1
|
Yang L, Kong XY, Wen L, Jiang L. Engineered Surface Wettability of Nanomaterials for Efficient Uranium Extraction from Seawater. ACS NANO 2025; 19:7434-7443. [PMID: 39961788 DOI: 10.1021/acsnano.4c18023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The extraction of uranium from seawater offers a sustainable pathway to secure nuclear fuel supplies, crucial for the transition to low-carbon energy systems. However, the low concentration of uranium and interference from competing ions pose significant challenges to extraction efficiency. Surface wettability engineering has become a key factor in enhancing the performance of nanomaterials. In this Perspective, we explore how surface wettability influences the performance of the nanomaterials in three uranium extraction scenarios: chemical adsorption, electro-assisted enhanced adsorption, and photo/electrocatalytic reduction. Strategies for optimizing this property are discussed, alongside recommendations and future directions in material design and characterization methods, aiming to accelerate the practical application of nanomaterials in seawater uranium extraction.
Collapse
Affiliation(s)
- Linsen Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Guo H, Hu E, Wang Y, Ou Z, Huang B, Lei J, Liu H, He R, Zhu W. A synergistic coordination-reduction interface for electrochemical reductive extraction of uranium with low impurities from seawater. Nat Commun 2025; 16:2012. [PMID: 40016212 PMCID: PMC11868504 DOI: 10.1038/s41467-025-57113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Electrochemical extraction of uranium from seawater is a promising strategy for the sustainable supply of nuclear fuel, whereas the current progress suffers from the co-deposition of impurities. Herein, we construct a synergistic coordination-reduction interface in CMOS@NSF, achieving electrochemical extraction of black UO2 product from seawater. The internal sulfur of CoMoOS tailors the electron distribution, resulting in the electron accumulation of terminal O sites for strong uranyl binding. Meanwhile, the interfacial connection of CoMoOS with Ni3S2 accelerates the electron transfer and promoted the reductive properties. Such synergistic coordination-reduction interface ensures the formation and preservation of tetravalent uranium, preventing the co-deposition of alkalis in crystalline transformation. From natural seawater, CMOS@NSF exhibits an electrochemical extraction capacity of 2.65 mg g-1 d-1 with black UO2 solid products as final products. This work provides an efficient strategy for the electrochemical uranium extraction from seawater with low impurities.
Collapse
Affiliation(s)
- Hongliang Guo
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense & Nuclear Science and Technology, School of Materials & Chemistry, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science & Technology, Mianyang, PR China
| | - Enmin Hu
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense & Nuclear Science and Technology, School of Materials & Chemistry, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science & Technology, Mianyang, PR China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, PR China
| | - Yihao Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense & Nuclear Science and Technology, School of Materials & Chemistry, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science & Technology, Mianyang, PR China
| | - Zhenhong Ou
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense & Nuclear Science and Technology, School of Materials & Chemistry, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science & Technology, Mianyang, PR China
| | - Bichu Huang
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense & Nuclear Science and Technology, School of Materials & Chemistry, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science & Technology, Mianyang, PR China
| | - Jia Lei
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense & Nuclear Science and Technology, School of Materials & Chemistry, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science & Technology, Mianyang, PR China
| | - Huanhuan Liu
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense & Nuclear Science and Technology, School of Materials & Chemistry, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science & Technology, Mianyang, PR China.
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense & Nuclear Science and Technology, School of Materials & Chemistry, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science & Technology, Mianyang, PR China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense & Nuclear Science and Technology, School of Materials & Chemistry, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science & Technology, Mianyang, PR China.
| |
Collapse
|
3
|
Liu Y, Zhao J, Bo T, Tian R, Wang Y, Deng S, Jiang H, Liu Y, Lisak G, Chang M, Li X, Zhang S. Enhanced Uranium Extraction via Charge Dynamics and Interfacial Polarization in MoS 2/GO Heterojunction Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401374. [PMID: 38659396 DOI: 10.1002/smll.202401374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The removal of uranyl ions (UO2 2+) from water is challenging due to their chemical stability, low concentrations, complex water matrix, and technical limitations in extraction and separation. Herein, a novel molybdenum disulfide/graphene oxide heterojunction (MoS2/GO-H) is developed, serving as an effective electrode for capacitive deionization (CDI). By combining the inherent advantages of electroadsorption and electrocatalysis, an innovative electroadsorption-electrocatalysis system (EES) strategy is introduced. This system utilizes interface polarization at the MoS2 and GO interface, creating an additional electric field that significantly influences carrier behavior. The MoS2/GO-H electrode, with its extraordinary adsorption capacity of 805.57 mg g-1 under optimal conditions, effectively treated uranium-laden wastewater from a mine, achieving over 90% removal efficiency despite the presence of numerous competing ions at concentrations significantly higher than UO2 2+. Employing density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations, it is found that the MoS2/GO-H total charge density at the Fermi level, enhanced by interfacial polarization, surpasses that of separate MoS2 and GO, markedly boosting conductivity and electrocatalytic effectiveness.
