1
|
Zhang Z, Chen K, Ameduri B, Chen M. Fluoropolymer Nanoparticles Synthesized via Reversible-Deactivation Radical Polymerizations and Their Applications. Chem Rev 2023; 123:12431-12470. [PMID: 37906708 DOI: 10.1021/acs.chemrev.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fluorinated polymeric nanoparticles (FPNPs) combine unique properties of fluorocarbon and polymeric nanoparticles, which has stimulated massive interest for decades. However, fluoropolymers are not readily available from nature, resulting in synthetic developments to obtain FPNPs via free radical polymerizations. Recently, while increasing cutting-edge directions demand tailored FPNPs, such materials have been difficult to access via conventional approaches. Reversible-deactivation radical polymerizations (RDRPs) are powerful methods to afford well-defined polymers. Researchers have applied RDRPs to the fabrication of FPNPs, enabling the construction of particles with improved complexity in terms of structure, composition, morphology, and functionality. Related examples can be classified into three categories. First, well-defined fluoropolymers synthesized via RDRPs have been utilized as precursors to form FPNPs through self-folding and solution self-assembly. Second, thermally and photoinitiated RDRPs have been explored to realize in situ preparations of FPNPs with varied morphologies via polymerization-induced self-assembly and cross-linking copolymerization. Third, grafting from inorganic nanoparticles has been investigated based on RDRPs. Importantly, those advancements have promoted studies toward promising applications, including magnetic resonance imaging, biomedical delivery, energy storage, adsorption of perfluorinated alkyl substances, photosensitizers, and so on. This Review should present useful knowledge to researchers in polymer science and nanomaterials and inspire innovative ideas for the synthesis and applications of FPNPs.
Collapse
Affiliation(s)
- Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Bruno Ameduri
- Institute Charles Gerhardt of Montpellier (ICGM), CNRS, University of Montpellier, ENSCM, Montpellier 34296, France
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Azhar U, Arif M, Bashir MS, Babar M, Sagir M, Yasin G. Functionalized Fe 3O 4-based methyl methacrylate Pickering PolyHIPE composites costabilized by fluorinated block copolymer for oil/water separation. CHEMOSPHERE 2022; 309:136526. [PMID: 36150494 DOI: 10.1016/j.chemosphere.2022.136526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
High internal phase emulsion (HIPE) technology has been emerged as a prodigious source to create tailor-made porous structures. This type of emulsion contains significantly higher amount of water in it, which is only possible with special type of stabilizers. Most specifically, the monomers with sufficiently high solubility in water such as methyl methacrylate (MMA) make it more cumbersome to stabilize in the form of HIPE. Here we have reported the combination of stabilizers including fluorinated block copolymer Poly (2-dimethylamino)ethyl methacrylate-b-Poly(trifluoroethyl methacrylate) (PDMAEMA-b-PTFEMA) and humic acid modified iron-oxide (HA-Fe3O4) nanoparticles (NPs) to stabilize HIPE, which resulted in highly porous and interconnected products. Fluorinated block copolymers with inherent hydrophobic nature along with iron oxide nanoparticles increased the water repellency of MMA based polymeric monoliths. Increasing the amount of stabilizer increased the porosity and BET specific surface area to 83.8% and 27 ± 0.8 μm, respectively. The prepared porous materials demonstrated hydrophobic characteristics while adsorbing oil from the surface of water up to 16 g/g. Moreover, the adsorbed oil from the prepared monolith was recovered by using simple centrifugation method without damaging the structure. This research opens new avenues to prepare more useful oil and water separation materials such as membranes, pollutant adsorbers, and so on.
Collapse
Affiliation(s)
- Umair Azhar
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Muhammad Arif
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan.
| | - Muhammad Sohail Bashir
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Muhammad Babar
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Muhammad Sagir
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Ghulam Yasin
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
3
|
Azhar U, Ahmad H, Shafqat H, Babar M, Shahzad Munir HM, Sagir M, Arif M, Hassan A, Rachmadona N, Rajendran S, Mubashir M, Khoo KS. Remediation techniques for elimination of heavy metal pollutants from soil: A review. ENVIRONMENTAL RESEARCH 2022; 214:113918. [PMID: 35926577 DOI: 10.1016/j.envres.2022.113918] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 05/27/2023]
Abstract
Contaminated soil containing toxic metals and metalloids is found everywhere globally. As a consequence of adsorption and precipitation reactions, metals are comparatively immobile in subsurface systems. Hence remediation techniques in such contaminated sites have targeted the solid phase sources of metals such as sludges, debris, contaminated soils, or wastes. Over the last three decades, the accumulation of these toxic substances inside the soil has increased dramatically, putting the ecosystem and human health at risk. Pollution of heavy metal have posed severe impacts on human, and it affects the environment in different ways, resulting in industrial anger in many countries. Various procedures, including chemical, biological, physical, and integrated approaches, have been adopted to get rid of this type of pollution. Expenditure, timekeeping, planning challenges, and state-of-the-art gadget involvement are some drawbacks that need to be properly handled. Recently in situ metal immobilization, plant restoration, and biological methods have changed the dynamics and are considered the best solution for removing metals from soil. This review paper critically evaluates and analyzes the numerous approaches for preparing heavy metal-free soil by adopting different soil remediation methods.
