1
|
Zhou S, Shi X, Li L, Liu Q, Hu B, Chen W, Zhang C, Liu Q, Chen Z. Advances and Outlooks for Carbon Nanotube-Based Thermoelectric Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500947. [PMID: 39955649 PMCID: PMC11962713 DOI: 10.1002/adma.202500947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/06/2025] [Indexed: 02/17/2025]
Abstract
The unique structure of carbon nanotubes (CNTs) endows them with exceptional electrical and mechanical properties, along with a high surface area, making them highly beneficial for use as flexible, high-performing thermoelectric materials. As a result, the application of CNTs in the thermoelectric field has become increasingly widespread. Considering the rapid advancements in this field, this review offers a timely overview of the most recent progress on CNT-based thermoelectric materials and devices over the past five years. This review begins by introducing the fundamental concepts and thermoelectric mechanisms of CNT-based thermoelectric materials. Then new strategies are explored to enhance their thermoelectric performance, focusing on doping and composites, while emphasizing the importance of CNT stability as a key research area. Additionally, the latest design concepts and expanded application scenarios for flexible and wearable CNTs-based thermoelectric devices are summarized. Finally, the current challenges are addressed and future directions for the development of CNT-based thermoelectric materials and devices are discussed.
Collapse
Affiliation(s)
- Shanshan Zhou
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutrality, and Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| | - Xiao‐Lei Shi
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutrality, and Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| | - Lan Li
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutrality, and Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| | - Qian Liu
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutrality, and Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| | - Boxuan Hu
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutrality, and Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| | - Wenyi Chen
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutrality, and Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| | - Chenyang Zhang
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutrality, and Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| | - Qingfeng Liu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech UniversityNanjing211816China
| | - Zhi‐Gang Chen
- School of Chemistry and PhysicsARC Research Hub in Zero‐emission Power Generation for Carbon Neutrality, and Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4000Australia
| |
Collapse
|
2
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
3
|
Dong M, Gao Z, Zhang Y, Cai J, Li J, Xu P, Jiang H, Gu J, Wang J. Ultrasensitive electrochemical biosensor for detection of circulating tumor cells based on a highly efficient enzymatic cascade reaction. RSC Adv 2023; 13:12966-12972. [PMID: 37124001 PMCID: PMC10130820 DOI: 10.1039/d3ra01160g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023] Open
Abstract
There has been great interest in the enzymatic cascade amplification strategy for the electrochemical detection of circulating tumor cells (CTCs). In this work, we designed a highly efficient enzymatic cascade reaction based on a multiwalled carbon nanotubes-chitosan (MWCNTs-CS) composite for detection of CTCs. A high electrochemical effective surface area was obtained for a MWCNTs-CS-modified glassy carbon electrode (GCE) for loading glucose oxidase (GOD), as well as a high loading rate and high electrical activity of the enzyme. As a 'power source', the MWCNTs-CS composites provided a strong driving power for horseradish peroxidase (HRP) on the surface of polystyrene (PS) microspheres, which acted as probes for capturing CTCs and allowed the reaction to proceed with further facilitation of electron transfer. Aptamer, CTCs, and PS microspheres with HRP and anti-epithelial cell adhesion molecule (anti-EpCAM) antibody were assembled on the MWCNTs-CS/GCE to allow for the modulation of enzyme distance at the micrometer level, and thus ultra-long-range signal transmission was made possible. An ultrasensitive response to CTCs was obtained via this proposed sensing strategy, with a linear range from 10 cell mL-1 to 6 × 106 cell mL-1 and a detection limit of 3 cell mL-1. Moreover, this electrochemical sensor possessed the capability to detect CTCs in serum samples with satisfactory accuracy, which indicated great potential for early diagnosis and clinical analysis of cancer.