Collapse
Affiliation(s)
- Yuhui Liu
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, China
- Engineering Technology Research Center of Nuclear Radiation Detection and Application Jiangxi Province, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Jiayin Zhao
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Tao Bo
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Rongteng Tian
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Yingcai Wang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, China
- Engineering Technology Research Center of Nuclear Radiation Detection and Application Jiangxi Province, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Sheng Deng
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hao Jiang
- School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, P. R. China
| | - Yunhai Liu
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore, 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mengyu Chang
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoyan Li
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, China
- Engineering Technology Research Center of Nuclear Radiation Detection and Application Jiangxi Province, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Shuang Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, 330013, China
| |
Collapse
|
4
|
Wang Y, Xie C, Wang G, Zhang F, Xiao Z, Wang J, Wang Y, Wang S. Electrochemistry-assisted in-situ regeneration of oxygen vacancies and Ti(III) active sites for persistent uranium recovery at a low potential. WATER RESEARCH 2024; 258:121817. [PMID: 38810598 DOI: 10.1016/j.watres.2024.121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Electrochemical uranium extraction (EUE) from seawater is a very promising strategy, but its practical application is hindered by the high potential for electrochemical system, as well as the low selectivity, efficiency, and poor stability of electrode. Herein, we developed creatively a low potential strategy for persistent uranium recovery by electrochemistry-assisted in-situ regeneration of oxygen vacancies and Ti(III) active sites coupled with indirect reduction of uranium, finally achieving high selectivity, efficient and persistent uranium recovery. As-designed titanium dioxide rich in oxygen vacancies (TiO2-VO) electrode displayed an EUE efficiency of ∼99.9 % within 180 min at a low potential of 0.09 V in simulated seawater with uranium of 5∼20 ppm. Moreover, the TiO2-VO electrode also showed high selectivity (89.9 %) to uranium, long-term cycling stability and antifouling activity in natural seawater. The excellent EUE property was attributed to the fact that electrochemistry-assisted in-situ regeneration of oxygen vacancies and Ti(III) active sites enhanced EUE cycling process and achieved persistent uranium recovery. The continuous regeneration of oxygen vacancies not only reduced the adsorption energy of U(VI)O22+ but also serve as a storage and transportation channel for electrons, accelerating electron transfer from Ti(III) to U(VI) at solid-liquid interface and promoting EUE kinetic rate.
Collapse
Affiliation(s)
- Yanjing Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Chao Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Guangjin Wang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Fei Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhaohui Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - JiaJia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yanyong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China.
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China.
| |
Collapse
|
5
|
Liu S, Wang YZ, Tang YF, Fu XZ, Luo JL. Emerging Nanomaterials toward Uranium Extraction from Seawater: Recent Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311130. [PMID: 38247198 DOI: 10.1002/smll.202311130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/24/2023] [Indexed: 01/23/2024]
Abstract
Nuclear energy holds great potential to facilitate the global energy transition and alleviate the increasing environmental issues due to its high energy density, stable energy output, and carbon-free emission merits. Despite being limited by the insufficient terrestrial uranium reserves, uranium extraction from seawater (UES) can offset the gap. However, the low uranium concentration, the complicated uranium speciation, the competitive metal ions, and the inevitable marine interference remarkably affect the kinetics, capacity, selectivity, and sustainability of UES materials. To date, massive efforts have been made with varying degrees of success to pursue a desirable UES performance on various nanomaterials. Nevertheless, comprehensive and systematic coverage and discussion on the emerging UES materials presenting the fast-growing progress of this field is still lacking. This review thus challenges this position and emphatically focuses on this topic covering the current mainstream UES technologies with the emerging UES materials. Specifically, this review elucidates the causality between the physiochemical properties of UES materials induced by the intellectual design strategies and the UES performances and further dissects the relationships of materials-properties-activities and the corresponding mechanisms in depth. This review is envisaged to inspire innovative ideas and bring technical solutions for developing technically and economically viable UES materials.