Collapse
Affiliation(s)
- Umair Azhar
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Huma Ahmad
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hafsa Shafqat
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Babar
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hafiz Muhammad Shahzad Munir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Sagir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Arif
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Afaq Hassan
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Nova Rachmadona
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, West Java, Indonesia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda. General Velasquez, 1775, Arica, Chile
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
4
|
|
5
|
Abstract
Synthesis of semifluorinated polymers containing fluorous groups on the backbone or as side chains is an increasingly popular field of research.
Collapse
Affiliation(s)
- Joseph A. Jaye
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Wu Q, Tiraferri A, Li T, Xie W, Chang H, Bai Y, Liu B. Superwettable PVDF/PVDF- g-PEGMA Ultrafiltration Membranes. ACS OMEGA 2020; 5:23450-23459. [PMID: 32954198 PMCID: PMC7496008 DOI: 10.1021/acsomega.0c03429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 05/05/2023]
Abstract
Poly(vinylidene fluoride) (PVDF) is a common and inexpensive polymeric material used for membrane fabrication, but the inherent hydrophobicity of this polymer induces severe membranes fouling, which limits its applications and further developments. Herein, we prepared superwettable PVDF membranes by selecting suitable polymer concentration and blending with PVDF-graft-poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA). This fascinating interfacial phenomenon causes the contact angle of water droplets to drop from the initial value of over 70° to virtually 0° in 0.5 s for the best fabricated membrane. The wetting properties of the membranes were studied by calculating the surface free energy by surface thermodynamic analysis, by evaluating the peak height ratio from Raman spectra, and other surface characterization methods. The superwettability phenomenon is the result of the synergetic effects of high surface free energy, the Wenzel model of wetting, and the crystalline phase of PVDF. Besides superwettability, the PVDF/PVDF-g-PEGMA membranes show great improvements in flux performance, sodium alginate (SA) rejection, and flux recovery upon fouling.
Collapse
Affiliation(s)
- Qidong Wu
- Key
Laboratory of Deep Earth Science and Engineering (Ministry of Education),
College of Architecture and Environment, Institute of New Energy and
Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, P. R. China
| | - Alberto Tiraferri
- Department
of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Tong Li
- Key
Laboratory for Water Quality and Conservation of the Pearl River Delta,
Ministry of Education, Institute of Environmental Research at Greater
Bay, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wancen Xie
- Key
Laboratory of Deep Earth Science and Engineering (Ministry of Education),
College of Architecture and Environment, Institute of New Energy and
Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, P. R. China
| | - Haiqing Chang
- Key
Laboratory of Deep Earth Science and Engineering (Ministry of Education),
College of Architecture and Environment, Institute of New Energy and
Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, P. R. China
| | - Yuhua Bai
- Infrastructure
Construction Department, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | - Baicang Liu
- Key
Laboratory of Deep Earth Science and Engineering (Ministry of Education),
College of Architecture and Environment, Institute of New Energy and
Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, P. R. China
- , . Tel: +86-28-85995998. Fax: +86-28-62138325
| |
Collapse
|
7
|
Zou H, Ren X, Zhang J. Fabrication of a Bi 2O 3 Surface-Modified Polyvinylidene Fluoride Membrane via an Ultraviolet Photografting Method: Improving Hydrophilicity and Degree of Acrylic Acid Grafting. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Zou
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jing Zhang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
8
|
Guo Y, Gao S, Yue W, Zhang C, Li Y. Anodized Aluminum Oxide-Assisted Low-Cost Flexible Capacitive Pressure Sensors Based on Double-Sided Nanopillars by a Facile Fabrication Method. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48594-48603. [PMID: 31769646 DOI: 10.1021/acsami.9b17966] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flexible pressure sensors have garnered enormous attention in recent years as they hold great promise in wearable electronic devices. However, the realization of a high-performance flexible pressure sensor via a facile and cost-effective approach still remains a challenge. In this work, a capacitive pressure sensor based on a poly(vinylidenefluoride-co-trifluoroethylene) [P(VDF-TrFE)] dielectric film that incorporates nanopillars into both sides is demonstrated. Unlike the previous complicated and expensive methods, large-scale regular and uniform nanopillars are easily and economically achieved by the pattern transfer of anodized aluminum oxide templates. The double-sided nanopillars constituting the P(VDF-TrFE) dielectric layer enable the pressure sensor with high sensitivity (∼0.35 kPa-1), wide working range (4 Pa to 25 kPa), short response time (∼48 ms), and excellent durability. In addition to these salient features, our sensor also exhibits superior performances under bending states, ensuring that it can be used for detecting diverse practical stimuli as experimentally validated by perceiving real-time and in-site human physiological signals and body motions that, respectively, correspond to the low- and high-pressure range. A sensor array is finally constructed and is shown to be capable of perceiving the spatial pressure distribution of either a contact or noncontact object. These demonstrations show a promising future of our sensor in healthcare monitoring, smart robot skin, and human-machine interfaces.
Collapse
|
9
|
|
10
|
Zhao J, Han H, Wang Q, Yan C, Li D, Yang J, Feng X, Yang N, Zhao Y, Chen L. Hydrophilic and anti-fouling PVDF blend ultrafiltration membranes using polyacryloylmorpholine-based triblock copolymers as amphiphilic modifiers. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Azhar U, Huo Z, Yaqub R, Xu A, Zhang S, Geng B. Non-crosslinked fluorinated copolymer particles stabilized Pickering high internal phase emulsion for fabrication of porous polymer monoliths. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|