Collapse
Affiliation(s)
- Min Dong
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Zhihong Gao
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Yating Zhang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jiahui Cai
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jian Li
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Panpan Xu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Hong Jiang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jianmin Gu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University Qinhuangdao 066004 China
| | - Jidong Wang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University Qinhuangdao 066004 China
| |
Collapse
|
4
|
Manimegalai S, Vickram S, Deena SR, Rohini K, Thanigaivel S, Manikandan S, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Carbon-based nanomaterial intervention and efficient removal of various contaminants from effluents - A review. CHEMOSPHERE 2023; 312:137319. [PMID: 36410505 DOI: 10.1016/j.chemosphere.2022.137319] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Water treatment is a worldwide issue. This review aims to present current problems and future challenges in water treatments with the existing methodologies. Carbon nanotube production, characterization, and prospective uses have been the subject of considerable and rigorous research around the world. They have a large number of technical uses because of their distinct physical characteristics. Various catalyst materials are used to make carbon nanotubes. This review's primary focus is on integrated and single-treatment technologies for all kinds of drinking water resources, including ground and surface water. Inorganic non-metallic matter, heavy metals, natural organic matter, endocrine-disrupting chemicals, disinfection by-products and microbiological pollutants are among the contaminants that these treatment systems can remediate in polluted drinking water resources. Significant advances in the antibacterial and adsorption capabilities of carbon-based nanomaterials have opened up new options for excluding organic/inorganic and biological contaminants from drinking water in recent years. The advancements in multifunctional nanocomposites synthesis pave the possibility for their use in enhanced wastewater purification system design. The adsorptive and antibacterial characteristics of six main kinds of carbon nanomaterials are single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, fullerene and single-walled carbon nanohorns. This review potentially addressed the essential metallic and polymeric nanocomposites, are described and compared. Barriers to use these nanoparticles in long-term water treatment are also discussed.
Collapse
Affiliation(s)
- Sengani Manimegalai
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Rampuram, Chennai, 600087, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Santhana Raj Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Malaysia; Department of Bioinformatics, Saveetha School of Engineering, (Saveetha Institute of Medical and Technical Sciences) SIMATS, Chennai, 602 105, Tamil Nadu, India
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
5
|
Laguta AN, Mchedlov-Petrossyan NO, Kovalenko SM, Voloshina TO, Haidar VI, Filatov DY, Trostyanko PV, Karbivski VL, Bogatyrenko SI, Xu L, Prezhdo OV. Stability of Aqueous Suspensions of COOH-Decorated Carbon Nanotubes to Organic Solvents, Esterification, and Decarboxylation. J Phys Chem Lett 2022; 13:10126-10131. [PMID: 36269855 DOI: 10.1021/acs.jpclett.2c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon nanotubes are among the most widely used nanosystems, and stability of carbon nanotube suspensions is critical for nanotechnology and environmental science. Remaining in aqueous environment alone misses important factors that regulate colloidal stability in the presence of electrolytes. Indeed, introduction of (80-95) vol % organic solvents leads to sharp changes in suspension properties depending on the solvent. For example, the critical coagulation concentrations for a given inorganic or organic coagulating ion can change by 2 orders of magnitude when going from dimethyl sulfoxide to acetonitrile. We establish and explain these trends by Lewis acid-base interactions and show that a strong interaction extending beyond the standard theory of aggregation plays an important role.