Collapse
Affiliation(s)
- Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - You-Zi Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Yu-Feng Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
6
|
Yang L, Qian Y, Zhang Z, Li T, Lin X, Fu L, Zhou S, Kong XY, Jiang L, Wen L. A marine bacteria-inspired electrochemical regulation for continuous uranium extraction from seawater and salt lake brine. Chem Sci 2024; 15:4538-4546. [PMID: 38516083 PMCID: PMC10952061 DOI: 10.1039/d4sc00011k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Oceans and salt lakes contain vast amounts of uranium. Uranium recovery from natural water not only copes with radioactive pollution in water but also can sustain the fuel supply for nuclear power. The adsorption-assisted electrochemical processes offer a promising route for efficient uranium extraction. However, competitive hydrogen evolution greatly reduces the extraction capacity and the stability of electrode materials with electrocatalytic activity. In this study, we got inspiration from the biomineralisation of marine bacteria under high salinity and biomimetically regulated the electrochemical process to avoid the undesired deposition of metal hydroxides. The uranium uptake capacity can be increased by more than 20% without extra energy input. In natural seawater, the designed membrane electrode exhibits an impressive extraction capacity of 48.04 mg-U per g-COF within 21 days (2.29 mg-U per g-COF per day). Furthermore, in salt lake brine with much higher salinity, the membrane can extract as much uranium as 75.72 mg-U per g-COF after 32 days (2.37 mg-U per g-COF per day). This study provides a general basis for the performance optimisation of uranium capture electrodes, which is beneficial for sustainable access to nuclear energy sources from natural water systems.
Collapse
Affiliation(s)
- Linsen Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tingyang Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiangbin Lin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lin Fu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shengyang Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
7
|
Gan J, Le D, Wang Q, Xin Q, Hu E, Lei Z, Wang H, Wang H. Polyvinyl alcohol/phytic acid/phosphorylated chitosan hydrogel electrode highly efficient electroadsorption of low concentration uranium from uranium tailings leachate. Int J Biol Macromol 2024; 254:128008. [PMID: 37951068 DOI: 10.1016/j.ijbiomac.2023.128008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
In order to improve the removal rate of uranium and reduce the harm of radioactive pollution, a physically crosslinked polyvinyl alcohol/phosphorylated chitosan (PPP) hydrogel electrode was designed by freezing thawing method. The results show that PPP hydrogel has a good adsorption effect on uranium, and 200 mL of uranium tailings leachate is absorbed, and the treatment efficiency reaches 100 % within 15 min. PPP hydrogel can adapt to a wide range of pH conditions and exhibit excellent adsorption efficiency in the range of 3-9. At the same time, PPP hydrogel maintains an adsorption efficiency of over 85 % for 950 mg/L uranium solution. This lays the foundation for the practical application of PPP hydrogel. In addition, PPP hydrogel also exhibits good repeatability, after 7 cycles, the material still retains 95 % of its initial performance. The synergistic effect of various functional groups such as phosphate, hydroxyl, and ammonium in the material is the main mechanism of PPP's adsorption capacity for uranium. Furthermore, electrochemical adsorption method significantly enhances the adsorption performance of PPP hydrogel.
Collapse
Affiliation(s)
- Jiali Gan
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Dongdong Le
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qingliang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Xin
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Eming Hu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhiwu Lei
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hongqiang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| |
Collapse
|
8
|
Mattejat M, Ménard G. Selective heterogeneous capture and release of actinides using carborane-functionalized electrodes. Chem Commun (Camb) 2023. [PMID: 37470123 DOI: 10.1039/d3cc02135a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
We report the heterogenization of molecular, electrochemically switchable ortho-substituted carboranes (POCb, POCb-Pyr) for selective metal capture. Films of POCb and POCb-Pyr on glassy carbon and carbon fiber (CF) electrodes demonstrated heterogeneous electrochemical behaviour that was enhanced by the inclusion of single-walled carbon nanotubes (CNTs). Galvanostatically charged CF|CNT|POCb and CF|CNT|POCb-Pyr electrodes selectively captured and released actinides (Th4+, UO22+) from mixed solutions containing alkali (Cs+), lanthanide (Nd3+, Sm3+) and actinide (Th4+, UO22+) metal ions.
Collapse
Affiliation(s)
- Maxwell Mattejat
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Gabriel Ménard
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
9
|
Li R, Wang H, Yan J, Fu R, Wang B, Jiang C, Wang Y, Xu T. A cascade electro-dehydration process for simultaneous extraction and enrichment of uranium from simulated seawater. WATER RESEARCH 2023; 240:120079. [PMID: 37224666 DOI: 10.1016/j.watres.2023.120079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Uranium extraction from seawater has become a crucial issue that has raised tremendous attention. The transport of water molecules along with salt ions through an ion-exchange membrane is a common phenomenon for typical electro-membrane processes such as selective electrodialysis (SED). In this study, a cascade electro-dehydration process was proposed for the simultaneous extraction and enrichment of uranium from simulated seawater by taking advantage of water transport through ion-exchange membranes and the high permselectivity of membranes for monovalent ions against uranate ions. The results indicated that the electro-dehydration effect in SED allowed 1.8 times the concentration of uranium with a loose structure CJMC-5 cation-exchange membrane at a current density of 4 mA/cm2. Thereafter, a cascade electro-dehydration by a combination of SED with conventional electrodialysis (CED) enabled approximately 7.5 times uranium concentration with the extraction yield rate reaching over 80% and simultaneously desalting the majority of salts. Overall, a cascade electro-dehydration is a viable approach, creating a novel route for highly effective uranium extraction and enrichment from seawater.
