1
|
Sun R, Tian Y, Xiao L, Bukhtiyarova GA, Wu W. Porous Hollow Nanostructure Promoting the Catalytic Performance and Stability of Ni 3P in Furfural Hydrogenation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Ruyu Sun
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Ye Tian
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Linfei Xiao
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | | | - Wei Wu
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
2
|
Zhao X, Yang Y, Xu J, Guo Y, Zhou J, Wang X. Ni 12P 5/P-N-C Derived from Natural Single-Celled Chlorella for Catalytic Depolymerization of Lignin into Monophenols. ACS OMEGA 2022; 7:13134-13143. [PMID: 35474806 PMCID: PMC9026055 DOI: 10.1021/acsomega.2c00564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Lignin is exceptionally abundant in nature and is regarded as a renewable, cheap, and environmentally friendly resource for the manufacture of aromatic chemicals. A novel Ni12P5/P-N-C catalyst for catalytic hydrogenolysis of lignin was synthesized. The catalysts were prepared by simple impregnation and carbonization using the nonprecious metal Ni taken up by the cell wall of Chlorella in Ni(NO3)2 solution. There were only two steps in this process, making the whole process very simple, efficient, and economical. Ni12P5 was uniformly distributed in the catalyst. During the hydrogenolysis of lignin, after 4 h reaction at 270 °C, the yield of bio-oil reached 65.26%, the yield of monomer reached 9.60%, and the selectivity to alkylphenol reached 76.15%. The mixed solvent of ethanol/isopropanol (1:1, v/v) is used as the solvent for the hydrogenolysis of lignin, which not only had excellent hydrogen transferability but also improved the yield of bio-oil, inhibiting the generation of char. No external hydrogen was used, thus avoiding safety issues in hydrogen transport and storage.
Collapse
Affiliation(s)
- Xin Zhao
- Liaoning
Key Laboratory of Pulp and Paper Engineering, School of Light Industry
and Chemical Engineering, Dalian Polytechnic
University, Dalian 116034, PR China
| | - Yingying Yang
- Liaoning
Key Laboratory of Pulp and Paper Engineering, School of Light Industry
and Chemical Engineering, Dalian Polytechnic
University, Dalian 116034, PR China
| | - Jingyu Xu
- Liaoning
Key Laboratory of Pulp and Paper Engineering, School of Light Industry
and Chemical Engineering, Dalian Polytechnic
University, Dalian 116034, PR China
| | - Yanzhu Guo
- Liaoning
Key Laboratory of Pulp and Paper Engineering, School of Light Industry
and Chemical Engineering, Dalian Polytechnic
University, Dalian 116034, PR China
- Guangxi
Key Laboratory of Clean Pulp & Papermaking and Pollution Control,
College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jinghui Zhou
- Liaoning
Key Laboratory of Pulp and Paper Engineering, School of Light Industry
and Chemical Engineering, Dalian Polytechnic
University, Dalian 116034, PR China
| | - Xing Wang
- Liaoning
Key Laboratory of Pulp and Paper Engineering, School of Light Industry
and Chemical Engineering, Dalian Polytechnic
University, Dalian 116034, PR China
- Guangxi
Key Laboratory of Clean Pulp & Papermaking and Pollution Control,
College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
3
|
Jia Z, Ji N, Diao X, Li X, Zhao Y, Lu X, Liu Q, Liu C, Chen G, Ma L, Wang S, Song C, Li C. Highly Selective Hydrodeoxygenation of Lignin to Naphthenes over Three-Dimensional Flower-like Ni2P Derived from Hydrotalcite. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05495] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhichao Jia
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China
| | - Xinyong Diao
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China
| | - Xinxin Li
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yujun Zhao
- School of Chemical Engineering, Tianjin University, Tianjin 300350, China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China
| | - Qingling Liu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China
| | - Caixia Liu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China
- Tianjin University of Commerce, Tianjin 300134, China
| | - Longlong Ma
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Chunfeng Song
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Wang S, Zhu T, Jiang N, Zhang C, Wang H, Chen Y, Li F, Song H. Hydrogenation of phenol to cyclohexanol using carbon encapsulated Ni–Co alloy nanoparticles. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00457c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly active NiCo alloy nanoparticles for phenol hydrogenation to cyclohexanol were developed.
