1
|
Arshad N, Batool SR, Razzaq S, Arshad M, Rasheed A, Ashraf M, Nawab Y, Nazeer MA. Recent advancements in polyurethane-based membranes for gas separation. ENVIRONMENTAL RESEARCH 2024; 252:118953. [PMID: 38636643 DOI: 10.1016/j.envres.2024.118953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO2), hydrogen (H2), nitrogen (N2), methane (CH4), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.
Collapse
Affiliation(s)
- Noureen Arshad
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Liberty Mills Limited, Karachi, 75700, Pakistan.
| | - Syeda Rubab Batool
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Sadia Razzaq
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Mubeen Arshad
- Department of Prosthodontics, Baqai Medical University, Karachi, 74600, Pakistan
| | - Abher Rasheed
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Munir Ashraf
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Functional Textile Research Group, National Textile University, Faisalabad, 37610, Pakistan
| | - Yasir Nawab
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; National Center for Composite Materials, National Textile University, Faisalabad, 37610, Pakistan
| | - Muhammad Anwaar Nazeer
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Biomaterials and Tissue Engineering Research Laboratory, National Textile University, Faisalabad, 37610, Pakistan.
| |
Collapse
|
2
|
Barooah M, Kundu S, Kumar S, Katare A, Borgohain R, Uppaluri RVS, Kundu LM, Mandal B. New generation mixed matrix membrane for CO 2 separation: Transition from binary to quaternary mixed matrix membrane. CHEMOSPHERE 2024; 354:141653. [PMID: 38485000 DOI: 10.1016/j.chemosphere.2024.141653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Contemporary advances in material development associated with membrane gas separation refer to the cost-effective fabrication of high-performance, defect-free mixed matrix membranes (MMMs). For clean energy production, natural gas purification, and CO2 capture from flue gas systems, constituting a functional integration of polymer matrix and inorganic filler materials find huge applications. The broad domain of research and development of MMMs focused on the selection of appropriate materials, inexpensive membrane fabrication, and comparative study with other gas separation membranes for real-world applications. This study addressed a comprehensive review of the advanced MMMs wrapping various facets of membrane material selection; polymer and filler particle morphology and compatibility between the phases and the relevance of several fillers in the assembly of MMMs are analyzed. Further, the research on binary MMMs, their problems, and solutions to overcome these challenges have also been discussed. Finally, the future directions and scope of work on quaternary MMM are scrutinized in the article.
Collapse
Affiliation(s)
- Mridusmita Barooah
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Sukanya Kundu
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Shubham Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Aviti Katare
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Rajashree Borgohain
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Ramagopal V S Uppaluri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Lal Mohan Kundu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Bishnupada Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Wang X, Cui W, Guo W, Sun B, Huang M, Li J, Li H, Meng N. Separation techniques for manufacturing fruit spirits: From traditional distillation to advanced pervaporation process. Compr Rev Food Sci Food Saf 2024; 23:e13278. [PMID: 38284610 DOI: 10.1111/1541-4337.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
Separation process is one of the key processes in the production of fruit spirits, including the traditional distillation method and the new pervaporation membrane method. The separation process significantly determines the constituents and proportions of compounds in the fruit spirit, which has a significant impact on the spirit quality and consumer acceptance. Therefore, it is important and complex to reveal the changing rules of chemical substances and the principles behind them during the separation process of fruit spirits. This review summarized the traditional separation methods commonly used in fruit spirits, covering the types, principles, and corresponding equipment of distillation methods, focused on the enrichment or removal of aroma compounds and harmful factors in fruit spirits by distillation methods, and tried to explain the mechanism behind it. It also proposed a new separation technology for the production of fruit spirits, pervaporation membrane technology, summarized its working principle, operation, working parameters, and application in the production of fruit spirits, and outlined the impact of the separation method on the production of fruit spirits based on existing research, focusing on the separation of flavor compounds, sensory qualities, and hazard factors in fruit spirits, along with a preliminary comparison with distillation. Finally, according to the current researches of the separation methods and the development requirement of the separation process of fruit spirits, the prospect of corresponding research is put forward, in order to propose new ideas and development directions for the research in this field.
Collapse
Affiliation(s)
- Xiaoqin Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Wenwen Cui
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Wentao Guo
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Mingquan Huang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Jinchen Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hehe Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Nan Meng
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
4
|
Yue Z, Zhou J, Du X, Wu L, Wang J, Wang X. Incorporating charged Ag@MOFs to boost the antibacterial and filtration properties of porous electrospinning polylactide films. Int J Biol Macromol 2023; 250:126223. [PMID: 37558020 DOI: 10.1016/j.ijbiomac.2023.126223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Faced with the pollution caused by particulate matter (PM) in the air, the prevalence of infectious diseases, and the environmental burden by use of nondegradable polymers, the existing filter materials such as meltblown cloth of polypropylene cannot satisfactorily meet people's requirements. In this study, Ag nanoparticles were loaded onto ZIF-8 particles by impregnation reduction to prepare the positively charged Ag@ZIF-8. The porous fibrous membranes of Ag@ZIF-8 with polylactide (PLA) were manufactured by electrostatic spinning technology. Due to the inherently charged feature of Ag@ZIF-8 particles and the presence of pores on fibers, the prepared membranes showed a stable good filtration efficiency of over 97 % at different humidity (30-90%RH, relative humidity). Meanwhile, the presence of charge on Ag@ZIF-8 and the synergistic effects of Ag and ZIF-8 particles made the membranes exhibit good antibacterial effects. The width of the inhibition zone of 3 wt%Ag@ZIF-8/PLA membrane reached 1.33 mm for E. coli and 1.35 mm for S. aureus, respectively.