Collapse
Affiliation(s)
- Ruirui Li
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Huangying Wang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Junying Yan
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Rong Fu
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Baoying Wang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chenxiao Jiang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yaoming Wang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | - Tongwen Xu
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
10
|
Wang M, Feng L, Luo G, Feng T, Zhao S, Wang H, Shi S, Liu T, Fu Q, Li J, Wang N, Yuan Y. Ultrafast extraction of uranium from seawater using photosensitized biohybrid system with bioinspired cascaded strategy. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130620. [PMID: 37056004 DOI: 10.1016/j.jhazmat.2022.130620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 06/19/2023]
Abstract
The highly effective utilization of uranium resources in global seawater is a viable method to satisfy the rising demands for fueling nuclear energy industry. Herein, inspired by the multi-mechanisms of the marine bacteria for uranium immobilization, CdS nanoparticles are deposited on the cell of marine bacterial strain Bacillus velezensis UUS-1 to create a photosensitized biohybrid system UUS-1/CdS. This system achieves high uranium extraction efficiency using a cascaded strategy, where the bacterial cells guarantee high extraction selectivity and the photosensitive CdS nanoparticles realize cascading photoreduction of high soluble U(VI) to low soluble U(IV) to enhance extraction capacity. As one of the fastest-acting adsorbents in natural seawater, a high extraction capacity for uranium of 7.03 mg g-1 is achieved with an ultrafast extraction speed of 4.69 mg g-1 d-1. The cascaded strategy promisingly improves uranium extraction performance and pioneers a new direction for the design of adsorbents to extract uranium from seawater.
Collapse
Affiliation(s)
- Man Wang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Lijuan Feng
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Guangsheng Luo
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Tiantian Feng
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Shilei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Hui Wang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China.
| | - Se Shi
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China.
| | - Tao Liu
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Qiongyao Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Jingquan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Ning Wang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China.
| | - Yihui Yuan
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
11
|
Hu Y, Tang D, Shen Z, Yao L, Zhao G, Wang X. Photochemically triggered self-extraction of uranium from aqueous solution under ambient conditions. APPLIED CATALYSIS B: ENVIRONMENTAL 2023; 322:122092. [DOI: doi.org/10.1016/j.apcatb.2022.122092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
12
|
Liao Y, Lei R, Weng X, Yan C, Fu J, Wei G, Zhang C, Wang M, Wang H. Uranium capture by a layered 2D/2D niobium phosphate/holey graphene architecture via an electro-adsorption and electrocatalytic reduction coupling process. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130054. [PMID: 36182892 DOI: 10.1016/j.jhazmat.2022.130054] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
As an energy-efficient and eco-friendly technique, capacitive deionization (CDI) has shown great potential for uranium (U(VI)) capture recently. However, extracting U(VI) with high kinetics, capacity and selectivity remains a major challenge due to the current surface active sites-based material and co-existing ions in aqueous solution. Here we rationally designed a layered 2D/2D niobium phosphate/holey graphene (HGNbP) electrode material, and originally demonstrated its efficient U(VI) capture ability via an electro-adsorption and electrocatalytic reduction coupling process. The less-accumulative loose layered architecture, open polycrystalline construction of niobium phosphate with active phosphate sites, and rich in-plane nano-pores on conductive graphene nanosheets endowed HGNbP with fast charge/ion transport, high electroconductivity and superior pseudocapacitance, which enabled U(VI) ions first to be electro-adsorbed, then physico-chemical adsorbed, and finally electrocatalysis reduced/deposited onto electrode surface without the limitation of active sites under a low potential of 1.2 V. Based on these virtues, the HGNbP exhibited a fast adsorption kinetics, with a high removal rate of 99.9% within 30 min in 50 mg L-1 U(VI) solution, and a high adsorption capacity up to 1340 mg g-1 in 1000 mg L-1 U(VI) solution. Furthermore, the good recyclability and selectivity towards U(VI) were also realized.
Collapse
Affiliation(s)
- Yun Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China; Hunan key laboratory for the design and application of actinide complexes, University of South China, Hengyang, Hunan 421001, PR China.
| | - Ruilin Lei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofang Weng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Chuan Yan
- School of Nuclear Science and Technology, University of South China, Hengyang, Hunan 421001, China
| | - Jiaxi Fu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Guoxing Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Meng Wang
- School of Nuclear Science and Technology, University of South China, Hengyang, Hunan 421001, China.