Collapse
Affiliation(s)
- A N Laguta
- Department of Physical Chemistry, V. N. Karazin Kharkiv National University, Kharkiv61022, Ukraine
- Department of Mathematics, Aston University, B47ET, Birmingham, U.K
| | - N O Mchedlov-Petrossyan
- Department of Physical Chemistry, V. N. Karazin Kharkiv National University, Kharkiv61022, Ukraine
| | - S M Kovalenko
- Department of Organic Chemistry, V. N. Karazin Kharkiv National University, Kharkiv61022, Ukraine
| | - T O Voloshina
- Department of Physical Chemistry, V. N. Karazin Kharkiv National University, Kharkiv61022, Ukraine
| | - V I Haidar
- Department of Physical Chemistry, V. N. Karazin Kharkiv National University, Kharkiv61022, Ukraine
| | - D Yu Filatov
- TOV firm ''PROMINVEST PLASTYK" Kharkiv, 2 Turgenevskaya str, Kharkiv61022, Ukraine
| | - P V Trostyanko
- Department of Organic Chemistry, V. N. Karazin Kharkiv National University, Kharkiv61022, Ukraine
| | - V L Karbivski
- G. V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Kyiv02000, Ukraine
- Leibniz Institute for Solid State and Materials Research, Dresden, 01069, Germany
| | - S I Bogatyrenko
- Physico-Tekhnical Faculty, V. N. Karazin Kharkiv National University, Kharkiv61022, Ukraine
| | - Liyuan Xu
- Department of Physical Chemistry, V. N. Karazin Kharkiv National University, Kharkiv61022, Ukraine
- Ordos Second Affiliated School of Beijing Normal University, Airport Logistics Park, Ordos, Inner Mongolia Autonomous Region017200, People's Republic of China
| | - O V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California90089, United States
| |
Collapse
|
6
|
Mchedlov-Petrossyan NO, Marfunin MO, Tikhonov VA, Shekhovtsov SV. Unexpected Colloidal Stability of Fullerenes in Dimethyl Sulfoxide and Related Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10000-10009. [PMID: 35938866 DOI: 10.1021/acs.langmuir.2c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is known that fullerenes are poorly soluble in polar solvents, but readily form colloidal solutions in such media. These solutions are typically solvophobic (hydrophobic when prepared in water), that is, thermodynamically unstable colloidal systems with negatively charged particles. To understand the stability factors of a colloidal system, the thresholds for coagulation of a sol or suspension by electrolytes are of key importance. While hydrosols and aqueous suspensions coagulate at concentrations of 1:1 inorganic electrolytes about 0.1-0.2 M, in acetonitrile and methanol, the corresponding critical concentrations of coagulation are ca. 3 orders of magnitude lower. Given the wide variety of properties of organic solvents, it seemed important to complete the picture to study solvents with more basic properties. This is all the more reasonable since electrophilic fullerenes are in fact Lewis acids. Our choice was dimethyl sulfoxide, DMSO, and related solvent systems. The colloidal solutions of fullerenes C60 and C70 in DMSO and N,N-dimethyl formamide, DMF, are unexpectedly easy to prepare by mechanical methods, and addition of water leads to formation of relatively stable organo-hydrosols. UV-visible spectra and dynamic light scattering were used to characterize the solutions of C60 and C70 in DMSO, benzene-DMSO, acetonitrile-DMSO, and benzene-acetonitrile-DMSO systems, as well as in DMF. Our present study demonstrated that, in contrast to organosols in methanol and acetonitrile, colloids of C70 and C60 fullerenes in DMSO and DMF are surprisingly as stable with respect to electrolytes as the corresponding hydrosols are. Such high stability is caused by the non-DLVO interactions, or, in terms proposed by Churaev and Derjaguin, by the so-called structural effect. These results shed light on the nature of the solvation of colloidal fullerene particles in solvents of various chemical natures.
Collapse
Affiliation(s)
| | - Mykyta O Marfunin
- Department of Physical Chemistry, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| | - Vladislav A Tikhonov
- Department of Physical Chemistry, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| | - Sergey V Shekhovtsov
- Department of Physical Chemistry, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| |
Collapse
|
7
|