Collapse
Affiliation(s)
- Zhenqing Yue
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jingheng Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xuye Du
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Lanlan Wu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Junrui Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xinlong Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
5
|
Kuzminova A, Dmitrenko M, Salomatin K, Vezo O, Kirichenko S, Egorov S, Bezrukova M, Karyakina A, Eremin A, Popova E, Penkova A, Selyutin A. Holmium-Containing Metal-Organic Frameworks as Modifiers for PEBA-Based Membranes. Polymers (Basel) 2023; 15:3834. [PMID: 37765688 PMCID: PMC10534401 DOI: 10.3390/polym15183834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, there has been an active search for new modifiers to create hybrid polymeric materials for various applications, in particular, membrane technology. One of the topical modifiers is metal-organic frameworks (MOFs), which can significantly alter the characteristics of obtained mixed matrix membranes (MMMs). In this work, new holmium-based MOFs (Ho-MOFs) were synthesized for polyether block amide (PEBA) modification to develop novel MMMs with improved properties. The study of Ho-MOFs, polymers and membranes was carried out by methods of X-ray phase analysis, scanning electron and atomic force microscopies, Fourier transform infrared spectroscopy, low-temperature nitrogen adsorption, dynamic and kinematic viscosity, static and dynamic light scattering, gel permeation chromatography, thermogravimetric analysis and contact angle measurements. Synthesized Ho-MOFs had different X-ray structures, particle forms and sizes depending on the ligand used. To study the effect of Ho-MOF modifier on membrane transport properties, PEBA/Ho-MOFs membrane retention capacity was evaluated in vacuum fourth-stage filtration for dye removal (Congo Red, Fuchsin, Glycine thymol blue, Methylene blue, Eriochrome Black T). Modified membranes demonstrated improved flux and rejection coefficients for dyes containing amino groups: Congo Red, Fuchsin (PEBA/Ho-1,3,5-H3btc membrane possessed optimal properties: 81% and 68% rejection coefficients for Congo Red and Fuchsin filtration, respectively, and 0.7 L/(m2s) flux).
Collapse
Affiliation(s)
- Anna Kuzminova
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Mariia Dmitrenko
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Kirill Salomatin
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Olga Vezo
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Sergey Kirichenko
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Semyon Egorov
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Marina Bezrukova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy pr., St. Petersburg 199004, Russia; (M.B.); (A.E.); (E.P.)
| | - Anna Karyakina
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Alexey Eremin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy pr., St. Petersburg 199004, Russia; (M.B.); (A.E.); (E.P.)
| | - Ekaterina Popova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy pr., St. Petersburg 199004, Russia; (M.B.); (A.E.); (E.P.)
- Faculty of Chemical and Biotechnology, Organic Chemistry Department, Saint-Petersburg State Institute of Technology (Technical University), 24-26/49 Letter A Moskovski Ave., St. Petersburg 190013, Russia
- Faculty of Industrial Drug Technologies, Department of Chemical Technology of Medicinal Substances, Saint-Petersburg State Chemical and Pharmaceutical University, 14 Prof. Popova Str., St. Petersburg 197022, Russia
| | - Anastasia Penkova
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Artem Selyutin
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| |
Collapse
|
6
|
Cosme JRA, Castro‐Muñoz R, Vatanpour V. Recent Advances in Nanocomposite Membranes for Organic Compound Remediation from Potable Waters. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jose R. Aguilar Cosme
- University of Maryland Baltimore Department of Surgery 670 W Baltimore St 21201 Baltimore USA
| | - Roberto Castro‐Muñoz
- Gdansk University of Technology Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering 11/12 Narutowicza St. 80-233 Gdansk Poland
- Tecnologico de Monterrey, Campus Toluca Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista 50110 Toluca de Lerdo Mexico
| | - Vahid Vatanpour
- Kharazmi University Department of Applied Chemistry, Faculty of Chemistry 15719-14911 Tehran Iran
- Istanbul Technical University, Maslak National Research Center on Membrane Technologies 34469 Istanbul Turkey
| |
Collapse
|
7
|
Dai Y, Niu Z, Luo W, Wang Y, Mu P, Li J. A review on the recent advances in composite membranes for CO2 capture processes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Yahya R, Elshaarawy RF. Highly sulfonated chitosan-polyethersulfone mixed matrix membrane as an effective catalytic reactor for esterification of acetic acid. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
9
|
Low-temperature cross-linking fabrication of sub-nanoporous SiC-based membranes for application to the pervaporation removal of methanol. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Du C, Runhong Du J, Feng X, Du F, Cheng F, Ali ME. Pervaporation-assisted desalination of seawater reverse osmosis brine. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Industrial-scale fabrication of mordenite membranes by dual heating method for production of ethyl acetate in an industrial VP-esterification plant. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Catalytically active membranes for esterification: A review. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Chang PY, Wang J, Li SY, Suen SY. Biodegradable Polymeric Membranes for Organic Solvent/Water Pervaporation Applications. MEMBRANES 2021; 11:membranes11120970. [PMID: 34940471 PMCID: PMC8708743 DOI: 10.3390/membranes11120970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
Abstract
Biodegradable polymers are a green alternative to apply as the base membrane materials in versatile processes. In this study, two dense membranes were made from biodegradable PGS (poly(glycerol sebacate)) and APS (poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)), respectively. The prepared membranes were characterized by FE-SEM, AFM, ATR-FTIR, TGA, DSC, water contact angle, and degree of swelling, in comparison with the PDMS (polydimethylpolysiloxane) membrane. In the pervaporation process for five organic solvent/water systems at 37 °C, both biodegradable membranes exhibited higher separation factors for ethanol/water and acetic acid/water separations, while the PDMS membrane attained better effectiveness in the other three systems. In particular, a positive relationship between the separation factor and the swelling ratio of organic solvent to water (DSo/DSw) was noticed. In spite of their biodegradability, the stability of both PGS and APS membranes was not deteriorated on ethanol/water pervaporation for one month. Furthermore, these two biodegradable membranes were applied in the pervaporation of simulated ABE (acetone-butanol-ethanol) fermentation solution, and the results were comparable with those reported in the literature.