| | - Hongqing Wang
- Hunan key laboratory for the design and application of actinide complexes, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
13
|
Xie Y, Liu Z, Geng Y, Li H, Wang N, Song Y, Wang X, Chen J, Wang J, Ma S, Ye G. Uranium extraction from seawater: material design, emerging technologies and marine engineering. Chem Soc Rev 2023; 52:97-162. [PMID: 36448270 DOI: 10.1039/d2cs00595f] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Uranium extraction from seawater (UES), a potential approach to securing the long-term uranium supply and sustainability of nuclear energy, has experienced significant progress in the past decade. Promising adsorbents with record-high capacities have been developed by diverse innovative synthetic strategies, and scale-up marine field tests have been put forward by several countries. However, significant challenges remain in terms of the adsorbents' properties in complex marine environments, deployment methods, and the economic viability of current UES systems. This review presents an up-to-date overview of the latest advancements in the UES field, highlighting new insights into the mechanistic basis of UES and the methodologies towards the function-oriented development of uranium adsorbents with high adsorption capacity, selectivity, biofouling resistance, and durability. A distinctive emphasis is placed on emerging electrochemical and photochemical strategies that have been employed to develop efficient UES systems. The most recent achievements in marine tests by the major countries are summarized. Challenges and perspectives related to the fundamental, technical, and engineering aspects of UES are discussed. This review is envisaged to inspire innovative ideas and bring technical solutions towards the development of technically and economically viable UES systems.
Collapse
Affiliation(s)
- Yi Xie
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Zeyu Liu
- AVIC Manufacturing Technology Institute, Beijing 100024, China
| | - Yiyun Geng
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Hao Li
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China. .,China Academy of Engineering Physics, Mianyang 621900, China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yanpei Song
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Xiaolin Wang
- China Academy of Engineering Physics, Mianyang 621900, China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Jianchen Wang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Nan Y, Wang J, Chang X, Shao K, Lin Y, Qian L, Li Z, Hu P. Functionalized graphene oxide/sodium alginate beads with ion responsiveness for uranium trapping. Carbohydr Polym 2023; 300:120259. [DOI: 10.1016/j.carbpol.2022.120259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
|
15
|
Wang S, Li Y, Liu Q, Wang J, Zhao Y, Cai Y, Li H, Chen Z. fvPhoto-/electro-/piezo-catalytic elimination of environmental pollutants. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Yang S, Wu G, Song J, Hu B. Preparation of chitosan-based asymmetric electrodes by co-imprinting technology for simultaneous electro-adsorption of multi-radionuclides. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Ye Y, Fan B, Qin Z, Tang X, Feng Y, Lv M, Miao S, Li H, Chen Y, Chen F, Wang Y. Electrochemical removal and recovery of uranium: Effects of operation conditions, mechanisms, and implications. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128723. [PMID: 35316632 DOI: 10.1016/j.jhazmat.2022.128723] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Removing and recovering uranium (U) from U-mining wastewater would be appealing, which simultaneously reduces the adverse environmental impact of U mining activities and mitigates the depletion of conventional U resources. In this study, we demonstrate the application of a constant-voltage electrochemical (CVE) method for the removal and recovery of U from U-mining wastewater, in an ambient atmosphere. The effects of operation conditions were elucidated in synthetic U-bearing water experiments, and the cell voltage and the ionic strength were found to play important roles in both the U extraction kinetics and the operation cost. The mechanistic studies show that, in synthetic U-bearing water, the CVE U extraction proceeds exclusively via a single-step one-electron reduction mechanism, where pentavalent U is the end product. In real U-mining wastewater, the interference of water matrices led to the disproportionation of the pentavalent U, resulting in the formation of tetravalent and hexavalent U in the extraction products. The U extraction efficacy of the CVE method was evaluated in real U-mining wastewater, and results show that the CVE U extraction method can be efficient with operation costs ranging from $0.55/kgU ~ $64.65/kgU, with varying cell voltages from 1.0 V to 4.0 V, implying its feasibility from the economic perspective.
Collapse
Affiliation(s)
- Yin Ye
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China.
| | - Beilei Fan
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China
| | - Zemin Qin
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China
| | - Xin Tang
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China
| | - Yanyue Feng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Miao Lv
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shiyu Miao
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, PR China
| | - Hongwan Li
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, USA
| | - Yanlong Chen
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China
| | - Fan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China.