Collapse
Affiliation(s)
- Shuai Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Tianhan Zhu
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Nan Jiang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Chunlei Zhang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Huan Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Yanguang Chen
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Feng Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Hua Song
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| |
Collapse
|
5
|
|
6
|
Ning H, Chen Y, Wang Z, Mao S, Chen Z, Gong Y, Wang Y. Selective upgrading of biomass-derived benzylic ketones by (formic acid)–Pd/HPC–NH2 system with high efficiency under ambient conditions. Chem 2021. [DOI: 10.1016/j.chempr.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Yu Z, Yao K, Wang Y, Yao Y, Sun Z, Liu Y, Shi C, Wang W, Wang A. Kinetic investigation of phenol hydrodeoxygenation over unsupported nickel phosphides. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Tian Y, Wang Y, Zhang H, Xiao L, Wu W. Novel C@Ni3P Nanoparticles for Highly Selective Hydrogenation of Furfural to Furfuryl Alcohol. Catal Letters 2021. [DOI: 10.1007/s10562-021-03680-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Fujita S, Imagawa K, Yamaguchi S, Yamasaki J, Yamazoe S, Mizugaki T, Mitsudome T. A nickel phosphide nanoalloy catalyst for the C-3 alkylation of oxindoles with alcohols. Sci Rep 2021; 11:10673. [PMID: 34021187 PMCID: PMC8140154 DOI: 10.1038/s41598-021-89561-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Although transition metal phosphides are well studied as electrocatalysts and hydrotreating catalysts, the application of metal phosphides in organic synthesis is rare, and cooperative catalysis between metal phosphides and supports remains unexplored. Herein, we report that a cerium dioxide-supported nickel phosphide nanoalloy (nano-Ni2P/CeO2) efficiently promoted the C-3 alkylation of oxindoles with alcohols without any additives through the borrowing hydrogen methodology. Oxindoles were alkylated with various alcohols to provide the corresponding C-3 alkylated oxindoles in high yields. This is the first catalytic system for the C-3 alkylation of oxindoles with alcohols using a non-precious metal-based heterogeneous catalyst. The catalytic activity of nano-Ni2P/CeO2 was comparable to that reported for precious metal-based catalysts. Moreover, nano-Ni2P/CeO2 was easily recoverable and reusable without any significant loss of activity. Control experiments revealed that the Ni2P nanoalloy and the CeO2 support functioned cooperatively, leading to a high catalytic performance.
Collapse
Affiliation(s)
- Shu Fujita
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Kohei Imagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Sho Yamaguchi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Jun Yamasaki
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takato Mitsudome
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
| |
Collapse
|
10
|
Li X, Niu X, Zhu S, Xu S, Wang Z, Zhang X, Wang Q. Highly Selective Hydrodeoxygenation of Dibenzofuran into Bicyclohexane over Hierarchical Pt/ZSM-5 Catalysts. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoxue Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P.R. China
| | - Xiaopo Niu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P.R. China
| | - Shuaikang Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P.R. China
| | - Shuang Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P.R. China
| | - Zheyuan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P.R. China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P.R. China
| | - Qingfa Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
11
|
Hu T, Yu Z, Liu S, Liu B, Sun Z, Liu YY, Wang A, Wang Y. Citric acid modified Ni 3P as a catalyst for aqueous phase reforming and hydrogenolysis of glycerol to 1,2-PDO. NEW J CHEM 2021. [DOI: 10.1039/d1nj04179g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The addition of citric acid reduced the Ni3P particle size, leading to high performance in glycerol hydrogenolysis without external H2.
Collapse
Affiliation(s)
- Tianyu Hu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiquan Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shan Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bingyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhichao Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ying-Ya Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
12
|
Duan H, Tian Y, Gong S, Zhang B, Lu Z, Xia Y, Shi Y, Qiao C. Effects of Crystallite Sizes of Pt/HZSM-5 Zeolite Catalysts on the Hydrodeoxygenation of Guaiacol. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2246. [PMID: 33198370 PMCID: PMC7698081 DOI: 10.3390/nano10112246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/04/2022]
Abstract
Herein, Pt/HZSM-5 zeolite catalysts with different crystallite sizes ranging from nanosheet (~2 nm) to bulk crystals (~1.5 μm) have been prepared for the hydrodeoxygenation of guaiacol, and their effects on the reaction pathway and product selectivity were explored. HZSM-5 zeolites prepared by seeding (Pt/Z-40: ~40 nm) or templating (Pt/NS-2: ~2 nm) fabricated intra-crystalline mesopores and thus enhanced the reaction rate by promoting the diffusion of various molecules, especially the bulky ones such as guaiacol and 2-methoxycyclohexanol, leading to a higher cyclohexane selectivity of up to 80 wt % (both for Pt/Z-40 and Pt/NS-2) compared to 70 wt % for bulky HZSM-5 (Pt/CZ: ~1.5 μm) at 250 °C and 120 min. Furthermore, decreased crystallite sizes more effectively promoted the dispersion of Pt particles than bulky HZSM-5 (Pt/Z-400: ~400 nm and Pt/CZ). The relatively low distance between Pt and acidic sites on the Pt/Z-40 catalyst enhanced the metal/support interaction and induced the reaction between the guaiacol molecules adsorbed on the acidic sites and the metal-activated hydrogen species, which was found more favorable for deoxygenation than for hydrogenation of oxygen-containing molecules. In addition, Pt/NS-2 catalyst with a highly exposed surface facilitated more diverse reaction pathways such as alkyl transfer and isomerization.