Collapse
Affiliation(s)
- Pao-Yueh Chang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-Y.L.); (S.-Y.S.)
| | - Shing-Yi Suen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-Y.L.); (S.-Y.S.)
| |
Collapse
|
14
|
Maroa S, Inambao F. A review of sustainable biodiesel production using biomass derived heterogeneous catalysts. Eng Life Sci 2021; 21:790-824. [PMID: 34899118 PMCID: PMC8638282 DOI: 10.1002/elsc.202100025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022] Open
Abstract
The production of biodiesel through chemical production processes of transesterification reaction depends on suitable catalysts to hasten the chemical reactions. Therefore, the initial selection of catalysts is critical although it is also dependent on the quantity of free fatty acids in a given sample of oil. Earlier forms of biodiesel production processes relied on homogeneous catalysts, which have undesirable effects such as toxicity, high flammability, corrosion, by-products such as soap and glycerol, and high wastewater. Heterogeneous catalysts overcome most of these problems. Recent developments involve novel approaches using biomass and bio-waste resource derived heterogeneous catalysts. These catalysts are renewable, non-toxic, reusable, offer high catalytic activity and stability in both acidic and base conditions, and show high tolerance properties to water. This review work critically reviews biomass-based heterogeneous catalysts, especially those utilized in sustainable production of biofuel and biodiesel. This review examines the sustainability of these catalysts in literature in terms of small-scale laboratory and industrial applications in large-scale biodiesel and biofuel production. Furthermore, this work will critically review natural heterogeneous biomass waste and bio-waste catalysts in relation to upcoming nanotechnologies. Finally, this work will review the gaps identified in the literature for heterogeneous catalysts derived from biomass and other biocatalysts with a view to identifying future prospects for heterogeneous catalysts.
Collapse
Affiliation(s)
- Semakula Maroa
- College of Agriculture Science and EngineeringDiscipline of Mechanical EngineeringGreen Energy GroupUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Freddie Inambao
- College of Agriculture Science and EngineeringDiscipline of Mechanical EngineeringGreen Energy GroupUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
15
|
Cabezas R, Duran S, Zurob E, Plaza A, Merlet G, Araya-Lopez C, Romero J, Quijada-Maldonado E. Development of silicone-coated hydrophobic deep eutectic solvent-based membranes for pervaporation of biobutanol. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Peddoddi UM, Behara DK, Satyanarayana SV. Pervaporation of hydrazine/water with ethylcellulose/4A zeolite mixed matrix membranes. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Gu L, Zhang Z, Yang S, Liu X, Zhang M, Gao L, Xiao G. Chitosan‐Modified Polyvinyl Alcohol Membrane High Performance in Biodiesel/Methanol Pervaporation Separation. ChemistrySelect 2021. [DOI: 10.1002/slct.202102763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liuyu Gu
- School of Chemistry and Chemical Engineering Southeast University 2 Dongnandaxue Rd. China
| | - Zongqi Zhang
- School of Chemistry and Chemical Engineering Southeast University 2 Dongnandaxue Rd. China
| | - Su Yang
- School of Chemistry and Chemical Engineering Southeast University 2 Dongnandaxue Rd. China
| | - Xueping Liu
- School of Chemistry and Chemical Engineering Southeast University 2 Dongnandaxue Rd. China
| | - Mengting Zhang
- School of Chemistry and Chemical Engineering Southeast University 2 Dongnandaxue Rd. China
| | - Lijing Gao
- School of Chemistry and Chemical Engineering Southeast University 2 Dongnandaxue Rd. China
| | - Guomin Xiao
- School of Chemistry and Chemical Engineering Southeast University 2 Dongnandaxue Rd. China
| |
Collapse
|
18
|
TiO2-decorated NaA zeolite membranes with improved separation stability for pervaporation dehydration of N, N-Dimethylacetamide. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Hsieh CW, Li BX, Suen SY. Alicyclic Polyimide/SiO 2 Mixed Matrix Membranes for Water/n-Butanol Pervaporation. MEMBRANES 2021; 11:membranes11080564. [PMID: 34436327 PMCID: PMC8398008 DOI: 10.3390/membranes11080564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022]
Abstract
Alicyclic polyimides (PIs) have excellent properties in solubility, mechanical strength, thermal property, etc. This study developed two types of alicyclic PI-based mixed matrix membranes (MMMs) for water/n-butanol pervaporation application, which have never been investigated previously. The fillers were hydrophilic SiO2 nanoparticles. The synthesized PI was mixed with SiO2 nanoparticles in DMAc to make the casting solution, and a liquid film was formed over PET substrate using doctor blade. A dense MMM was fabricated at 80 °C and further treated via multi-stage curing (100–170 °C). The prepared membranes were characterized by FTIR, TGA, FE-SEM, water contact angle, and solvent swelling. The trends of pure solvent swelling effects agree well with the water contact angle results. Moreover, the pervaporation efficiencies of alicyclic PI/SiO2 MMMs for 85 wt% n-butanol aqueous solution at 40 °C were investigated. The results showed that BCDA-3,4′-ODA/SiO2 MMMs had a larger permeation flux and higher separation factor than BCDA-1,3,3-APB/SiO2 MMMs. For both types of MMMs, the separation factor increased first and then decreased, with increasing SiO2 loading. Based on the PSI performance, the optimal SiO2 content was 0.5 wt% for BCDA-3,4′-ODA/SiO2 MMMs and 5 wt% for BCDA-1,3,3-APB/SiO2 MMMs. The overall separation efficiency of BCDA-3,4′-ODA-based membranes was 10–30-fold higher.
Collapse
Affiliation(s)
- Ching-Wen Hsieh
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (C.-W.H.); (B.-X.L.)
| | - Bo-Xian Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (C.-W.H.); (B.-X.L.)
| | - Shing-Yi Suen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (C.-W.H.); (B.-X.L.)