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China.
| |
Collapse
|
18
|
Yang S, Yin J, Li Q, Wang C, Hua D, Wu N. Covalent organic frameworks functionalized electrodes for simultaneous removal of UO 22+ and ReO 4- with fast kinetics and high capacities by electro-adsorption. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128315. [PMID: 35077974 DOI: 10.1016/j.jhazmat.2022.128315] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The recovery of radioactive ions from high salinity low-level radioactive wastewater (LLRW) is important for the sustainable utilization of nuclear energy. Previous work primarily focuses on developing adsorbents that remove individual types of ions via physicochemical adsorption. Here, we report a new strategy for the simultaneous recovery of uranium (UO22+) and rhenium (ReO4-) as a non-radioactive surrogate of technetium from LLRW via electro-adsorption. Carboxyl functionalized covalent organic frameworks (COF-1) and cationic covalent organic frameworks (COF-2) were prepared as cathode and anode materials, respectively. The adsorption capacities were 411 mg U/g for COF-1 and 984 mg Re/g for COF-2 under 1.2 direct-current (DC) volts, 2.5 and 2.1 times higher than the capacities of the same adsorbents obtained by physicochemical adsorption. We also found that the electro-adsorption of uranium and rhenium follows pseudo-second-order kinetics with the adsorption rates of 0.45 and 1.05 g/mg/h at pH 7.0 and 298.15 K, again two times faster than those measured in physicochemical adsorption. Therefore, electro-adsorption improves both adsorption capacity and kinetics by maximizing the utility of available active sites in adsorbents and facilitating ion migration towards the adsorbents. The adsorption efficiencies for uranium and rhenium reached 65.9% and 89.2%, respectively, after electro-adsorption for 2 h. The high efficiencies can be maintained after five adsorption-desorption cycles. Furthermore, the electrodes showed high selectivity for uranium(VI) and rhenium(VII) and excellent salt resistance even in 1 mol/L NaCl solution. XPS studies revealed that covalent bonds were formed between uranium(VI) and carboxyl groups on COF-1, and rhenium(VII) was bound to cationic COF-2 through electrostatic interaction. Our asymmetric electrodes design can be extended to simultaneously and efficiently remove other types of radioactive or heavy metal ions from wastewater.
Collapse
Affiliation(s)
- Sen Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States.
| | - Jia Yin
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China.
| | - Qian Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China.
| | - Chaoyi Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China.
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States.
| |
Collapse
|
19
|
Tang X, Liu Y, Liu M, Chen H, Huang P, Ruan H, Zheng Y, Yang F, He R, Zhu W. Sulfur edge in molybdenum disulfide nanosheets achieves efficient uranium binding and electrocatalytic extraction in seawater. NANOSCALE 2022; 14:6285-6290. [PMID: 35411899 DOI: 10.1039/d2nr01000c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrochemical extraction of uranium in seawater provides a promising strategy for the persistent supply of fuel in the nuclear industry. However, current operation voltage for the electrochemical extraction of uranium in seawater generally requires a high applied voltage (∼-5 V). Herein, we constructed S-terminated MoS2 nanosheets with abundant electrochemically active S-edge sites for efficient binding and reduction of uranium. In 100 ppm of uranium-spiked seawater at an applied voltage of -3 V, the S-terminated MoS2 nanosheets exhibited a considerable extraction capacity of 1823 mg g-1. After 30 min electrolysis in 100 mL of real seawater with 100 times concentrated uranium (330 ppb), the extracted uranium (29.5 μg) consumes electricity of 8.7 mW h. Moreover, we concentrated 12 L of real seawater (3.3 ppb) into 20 mL of aqueous solution containing 1752.6 ppb U by adding a reverse potential. In the mechanistic study, we directly observed the uranium clusters and single atoms confined by the S-edge at atomic resolution, which served as the intermediate and accounted for the boosted uranium extraction in seawater.
Collapse
Affiliation(s)
- Xingrui Tang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Sichuan Mianyang 621010, China.
| | - Yan Liu
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Min Liu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Sichuan Mianyang 621010, China.
| | - Huimei Chen
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Pengling Huang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Sichuan Mianyang 621010, China.
| | - Haoming Ruan
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Sichuan Mianyang 621010, China.
| | - Yamin Zheng
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Fan Yang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Sichuan Mianyang 621010, China.
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Sichuan Mianyang 621010, China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Sichuan Mianyang 621010, China.
| |
Collapse
|
20
|
Hojatpanah MR, Khanmohammadi A, Khoshsafar H, Hajian A, Bagheri H. Construction and application of a novel electrochemical sensor for trace determination of uranium based on ion-imprinted polymers modified glassy carbon electrode. CHEMOSPHERE 2022; 292:133435. [PMID: 34958794 DOI: 10.1016/j.chemosphere.2021.133435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
In the present work, a novel electrochemical sensor modified glassy carbon electrode with ion-imprinted polymers (IIP-GCE) was applied for uranyl ions (UO22+) determination. Surface modifier was synthesized through precipitation polymerization method, using acrylic acid as a monomer, benzoyl peroxide (BPO) as initiator, and trimethylolpropane triacrylate (TMPTA) as cross-linker. A new uranyl-trans-3-(3-pyridyl) acrylic acid complex was employed, serving as an active and specific site on the synthesized modifier. Next, the synthesized modifier was characterized using X-ray diffraction (XRD), Scanning Electron microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FT-IR) techniques. UO22+ ions were detected using a differential pulse adsorptive anodic stripping voltammetry method. Under the optimized conditions (pH = 8.0, pre-concentration time = 10 min and pre-concentration potential = -0.30 V), the modified electrode exhibited linear behavior in the interval of 1.27-95.49 μg.L-1 with a limit of detection (LOD) of 0.43 μg.L-1. Also, the constructed ion-imprinted sensor showed a successful application for determining UO22+ ions with recovery range of 97.6-101% in real samples.