Collapse
Affiliation(s)
- Haonan Duan
- Henan Province Engineering Research Center of Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China;
| | - Yajie Tian
- Henan Province Engineering Research Center of Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China;
| | - Siyuan Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.G.); (B.Z.); (Z.L.)
| | - Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.G.); (B.Z.); (Z.L.)
| | - Zongjing Lu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.G.); (B.Z.); (Z.L.)
| | - Yinqiang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China;
| | - Congzhen Qiao
- Henan Province Engineering Research Center of Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China;
| |
Collapse
|
13
|
Ding L, Chen L, Ma Z, Zhang X, Zhang K, Zhu G, Yu Z, Deng J, Chen F, Yan D, Xu H, Yu A. High-performance asymmetrical hybrid supercapacitor based on yolk-shell Ni3P nanoparticles constructed by selective etching. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Ohta H, Sakata Y, Nakanishi D, Hayashi M. Mild Hydrodeoxygenation of Phenols into Cycloalkanes under Ambient Hydrogen Pressure over a Ni/H‐Beta Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.202000903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hidetoshi Ohta
- Department of Materials Science and Biotechnology Graduate School of Science and Engineering Ehime University 3 Bunkyo-cho Matsuyama 790-8577 Japan) (Ohta) (Hayashi
| | - Yoshihiro Sakata
- Department of Materials Science and Biotechnology Graduate School of Science and Engineering Ehime University 3 Bunkyo-cho Matsuyama 790-8577 Japan) (Ohta) (Hayashi
| | - Daisuke Nakanishi
- Department of Materials Science and Biotechnology Graduate School of Science and Engineering Ehime University 3 Bunkyo-cho Matsuyama 790-8577 Japan) (Ohta) (Hayashi
| | - Minoru Hayashi
- Department of Materials Science and Biotechnology Graduate School of Science and Engineering Ehime University 3 Bunkyo-cho Matsuyama 790-8577 Japan) (Ohta) (Hayashi
| |
Collapse
|
15
|
Yu Z, Meng F, Wang Y, Sun Z, Liu Y, Shi C, Wang W, Wang A. Catalytic Transfer Hydrogenation of Levulinic Acid to γ-Valerolactone over Ni3P-CePO4 Catalysts. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00257] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiquan Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Fanxing Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, China
| | - Zhichao Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yingya Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chuan Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wei Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Yinchuan Energy Institute, Yongning Wangtaibu, Yinchuan 750105, China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
|
17
|
Zeng Y, Wang B, Li Y, Yan X, Chen L, Wang Y. Ba-Doped Pd/Al2O3 for Continuous Synthesis of Diphenylamine via Dehydrogenative Aromatization. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b04567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuyao Zeng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, People’s Republic of China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, People’s Republic of China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, People’s Republic of China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, People’s Republic of China
| | - Yue Wang
- Department of Chemical Engineering, Renai College of Tianjin University, Tianjin 301636, People’s Republic of China
| |
Collapse
|
18
|
Yang Y, Qiao L, Hao J, Shi H, Lv G. Hydrodeoxygenation upgrading of bio-oil on Ni-based catalysts with low Ni loading. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Dong J, Zhu T, Li H, Sun H, Wang Y, Niu L, Wen X, Bai G. Biotemplate-Assisted Synthesis of Layered Double Oxides Confining Ultrafine Ni Nanoparticles as a Stable Catalyst for Phenol Hydrogenation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02548] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jie Dong
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Tianli Zhu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Huafan Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Haofei Sun
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Yansu Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Libo Niu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Xin Wen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| |
Collapse
|