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence:
| |
Collapse
|
20
|
Castro-Muñoz R, Ahmad MZ, Cassano A. Pervaporation-aided Processes for the Selective Separation of Aromas, Fragrances and Essential (AFE) Solutes from Agro-food Products and Wastes. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110, Toluca De Lerdo, Mexico
| | - M. Zamidi Ahmad
- Organic Materials Innovation Center (OMIC),University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alfredo Cassano
- Institute on Membrane Technology ITM-CNR Via P. Bucci, 17/C, 87036, Rende, (CS), Italy
| |
Collapse
|
21
|
Ugur Nigiz F. Comparative study on use of pervaporation membrane reactor for lauric acid – Methanol esterification. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Castro-Muñoz R, González-Melgoza LL, García-Depraect O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water. CHEMOSPHERE 2021; 270:129421. [PMID: 33401070 DOI: 10.1016/j.chemosphere.2020.129421] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Membranes, as the primary separation element of membrane-based processes, have greatly attracted the attention of researchers in several water treatment applications, including wastewater treatment, water purification, water disinfection, toxic and non-toxic chemical molecules, heavy metals, among others. Today, the removal of heavy metals from water has become challenging, in which chemical engineers are approaching new materials in membrane technologies. Therefore, the current review elucidates the progress of using different concepts of membranes and potential novel materials for such separations, identifying that polymeric membranes can exhibit a removal efficiency from 77 up to 99%; while novel nanocomposite membranes are able to offer complete removal of heavy metals (up to 100%), together with unprecedented permeation rates (from 80 up to 1, 300 L m-2 h-1). Thereby, the review also addresses the highlighted literature survey of using polymeric and nanocomposite membranes for heavy metal removal, highlighting the relevant insights and denoted metal uptake mechanisms. Moreover, it gives up-to-date information related to those novel nanocomposite materials and their contribution to heavy metals separation. Finally, the concluding remarks, future perspectives, and strategies for new researchers in the field are given according to the recent findings of this comprehensive review.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico; Gdansk University of Technology, Faculty of Chemistry, Department of Process, Engineering and Chemical Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| | | | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, S/n, 47011, Valladolid, Spain
| |
Collapse
|
23
|
|
24
|
Wang T, Shi J, Liang Y, Han J, Tong Y, Li W. Novel SPVA/g-C 3N 4-SA/PAN Pervaporation Membranes with Porous Catalytic Layers for Esterification Enhancement. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Taishan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiayun Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
25
|
Castro-Muñoz R, Boczkaj G. Pervaporation Zeolite-Based Composite Membranes for Solvent Separations. Molecules 2021; 26:1242. [PMID: 33669135 PMCID: PMC7956589 DOI: 10.3390/molecules26051242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/26/2022] Open
Abstract
Thanks to their well-defined molecular sieving and stability, zeolites have been proposed in selective membrane separations, such as gas separation and pervaporation. For instance, the incorporation of zeolites into polymer phases to generate composite (or mixed matrix) membranes revealed important advances in pervaporation. Therefore, the goal of this review is to compile and elucidate the latest advances (over the last 2-3 years) of zeolite applications in pervaporation membranes either combining zeolites or polymers. Here, particular emphasis has been focused on relevant insights and findings in using zeolites in pervaporative azeotropic separations and specific aided applications, together with novel concepts of membranes. A brief background of the pervaporation process is also given. According to the findings of this review, we provide future perspectives and recommendations for new researchers in the field.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland;
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland;
| |
Collapse
|
26
|
Zhang L, Zhang H, Shang H. Esterification of
2
‐keto‐L
‐gulonic acid and ethanol by pervapouration using
NaA
zeolite membrane. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Zhang
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang China
| | - Hao Zhang
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang China
| | - Huijian Shang
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang China
| |
Collapse
|
27
|
Msahel A, Galiano F, Pilloni M, Russo F, Hafiane A, Castro-Muñoz R, Kumar VB, Gedanken A, Ennas G, Porat Z, Scano A, Hamouda SB, Figoli A. Exploring the Effect of Iron Metal-Organic Framework Particles in Polylactic Acid Membranes for the Azeotropic Separation of Organic/Organic Mixtures by Pervaporation. MEMBRANES 2021; 11:membranes11010065. [PMID: 33477556 PMCID: PMC7831131 DOI: 10.3390/membranes11010065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
A microporous carboxylate metal-organic framework MIL-100 Fe was prepared as submicron particles by microwave-assisted hydrothermal synthesis (Fe-MOF-MW). This product was explored, for the first time, for the preparation of polylactic acid (PLA) mixed matrix membranes. The produced MOF was characterised by powder X-ray diffraction (PXRD), environmental scanning electron microscopy (ESEM) as well as by thermogravimetric analysis (TGA) and nitrogen adsorption/desorption. The effect of different Fe-MOF-MW concentrations (0.1 and 0.5 wt%) on the membrane properties and performance were evaluated. These membranes were used in the pervaporation process for the separation of methanol/methyl tert-butyl-ether mixtures at the azeotropic point. The influence of the feed temperature and vacuum pressure on the membrane performance was evaluated and the results were compared with PLA pristine membranes. Moreover, the produced membranes have been characterised in terms of morphology, MOF dispersion in the polymeric membrane matrix, wettability, thickness, mechanical resistance and swelling propensity. The presence of Fe-MOF-MW was found to have a beneficial effect in improving the selectivity of mixed matrix membranes towards methanol at both concentrations. The highest selectivity was obtained for the PLA membranes embedded with 0.5 wt% of Fe-MOF-MW and tested at the temperature of 25 °C and vacuum pressure of 0.09 mbar.
Collapse
Affiliation(s)
- Asma Msahel
- Laboratory of Water Membrane and Environmental Biotechnology (LMBE), CERTE BP 273, 8020 Soliman, Tunisia; (A.M.); (A.H.); (S.B.H.)
- Department of Chemistry, University of Tunis El-Manar, Farhat Hached University Campus, BP n° 94 Rommana, 1068 Tunis, Tunisia
| | - Francesco Galiano
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci 17/c, 87036 Arcavacata di Rende (CS), Italy; (F.R.); (A.F.)