Collapse
Affiliation(s)
- Mohammad Reza Hojatpanah
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Akbar Khanmohammadi
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Hosin Khoshsafar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Vienna, Austria
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Chen B, Zhang G, Chen L, Kang J, Wang Y, Chen S, Jin Y, Yan H, Xia C. Visible light driven photocatalytic removal of uranium(VI) in strongly acidic solution. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127851. [PMID: 34838353 DOI: 10.1016/j.jhazmat.2021.127851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/31/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic reduction and removal of toxic uranium(VI) from aqueous solution is a highly economic, non-pollutant and efficient strategy. However, most uranium containing waste waters are highly acidic, but current photocatalysts are still restricted in slightly acidic or neutral media (pH ≥ 4). Herein, a conjugated microporous polymer (CMP), pTTT-Ben, was used for visible light driven photocatalytic reduction of U(VI) in highly acidic condition (pH = 1). A high uranium removal capacity (4710 mg/g) was achieved. The structural information of reduced uranium was investigated by X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS), revealing the amorphous U(IV) hydrate complex, with an additional interaction between U(IV) and nitrogen atoms on pTTT-Ben. In addition, pTTT-Ben also showed excellent photocatalytic U(VI) reduction performance under natural sunlight irradiation.
Collapse
Affiliation(s)
- Bo Chen
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Guikai Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lang Chen
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Jinyang Kang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Yuanhua Wang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Shanyong Chen
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Yongdong Jin
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Hongjian Yan
- College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| | - Chuanqin Xia
- College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
22
|
Carbon cloth as an important electrode support for the high selective electrosorption of uranium from acidic uranium mine wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Kanjilal A, Singh KK, Tyagi AK, Dey GR. Synthesis of bi-functional chelating sorbent for recovery of uranium from aqueous solution: sorption, kinetics and reusability studies. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02819-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Guo H, Mei P, Xiao J, Huang X, Ishag A, Sun Y. Carbon materials for extraction of uranium from seawater. CHEMOSPHERE 2021; 278:130411. [PMID: 33831686 DOI: 10.1016/j.chemosphere.2021.130411] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
With the rapid growth of population and industrialization, the energy crisis and environmental pollution as two main difficulties urgently need to be solved nowadays. The development and utilization of nuclear energy is of great significance for solving energy support, national security and environmental protection. As the raw material of nuclear energy, a lot of uranium in seawater provide a guarantee for the sustainable and green development of nuclear power plants. Recently, various new carbon-based materials (e.g., carbon nanofibers, multiwalled carbon nanotube, graphene) have been attracted widely intense interest in extraction of uranium from seawater due to large specific surface area, excellent acid-base resistance, high adsorption performance, environmental friendly and low cost. Thus, the systematic reviews concerning the extraction of uranium from seawater on various carbon-based materials were highly desirable. In this review, the extraction methods of uranium from seawater, including electrochemical, photocatalytic and adsorption methods are briefly introduced. Then the application and mechanism of four generation carbon-based materials on the extraction of uranium from seawater are systematically reviewed in details. Finally, the current challenges and future trends of uranium extraction from seawaters are proposed. This review provides the guideline for designing carbon-based materials with high adsorption capacity and exceptional selectivity for U(VI) extraction from seawater.
Collapse
Affiliation(s)
- Han Guo
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Peng Mei
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jingting Xiao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xingshui Huang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Alhadi Ishag
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yubing Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
25
|
de Diego Almeida RH, Monroy-Guzmán F, Arganis Juárez CR, Manríquez Rocha J, Bustos Bustos E. Electrochemical detector based on a modified graphite electrode with phthalocyanine for the elemental analysis of actinides. CHEMOSPHERE 2021; 276:130114. [PMID: 33706180 DOI: 10.1016/j.chemosphere.2021.130114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The quantification of actinides in aqueous solutions involves complex and expensive separation processes. Electrochemical methods have been widely used for the quick and accurate identification and quantification of organic and inorganic compounds directly or indirectly. Therefore, this work proposes the use of modified graphite with phthalocyanine for electrochemical detection and quantification of Th, U, Pu, Am, and Cm, in aqueous media by cyclic voltammetry. The electrodes were characterized by Raman and infrared spectroscopy, and the cyclic voltammetry data were modeled with Aoki's model. The detection limits (DL) and the quantification limits (QL) reached by the electrochemical detection of these actinides were of the order of ppt. Aoki's model fitted perfectly with the experimental data. The functionalization of graphite electrodes promotes the formation of phthalic anhydride, and the phthalocyanine is anchored on the epoxy groups of the graphite. The electrochemical detection process of these actinides is indirect. This electrochemical detector is cheap and disposable and can be an alternative for an initial characterization of actinides in liquid waste.