Laguta AN, Mchedlov-Petrossyan NO, Bogatyrenko SI, Kovalenko SM, Bunyatyan ND, Trostianko PV, Karbivskii VL, Filatov DY. Interaction of aqueous suspensions of single-walled oxidized carbon nanotubes with inorganic and organic electrolytes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Abdelhalim AO, Semenov KN, Nerukh DA, Murin IV, Maistrenko DN, Molchanov OE, Sharoyko VV. Functionalisation of graphene as a tool for developing nanomaterials with predefined properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Mchedlov-Petrossyan NO, Marfunin MO. Formation, Stability, and Coagulation of Fullerene Organosols: C 70 in Acetonitrile-Toluene Solutions and Related Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7156-7166. [PMID: 34048255 DOI: 10.1021/acs.langmuir.1c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper is aimed at better understanding the nature of C70 aggregates in organic solvents. As liquid media, acetonitrile-toluene mixed solvents were chosen. At a high content of CH3CN, e.g., 90 vol %, colloidal particles with a size of ca. 225 ± 10 nm are formed with a negative ζ-potential of -(55 ± 5) mV and are stable over time. The interaction with electrolytes containing single-, double-, and triple-charged cations was examined using dynamic light scattering and UV-visible spectra. Additional experiments were carried out with methanol and benzene instead of acetonitrile and toluene, respectively. For comparison, data were obtained with C60 organosols. It was found that coagulation obeys the classical Schulze-Hardy rule. The specificity of the coagulating power of various single-charged cations was explained by their different abilities to adsorb on negatively charged C70 aggregates. The overcharging effect is expressed not only for Ca2+ and La3+ ions but even for Li+ and is caused by poor solvation of such cations in a cationophobic solvent, acetonitrile. After introduction of the cryptand [2.2.2], a substantial increase in the critical concentrations of coagulation for Na+, Li+, and Ca2+ was observed owing to conversion of "bare" metal cations into their cryptates. The application of the Derjaguin-Landau-Verwey-Overbeek theory allowed for evaluation of the Hamaker constant of the C70-C70 interaction in vacuum, AFF, which lies in the interval of 5.8-16.6 × 10-20 J. Such an estimate, close to that made previously for C60 organosols, was received after withdrawing electrolytic systems where the hetero- and mutual coagulation were highly likely. However, it is impossible to completely exclude the interfering influence of the latter phenomena. Based on the obtained AFF values, two approaches to understanding the behavior of fullerenes in water were proposed.
Collapse
Affiliation(s)
| | - Mykyta O Marfunin
- Department of Physical Chemistry, V.N. Karazin Kharkov National University, 61022 Kharkov, Ukraine
| |
Collapse
|
10
|
Verma C, Quraishi M, Ebenso EE, Hussain CM. Recent advancements in corrosion inhibitor systems through carbon allotropes: Past, present, and future. NANO SELECT 2021. [DOI: 10.1002/nano.202100039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Chandrabhan Verma
- Interdisciplinary Research Center for Advanced Materials King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | - M.A. Quraishi
- Interdisciplinary Research Center for Advanced Materials King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | - Eno E. Ebenso
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | | |
Collapse
|
11
|
Mikheev IV, Pirogova MO, Usoltseva LO, Uzhel AS, Bolotnik TA, Kareev IE, Bubnov VP, Lukonina NS, Volkov DS, Goryunkov AA, Korobov MV, Proskurnin MA. Green and rapid preparation of long-term stable aqueous dispersions of fullerenes and endohedral fullerenes: The pros and cons of an ultrasonic probe. ULTRASONICS SONOCHEMISTRY 2021; 73:105533. [PMID: 33799110 PMCID: PMC8044700 DOI: 10.1016/j.ultsonch.2021.105533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
A green, scalable, and sustainable approach to prepare aqueous fullerene dispersions (AFD) C60, C70, endohedral metallofullerene Gd@C82, and their derivatives C60Cl6, C70Cl10, and supramolecular and ester-like derivatives, 10 fullerene species total, is proposed. For the first time, an immersed ultrasonic probe was used to preparing dispersions for pristine fullerenes without addends. Both ultrasound-assisted solvent-exchange and direct sonication techniques for AFD preparation using an immersed probe were tested. The average time for AFD preparation decreases 10-15 times compared to an ultrasound-bath-assisted technique, while final fullerene concentrations in AFDs remained at tens of ppm (up to 80 ppm). The aqueous dispersions showed long-term stability, a negatively charged surface with a zeta potential up to -32 mV with an average nanocluster diameter of no more than 180 nm. The total anionic and cationic compositions of samples were found by inductively coupled plasma atomic emission spectroscopy and chromatographic techniques. The highlights and challenges of using an ultrasound probe for AFD production are discussed.