- Correspondence: (F.G.); (M.P.); Tel.: +39-0984-492014 (F.G.); +39-0706-754364 (M.P.)
| | - Martina Pilloni
- Chemical and Geological Science Department, Unità di Ricerca del Consorzio Nazionale di Scienze e Tecnologie dei Materiali (INSTM), University of Cagliari, SS 554 Bivio Sestu, 09042 Monserrato (CA), Italy; (G.E.); (A.S.)
- Correspondence: (F.G.); (M.P.); Tel.: +39-0984-492014 (F.G.); +39-0706-754364 (M.P.)
| | - Francesca Russo
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci 17/c, 87036 Arcavacata di Rende (CS), Italy; (F.R.); (A.F.)
| | - Amor Hafiane
- Laboratory of Water Membrane and Environmental Biotechnology (LMBE), CERTE BP 273, 8020 Soliman, Tunisia; (A.M.); (A.H.); (S.B.H.)
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico;
| | - Vijay Bhooshan Kumar
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel; (V.B.K.); (A.G.)
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel; (V.B.K.); (A.G.)
| | - Guido Ennas
- Chemical and Geological Science Department, Unità di Ricerca del Consorzio Nazionale di Scienze e Tecnologie dei Materiali (INSTM), University of Cagliari, SS 554 Bivio Sestu, 09042 Monserrato (CA), Italy; (G.E.); (A.S.)
| | - Ze’ev Porat
- Division of Chemistry, Nuclear Research Center-Negev, P.O. Box 9001, Be’er-Sheva 8419001, Israel;
- Unit of Environmental Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| | - Alessandra Scano
- Chemical and Geological Science Department, Unità di Ricerca del Consorzio Nazionale di Scienze e Tecnologie dei Materiali (INSTM), University of Cagliari, SS 554 Bivio Sestu, 09042 Monserrato (CA), Italy; (G.E.); (A.S.)
| | - Sofiane Ben Hamouda
- Laboratory of Water Membrane and Environmental Biotechnology (LMBE), CERTE BP 273, 8020 Soliman, Tunisia; (A.M.); (A.H.); (S.B.H.)
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology (CRMN) of Technopole of Sousse B. P334, 4054 Sahloul Sousse, Tunisia
| | - Alberto Figoli
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci 17/c, 87036 Arcavacata di Rende (CS), Italy; (F.R.); (A.F.)
| |
Collapse
|
28
|
Abstract
Herein, we report on the performance of a hybrid organic-ceramic hydrophilic pervaporation membrane applied in a vacuum membrane distillation operating mode to desalinate laboratory prepared saline waters and a hypersaline water modeled after a real oil and gas produced water. The rational for performing “pervaporative distillation” is that highly contaminated waters like produced water, reverse osmosis concentrates and industrial have high potential to foul and scale membranes, and for traditional porous membrane distillation membranes they can suffer pore-wetting and complete salt passage. In most of these processes, the hard to treat feed water is commonly softened and filtered prior to a desalination process. This study evaluates pervaporative distillation performance treating: (1) NaCl solutions from 10 to 240 g/L at crossflow Reynolds numbers from 300 to 4800 and feed-temperatures from 60 to 85 °C and (2) a real produced water composition chemically softened to reduce its high-scale forming mineral content. The pervaporative distillation process proved highly-effective at desalting all feed streams, consistently delivering <10 mg/L of dissolved solids in product water under all operating condition tested with reasonably high permeate fluxes (up to 23 LMH) at optimized operating conditions.
Collapse
|
29
|
Castro-Muñoz R. Breakthroughs on tailoring pervaporation membranes for water desalination: A review. WATER RESEARCH 2020; 187:116428. [PMID: 33011568 DOI: 10.1016/j.watres.2020.116428] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 05/24/2023]
Abstract
Due to the increase in worldwide population and urbanization, water scarcity is today one of the tough challenges of society. To date, several ongoing initiatives and strategies are aiming to find feasible alternatives to produce drinking water. Seawater desalination is addressed as a latent alternative to solve such an issue. When dealing with desalination, membrane-based technologies (such as reverse osmosis, membrane distillation, pervaporation, among others) have been successfully proposed. Pervaporation (PV) is likely the membrane operation with the less permeation rate but providing high rejection of salts. Thereby, "membranologists" are extensively working in developing new suitable membranes for pervaporation desalination. Therefore, the goal of this review paper is to elucidate and provide a comprehensive outlook of the most recent works (over the last 5-years) at developing new concepts of membranes (e.g. ultra-thin, mixed matrix/composite and inorganic) for desalination, as well as the relevant strategies in fabricating enhanced PV membranes. At this point, an important emphasis has been paid to the relevant insights in the field. This paper also addresses some principles of PV and the main drawbacks of the technique and its membranes. Through reviewing the literature, the future trends, needs, and recommendations for the new researchers are given.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110Toluca de Lerdo, Mexico.
| |
Collapse
|
30
|
Zhao P, Xue Y, Zhang R, Cao B, Li P. Fabrication of pervaporation desalination membranes with excellent chemical resistance for chemical washing. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Castro-Muñoz R, Díaz-Montes E, Cassano A, Gontarek E. Membrane separation processes for the extraction and purification of steviol glycosides: an overview. Crit Rev Food Sci Nutr 2020; 61:2152-2174. [PMID: 32496876 DOI: 10.1080/10408398.2020.1772717] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Steviol glycosides (SGs), as natural sweeteners from Stevia rebaudiana, are currently employed for replacing sugar and its derivatives in several food products and formulations. Such compounds play an essential role in human health. Their usage provides a positive effect on preventing diseases related to sugar consumption, including diabetes mellitus, cancer, and lipid metabolism disorders. The traditional extraction of SGs is performed by means of solvent extraction, which limits their application since the removal of residual solvents is a challenging task requiring further downstream purification steps. In addition, the presence of residual solvents negatively affects the quality of such compounds. Today, food technicians are looking for innovative and improved techniques for the extraction, recovery and purification of SGs. Membrane-based technologies, including microfiltration, ultrafiltration, and nanofiltration, have long been proven to be a valid alternative for efficient extraction and purification of several high added-value molecules from natural sources. Such processes and their possible coupling in integrated membrane systems have been successfully involved in recovery protocols of several compounds, such as metabolites, polyphenols, anthocyanins, natural pigments, proteins, from different sources (e.g., agro-food wastes, plant extracts, fruits, fermentation broths, among others). Herein, we aim to review the current progresses and developments about the extraction of SGs with membrane operations. Our attention has been paid to the latest insights in the field. Furthermore, key process parameters influencing the extraction and purification of SGs are also discussed in detail.