Collapse
Affiliation(s)
- Ruslán Heriberto de Diego Almeida
- National Institute of Nuclear Research (ININ), Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. De México, C.P. 52750, Mexico; Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C. (CIDETEQ), Parque Tecnológico Sanfandila, Sanfandila, Pedro Escobedo, 76703, Querétaro, Mexico.
| | - Fabiola Monroy-Guzmán
- National Institute of Nuclear Research (ININ), Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. De México, C.P. 52750, Mexico.
| | - Carlos Rosendo Arganis Juárez
- National Institute of Nuclear Research (ININ), Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. De México, C.P. 52750, Mexico.
| | - Juan Manríquez Rocha
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C. (CIDETEQ), Parque Tecnológico Sanfandila, Sanfandila, Pedro Escobedo, 76703, Querétaro, Mexico.
| | - Erika Bustos Bustos
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C. (CIDETEQ), Parque Tecnológico Sanfandila, Sanfandila, Pedro Escobedo, 76703, Querétaro, Mexico.
| |
Collapse
|
26
|
|
27
|
Facile synthesis of 2,5-dihydroxy-1,4-benzoquinone glyoxal resin with high capacity and selectivity for uranium recovery in aqueous solution. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Rostamian R, Firouzzare M, Zahakifar F. Preparation and evaluation of amidoximated poly(styrene-acrylonitrile) nanofibers for uranium adsorption from aqueous solutions. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02552-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Towards source reduction and green sustainability of metal-bearing waste streams: The electrochemical processes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
|
31
|
Suresh P, Duval CE. Poly(acid)-Functionalized Membranes to Sequester Uranium from Seawater. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Priyanka Suresh
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Christine E. Duval
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
32
|
Electrochemical recovery of low concentrated platinum (Pt) on nickel hexacyanoferrate nanoparticles film. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Keener M, Hunt C, Carroll TG, Kampel V, Dobrovetsky R, Hayton TW, Ménard G. Redox-switchable carboranes for uranium capture and release. Nature 2020; 577:652-655. [DOI: 10.1038/s41586-019-1926-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/30/2019] [Indexed: 11/09/2022]
|
34
|
Tellería-Narvaez A, Talavera-Ramos W, Santos LD, Arias J, Kinbaum A, Luca V. Functionalized natural cellulose fibres for the recovery of uranium from seawater. RSC Adv 2020. [DOI: 10.1039/d0ra00601g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Simple organophosphonate functionalization of sisal fibres yields materials that extract uranium from sea water with high efficiency.
Collapse
Affiliation(s)
| | | | | | - Jimena Arias
- Comisión Nacional de Energía Atómica
- Buenos Aires
- Argentina
| | | | - Vittorio Luca
- Comisión Nacional de Energía Atómica
- Buenos Aires
- Argentina
| |
Collapse
|
35
|
Amidic succinic acid moiety anchored silica gel for the extraction of UO22+ from aqueous medium and simulated sea water. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
Liu D, Ding C, Chi F, Pan N, Wen J, Xiong J, Hu S. Polymer brushes on graphene oxide for efficient adsorption of heavy metal ions from water. J Appl Polym Sci 2019. [DOI: 10.1002/app.48156] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dejian Liu
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Congcong Ding
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Fangting Chi
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Ning Pan
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Jun Wen
- Institute of Nuclear Physics and ChemistryChina Academy of Engineering Physics Mianyang 621900 China
| | - Jie Xiong
- Institute of Nuclear Physics and ChemistryChina Academy of Engineering Physics Mianyang 621900 China
| | - Sheng Hu
- Institute of Nuclear Physics and ChemistryChina Academy of Engineering Physics Mianyang 621900 China
| |
Collapse
|
37
|
Zeng Y, Xie L, Chi F, Liu D, Wu H, Pan N, Sun G. Controlled Growth of Ultra‐Thick Polymer Brushes via Surface‐Initiated Atom Transfer Radical Polymerization with Active Polymers as Initiators. Macromol Rapid Commun 2019; 40:e1900078. [DOI: 10.1002/marc.201900078] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/30/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Yiyang Zeng
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Lei Xie
- Institute of Nuclear Physics and ChemistryChina Academy of Engineering Physics Mianyang 621900 China
| | - Fangting Chi
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Dejian Liu
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Haoyan Wu
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Ning Pan
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Guangai Sun
- Institute of Nuclear Physics and ChemistryChina Academy of Engineering Physics Mianyang 621900 China
| |
Collapse
|