Collapse
Affiliation(s)
- Ivan V Mikheev
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Mariya O Pirogova
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Liliia O Usoltseva
- Chemistry Department Physical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Anna S Uzhel
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Timofey A Bolotnik
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Ivan E Kareev
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia.
| | - Viacheslav P Bubnov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia.
| | - Natalia S Lukonina
- Chemistry Department Physical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Dmitry S Volkov
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Alexey A Goryunkov
- Chemistry Department Physical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Mikhail V Korobov
- Chemistry Department Physical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Mikhail A Proskurnin
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
12
|
|
13
|
Naqvi STR, Rasheed T, Hussain D, Najam ul Haq M, Majeed S, shafi S, Ahmed N, Nawaz R. Modification strategies for improving the solubility/dispersion of carbon nanotubes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111919] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
The Role of Functionalization in the Applications of Carbon Materials: An Overview. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5040084] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The carbon-based materials (CbMs) refer to a class of substances in which the carbon atoms can assume different hybridization states (sp1, sp2, sp3) leading to different allotropic structures -. In these substances, the carbon atoms can form robust covalent bonds with other carbon atoms or with a vast class of metallic and non-metallic elements, giving rise to an enormous number of compounds from small molecules to long chains to solids. This is one of the reasons why the carbon chemistry is at the basis of the organic chemistry and the biochemistry from which life on earth was born. In this context, the surface chemistry assumes a substantial role dictating the physical and chemical properties of the carbon-based materials. Different functionalities are obtained by bonding carbon atoms with heteroatoms (mainly oxygen, nitrogen, sulfur) determining a certain reactivity of the compound which otherwise is rather weak. This holds for classic materials such as the diamond, the graphite, the carbon black and the porous carbon but functionalization is widely applied also to the carbon nanostructures which came at play mainly in the last two decades. As a matter of fact, nowadays, in addition to fabrication of nano and porous structures, the functionalization of CbMs is at the basis of a number of applications as catalysis, energy conversion, sensing, biomedicine, adsorption etc. This work is dedicated to the modification of the surface chemistry reviewing the different approaches also considering the different macro and nano allotropic forms of carbon.
Collapse
|
15
|
Zuaznabar-Gardona JC, Fragoso A. Determination of the Hansen solubility parameters of carbon nano-onions and prediction of their dispersibility in organic solvents. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Raffaini G, Ganazzoli F. A Molecular Dynamics Study of a Photodynamic Sensitizer for Cancer Cells: Inclusion Complexes of γ-Cyclodextrins with C 70. Int J Mol Sci 2019; 20:ijms20194831. [PMID: 31569423 PMCID: PMC6801912 DOI: 10.3390/ijms20194831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 11/18/2022] Open
Abstract
Photodynamic therapy is an emerging treatment of tumor diseases. The complexes with γ-cyclodextrins (γ-CD) and fullerenes or their derivatives can be used as photosensitizers by direct injection into cancer cells. Using molecular mechanics and molecular dynamics methods, the stability and the geometry of the 2:1 complexes [(γ-CD)2/C70] are investigated analyzing the differences with the analogous C60 complexes, studied in a previous theoretical work and experimentally found to be much less efficient in cancer therapy. The inclusion complex of γ-CD and C70 has a 2:1 stoichiometry, the same as C60, but is significantly less stable and displays an unlike arrangement. In vacuo, mimicking an apolar solvent, the complex is compact, whereas in water the two γ-CDs encapsulate C70 forming a relatively stable complex by interacting through their primary rims, however exposing part of C70 to the solvent. Other higher-energy complexes with the γ-CDs facing different rims can form in water, but in all cases part of the hydrophobic C70 surface remains exposed to water. The stability and arrangement of these peculiar amphiphilic inclusion complexes having non-covalent interactions in water can be an important key for cancer therapy to enhance both the solubilization and the fullerene insertion into liposomes or cell membranes.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy.
- INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, 20131 Milano, Italy.
| | - Fabio Ganazzoli
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy.
- INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, 20131 Milano, Italy.
| |
Collapse
|
17
|
Graphene oxide grafted with polyoxazoline as thermoresponsive support for facile catalyst recycling by reversible thermal switching between dispersion and sedimentation. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Qin J, Wang X, Jiang Q, Cao M. Optimizing Dispersion, Exfoliation, Synthesis, and Device Fabrication of Inorganic Nanomaterials Using Hansen Solubility Parameters. Chemphyschem 2019; 20:1069-1097. [DOI: 10.1002/cphc.201900110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/18/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jinwen Qin
- Key Laboratory of Cluster Science, Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Xin Wang
- Key Laboratory of Cluster Science, Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Qiwang Jiang
- Key Laboratory of Cluster Science, Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|