Collapse
Affiliation(s)
| | - Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, México City, México
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, Rende, Italy
| | - Emilia Gontarek
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
32
|
Castro-Muñoz R, Agrawal KV, Coronas J. Ultrathin permselective membranes: the latent way for efficient gas separation. RSC Adv 2020; 10:12653-12670. [PMID: 35497580 PMCID: PMC9051376 DOI: 10.1039/d0ra02254c] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
Membrane gas separation has attracted the attention of chemical engineers for the selective separation of gases. Among the different types of membranes used, ultrathin membranes are recognized to break the trade-off between selectivity and permeance to provide ultimate separation. Such success has been associated with the ultrathin nature of the selective layer as well as their defect-free structure. These membrane features can be obtained from specific membrane preparation procedures used, in which the intrinsic properties of different nanostructured materials (e.g., polymers, zeolites, covalent-organic frameworks, metal-organic frameworks, and graphene and its derivatives) also play a crucial role. It is likely that such a concept of membranes will be explored in the coming years. Therefore, the goal of this review study is to give the latest insights into the use of ultrathin selective barriers, highlighting and describing the primary membrane preparation protocols applied, such as atomic layer deposition, in situ crystal formation, interfacial polymerization, Langmuir-Blodgett technique, facile filtration process, and gutter layer formation, to mention just a few. For this, the most recent approaches are addressed, with particular emphasis on the most relevant results in separating gas molecules. A brief overview of the fundamentals for the application of the techniques is given. Finally, by reviewing the ongoing development works, the concluding remarks and future trends are also provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista 50110 Toluca de Lerdo Mexico
| | - Kumar Varoon Agrawal
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne Sion Switzerland
| | - Joaquín Coronas
- Chemical and Environmental Engineering Department, Instituto de Nanociencia de Aragón (INA), Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC 50018 Zaragoza Spain
| |
Collapse
|
33
|
Castro-Muñoz R, González-Valdez J, Ahmad MZ. High-performance pervaporation chitosan-based membranes: new insights and perspectives. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Today, the need of replacing synthetic polymers in the membrane preparation for diverse pervaporation (PV) applications has been recognized collectively and scientifically. Chitosan (CS), a bio-polymer, has been studied and proposed to achieve this goal especially in specific azeotropic water-organic, organic-water, and organic-organic separations, as well as in assisting specific processes (e.g. seawater desalination and chemical reactions). Different concepts of CS-based membranes have been developed, which include material blending and composite and mixed matrix membranes which have been tested for different separations. Hereby, the goal of this review is to provide a critical overview of the ongoing CS-based membrane developments, paying a special attention to the most relevant findings and results in the field. Furthermore, future trends of CS-based membranes in PV technology are presented, as well as concluding remarks and suggested strategies for the new scientist in the field.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas , 2000 San Antonio Buenavista , 50110 Toluca de Lerdo , Mexico
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science , Av. Eugenio Garza Sada 2501 , Monterrey, N.L. 64849 , Mexico
| | - M. Zamidi Ahmad
- Organic Materials Innovation Center (OMIC) , University of Manchester , Oxford Road , Manchester M13 9PL , UK
| |
Collapse
|
34
|
Current Advances in Biofouling Mitigation in Membranes for Water Treatment: An Overview. Processes (Basel) 2020. [DOI: 10.3390/pr8020182] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Membranes, as the primary tool in membrane separation techniques, tend to suffer external deposition of pollutants and microorganisms depending on the nature of the treating solutions. Such issues are well recognized as biofouling and is identified as the major drawback of pressure-driven membrane processes due to the influence of the separation performance of such membrane-based technologies. Herein, the aim of this review paper is to elucidate and discuss new insights on the ongoing development works at facing the biofouling phenomenon in membranes. This paper also provides an overview of the main strategies proposed by “membranologists” to improve the fouling resistance in membranes. Special attention has been paid to the fundamentals on membrane fouling as well as the relevant results in the framework of mitigating the issue. By analyzing the literature data and state-of-the-art, the concluding remarks and future trends in the field are given as well.
Collapse
|
35
|
Castro-Muñoz R, Ahmad MZ, Fíla V. Tuning of Nano-Based Materials for Embedding Into Low-Permeability Polyimides for a Featured Gas Separation. Front Chem 2020; 7:897. [PMID: 32039141 PMCID: PMC6985281 DOI: 10.3389/fchem.2019.00897] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/12/2019] [Indexed: 02/04/2023] Open
Abstract
Several concepts of membranes have emerged, aiming at the enhancement of separation performance, as well as some other physicochemical properties, of the existing membrane materials. One of these concepts is the well-known mixed matrix membranes (MMMs), which combine the features of inorganic (e.g., zeolites, metal–organic frameworks, graphene, and carbon-based materials) and polymeric (e.g., polyimides, polymers of intrinsic microporosity, polysulfone, and cellulose acetate) materials. To date, it is likely that such a concept has been widely explored and developed toward low-permeability polyimides for gas separation, such as oxydianiline (ODA), tetracarboxylic dianhydride–diaminophenylindane (BTDA-DAPI), m-phenylenediamine (m-PDA), and hydroxybenzoic acid (HBA). When dealing with the gas separation performance of polyimide-based MMMs, these membranes tend to display some deficiency according to the poor polyimide–filler compatibility, which has promoted the tuning of chemical properties of those filling materials. This approach has indeed enhanced the polymer–filler interfaces, providing synergic MMMs with superior gas separation performance. Herein, the goal of this review paper is to give a critical overview of the current insights in fabricating MMMs based on chemically modified filling nanomaterials and low-permeability polyimides for selective gas separation. Special interest has been paid to the chemical modification protocols of the fillers (including good filler dispersion) and thus the relevant experimental results provoked by such approaches. Moreover, some principles, as well as the main drawbacks, occurring during the MMM preparation are also given.
