. China
| | - Shoujian Li
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education , Sichuan University , Chengdu 610064 , P. R. China
| | - Lijian Ma
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education , Sichuan University , Chengdu 610064 , P. R. China
| |
Collapse
|