Collapse
Affiliation(s)
| | - Mohd Zamidi Ahmad
- Organic Materials Innovation Center (OMIC), University of Manchester, Manchester, United Kingdom
| | - Vlastimil Fíla
- University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
36
|
Ray SS, Lee HK, Kwon YN. Review on Blueprint of Designing Anti-Wetting Polymeric Membrane Surfaces for Enhanced Membrane Distillation Performance. Polymers (Basel) 2019; 12:E23. [PMID: 31877628 PMCID: PMC7023606 DOI: 10.3390/polym12010023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, membrane distillation (MD) has emerged as a versatile technology for treating saline water and industrial wastewater. However, the long-term use of MD wets the polymeric membrane and prevents the membrane from working as a semi-permeable barrier. Currently, the concept of antiwetting interfaces has been utilized for reducing the wetting issue of MD. This review paper discusses the fundamentals and roles of surface energy and hierarchical structures on both the hydrophobic characteristics and wetting tolerance of MD membranes. Designing stable antiwetting interfaces with their basic working principle is illustrated with high scientific discussions. The capability of antiwetting surfaces in terms of their self-cleaning properties has also been demonstrated. This comprehensive review paper can be utilized as the fundamental basis for developing antiwetting surfaces to minimize fouling, as well as the wetting issue in the MD process.
Collapse
Affiliation(s)
- Saikat Sinha Ray
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyung-Kae Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Young-Nam Kwon
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
37
|
New Trends in Biopolymer-Based Membranes for Pervaporation. Molecules 2019; 24:molecules24193584. [PMID: 31590357 PMCID: PMC6803837 DOI: 10.3390/molecules24193584] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 11/25/2022] Open
Abstract
Biopolymers are currently the most convenient alternative for replacing chemically synthetized polymers in membrane preparation. To date, several biopolymers have been proposed for such purpose, including the ones derived from animal (e.g., polybutylene succinate, polylactic acid, polyhydroxyalcanoates), vegetable sources (e.g., starch, cellulose-based polymers, alginate, polyisoprene), bacterial fermentation products (e.g., collagen, chitin, chitosan) and specific production processes (e.g., sericin). Particularly, these biopolymer-based membranes have been implemented into pervaporation (PV) technology, which assists in the selective separation of azeotropic water-organic, organic-water, organic-organic mixtures, and specific separations of chemical reactions. Thereby, the aim of the present review is to present the current state-of-the-art regarding the different concepts on preparing membranes for PV. Particular attention is paid to the most relevant insights in the field, highlighting the followed strategies by authors for such successful approaches. Finally, by reviewing the ongoing development works, the concluding remarks and future trends are addressed.
Collapse
|
38
|
Castro-Muñoz R, Galiano F, de la Iglesia Ó, Fíla V, Téllez C, Coronas J, Figoli A. Graphene oxide – Filled polyimide membranes in pervaporative separation of azeotropic methanol–MTBE mixtures. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Han GL, Chen Z, Cai LF, Zhang YH, Tian JF, Ma HH, Fang SM. Poly(vinyl alcohol)/carboxyl graphene mixed matrix membranes: High‐power ultrasonic treatment for enhanced pervaporation performance. J Appl Polym Sci 2019. [DOI: 10.1002/app.48526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Guang Lu Han
- School of Material and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
- Henan Engineering Research Center of Chemical Engineering Separation Process IntensificationZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
| | - Zhe Chen
- School of Material and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
| | - Li Fang Cai
- School of Material and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
| | - Yong Hui Zhang
- School of Material and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
| | - Jun Feng Tian
- School of Material and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
| | - Huan Huan Ma
- School of Material and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
| | - Shao Ming Fang
- School of Material and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
- Henan Engineering Research Center of Chemical Engineering Separation Process IntensificationZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
| |
Collapse
|
40
|
On the Morphological Characterization Procedures of Multilayer Hydrophobic Ceramic Membranes for Membrane Distillation Operations. MEMBRANES 2019; 9:membranes9100125. [PMID: 31547541 PMCID: PMC6835301 DOI: 10.3390/membranes9100125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 11/21/2022]
Abstract
The paper introduces some aspects of the characterization of hydrophobized multilayer ceramic membranes intended for use in membrane distillation (MD) operations. Four-layer hydrophobic carbon-based titania membranes, manufactured by the Fraunhofer Institute for Ceramic Technologies and Systems (IKTS, Hermsdorf, Germany), were tested according to the gas permeation technique. Gas permeance data were elaborated following the premises of the dusty gas model, to calculate the average pore size and the porosity-tortuosity ratio of each layer. Membrane testing was the opportunity to discuss which characterization method is more appropriate to obtain the membrane parameters necessary for the simulation of membranes in MD processes. In the case of multilayer membranes, the calculation of the morphological parameters should be performed for each layer. The “layer-by-layer gas permeation” method, previously introduced by other authors and completed in this work, is more appropriate for obtaining representative parameters of the membrane. Conversely, the calculation of morphological parameters, averaged over the entire membrane, might lead to heavy underestimations of the total membrane resistance and then to a heavy error on the transmembrane flux simulation.
Collapse
|
41
|
Vergadou N, Theodorou DN. Molecular Modeling Investigations of Sorption and Diffusion of Small Molecules in Glassy Polymers. MEMBRANES 2019; 9:E98. [PMID: 31398889 PMCID: PMC6723301 DOI: 10.3390/membranes9080098] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
With a wide range of applications, from energy and environmental engineering, such as in gas separations and water purification, to biomedical engineering and packaging, glassy polymeric materials remain in the core of novel membrane and state-of the art barrier technologies. This review focuses on molecular simulation methodologies implemented for the study of sorption and diffusion of small molecules in dense glassy polymeric systems. Basic concepts are introduced and systematic methods for the generation of realistic polymer configurations are briefly presented. Challenges related to the long length and time scale phenomena that govern the permeation process in the glassy polymer matrix are described and molecular simulation approaches developed to address the multiscale problem at hand are discussed.
Collapse
Affiliation(s)
- Niki Vergadou
- Molecular Thermodynamics and Modelling of Materials Laboratory, Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Aghia Paraskevi Attikis, GR-15310 Athens, Greece.
| | - Doros N Theodorou
- School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
42
|
Castro-Muñoz R, Galiano F, Figoli A. Chemical and bio-chemical reactions assisted by pervaporation technology. Crit Rev Biotechnol 2019; 39:884-903. [PMID: 31382780 DOI: 10.1080/07388551.2019.1631248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since several decades ago, the application of pervaporation (PV) technology has been mainly aimed at the separation of different types of water-organic, organic-water and organic-organic mixtures, reaching its large-scale application in industry for the dehydration of organics. Today, the versatility and high selectivity toward specific compounds have led its consideration to other types of application such as the assisted chemical and bio-chemical reactions. The focus of this review is to provide a compelling overview on the recent developments of PV combined with chemical and bio-chemical reactions. After a general introduction of PV and its theoretical background, particular emphasis is given to the results obtained in the field for different reactions considered, identifying the key features and weak points of PV in such particular applications. Furthermore, future trends and perspectives are also addressed according to the latest literature reports.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- a Department of Inorganic Technology, University of Chemistry and Technology Prague , Prague 6 , Czech Republic.,b Institute on Membrane Technology, ITM-CNR, c/o University of Calabria , Rende , Italy.,c Nanoscience Institute of Aragon (INA), Universidad de Zaragoza , Zaragoza , Spain.,d Tecnológico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista , Toluca de Lerdo , México
| | - Francesco Galiano
- b Institute on Membrane Technology, ITM-CNR, c/o University of Calabria , Rende , Italy
| | - Alberto Figoli
- b Institute on Membrane Technology, ITM-CNR, c/o University of Calabria , Rende , Italy
| |
Collapse
|
43
|
Rosli A, Ahmad AL, Low SC. Anti-wetting polyvinylidene fluoride membrane incorporated with hydrophobic polyethylene-functionalized-silica to improve CO2 removal in membrane gas absorption. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Abstract
In this review, the recent achievements on the use of membrane technologies in catalytic carbonylation reactions are described. The review starts with a general introduction on the use and function of membranes in assisting catalytic chemical reactions with a particular emphasis on the most widespread applications including esterification, oxidation and hydrogenation reactions. An independent paragraph will be then devoted to the state of the art of membranes in carbonylation reactions for the synthesis of dimethyl carbonate (DMC). Finally, the application of a specific membrane process, such as pervaporation, for the separation/purification of products deriving from carbonylation reactions will be presented.
Collapse
|
45
|
Castro-Muñoz R. Pervaporation: The emerging technique for extracting aroma compounds from food systems. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.02.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Castro-Muñoz R, Buera-González J, Iglesia ÓDL, Galiano F, Fíla V, Malankowska M, Rubio C, Figoli A, Téllez C, Coronas J. Towards the dehydration of ethanol using pervaporation cross-linked poly(vinyl alcohol)/graphene oxide membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.076] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Castro-Muñoz R. Pervaporation-based membrane processes for the production of non-alcoholic beverages. Journal of Food Science and Technology 2019; 56:2333-2344. [PMID: 31168116 DOI: 10.1007/s13197-019-03751-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 11/26/2022]
Abstract
Nowadays, the interest in manufacturing non-alcoholic or low alcoholic content beverages from alcoholic beverages is a current challenge for food technologists; this is due to the fact that huge consumption of alcoholic beverages may produce health problems in the costumers. In principle, the post-fermentation ethanol removal from alcoholic beverages is carried out by means of evaporation or distillation. Such current dealcoholization methodologies are efficiently removing the ethanol, however, some organoleptic compounds can also be lost during the process. This makes the dealcoholization process highly sensitive in order to preserve the quality properties of the beverages. Thereby, membrane-based technologies, which use perm-selective barriers for the separation, have been highly promoted for such purpose. Pervaporation (PV) technology is indeed one of these technologies aimed for ethanol removal. Herein, the goal of this review is to provide a compelling overview of the most relevant findings for the production of non-alcoholic beverages (such as beer and wine) by means of PV. Particular attention is paid to experimental results which provide compelling feedback about the accurate ethanol removal and minimal changes on physicochemical properties of the beverages. Moreover, some theoretical basis of such technology, as well as key criteria for a more efficient dealcoholization, are also given.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
48
|
A Coupled Thermodynamic Model for Transport Properties of Thin Films during Physical Aging. Polymers (Basel) 2019; 11:polym11030387. [PMID: 30960371 PMCID: PMC6473586 DOI: 10.3390/polym11030387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/04/2022] Open
Abstract
A coupled diffusion model based on continuum thermodynamics is developed to quantitatively describe the transport properties of glassy thin films during physical aging. The coupled field equations are then embodied and applied to simulate the transport behaviors of O2 and CO2 within aging polymeric membranes to validate the model and demonstrate the coupling phenomenon, respectively. It is found that due to the introduction of the concentration gradient, the proposed direct calculating method on permeability can produce relatively better consistency with the experimental results for various film thicknesses. In addition, by assuming that the free volume induced by lattice contraction is renewed upon CO2 exposure, the experimental permeability of O2 within Matrimid® thin film after short-time exposure to CO2 is well reproduced in this work. Remarkably, with the help of the validated straightforward permeability calculation method and free volume recovery mechanism, the permeability behavior of CO2 is also well elucidated, with the results implying that the transport process of CO2 and the variation of free volume are strongly coupled.
Collapse
|