1
|
Mahenthiran AV, Jawad ZA, Chin BLF. Development of blend PEG-PES/NMP-DMF mixed matrix membrane for CO 2/N 2 separation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124654-124676. [PMID: 35655021 PMCID: PMC10754754 DOI: 10.1007/s11356-022-20168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The carbon dioxide (CO2) separation technology has become a focus recently, and a developed example is the membrane technology. It is an alternative form of enhanced gas separation performance above the Robeson upper bound line resulting in the idea of mixed matrix membranes (MMMs). With attention given to membrane technologies, the MMMs were fabricated to have the most desirable gas separation performance. In this work, blend MMMs were synthesised by using two polymers, namely, poly(ether sulfone) (PES) and poly (ethylene glycol) (PEG). These polymers were dissolved in blend N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) solvents with the functionalised multi-walled carbon nanotubes (MWCNTs-F) fillers by using the mixing solution method. The embedding of the pristine MWCNTs and MWCNTs-F within the new synthesised MMM was then studied towards CO2/N2 separation. In addition, the optimisation of the loading of MWCNTs-F for blend MMM for CO2/N2 separation was also studied. The experimental results showed that the functionalised MWCNTs (MWCNTs-F) were a better choice at enhancing gas separation compared to the pristine MWCNTs (MWCNTs-P). Additionally, the effects of MWCNTs-F at loadings 0.01 to 0.05% were studied along with the polymer compositions for PES:PEG of 10:20, 20:20 and 30:10. Both these parameters of study affect the manner of gas separation performance in the blend MMMs. Overall, the best performing membrane showed a selectivity value of 1.01 + 0.05 for a blend MMM (MMM-0.03F) fabricated with 20 wt% of PES, 20 wt% of PEG and 0.03 wt% of MWCNTs-F. The MMM-0.03F was able to withstand a pressure of 2 bar, illustrating its mechanical strength and ability to be used in the post combustion carbon capture application industries where the flue gas pressure is at 1.01 bar.
Collapse
Affiliation(s)
- Ashvin Viknesh Mahenthiran
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, 250 CDT, 98009, Miri, Sarawak, Malaysia
| | - Zeinab Abbas Jawad
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, 250 CDT, 98009, Miri, Sarawak, Malaysia
| |
Collapse
|
2
|
Mubashir M, Ahmad T, Liu X, Rehman LM, de Levay JPBB, Al Nuaimi R, Thankamony R, Lai Z. Artificial intelligence and structural design of inorganic hollow fiber membranes: Materials chemistry. CHEMOSPHERE 2023; 338:139525. [PMID: 37467860 DOI: 10.1016/j.chemosphere.2023.139525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
A key challenge is to produce the uniform morphology and regular pore design of inorganic hollow fiber membranes (HFMs) due to involvement of multiple parameters including, fabrication process and materials chemistry. Inorganic HFMs required technical innovations via novel structural design and artificial intelligence (AI) to produce the uniform structure and regular pore design. Therefore, this review aims at critical analysis on the most recent and relevant approaches to tackle the issues related to tune the morphology and pore design of inorganic HFMs. Structural design and evaluation of routes towards the dope suspension, spinning, and sintering of inorganic HFMs are critically analysed. AI, driving forces and challenges involved for harnessing of materials are revealed in this review. AI programs used for the prediction of pore design and performance of HFMs have also been explained in this review. Overall, this review will provide the understanding to build the equilibrium in spinning and sintering processes to control the design of micro-channels, and structural properties of inorganic HFMs. This review has great significance to control the new design of membranes via AI programs. This review also explain the inorganic membrane efficiency as algal-bioreactor.
Collapse
Affiliation(s)
- Muhammad Mubashir
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Tausif Ahmad
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xiaowei Liu
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lubna Muzamil Rehman
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jean-Pierre Benjamin Boross de Levay
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Reham Al Nuaimi
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Roshni Thankamony
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhiping Lai
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
3
|
Khan RA, Khan NA, El Morabet R, Alsubih M, Khan AR, Khan S, Mubashir M, Balakrishnan D, Khoo KS. Comparison of constructed wetland performance coupled with aeration and tubesettler for pharmaceutical compound removal from hospital wastewater. ENVIRONMENTAL RESEARCH 2023; 216:114437. [PMID: 36181898 DOI: 10.1016/j.envres.2022.114437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical compounds being able to alter, retard, and enhance metabolism has gained attention in recent time as emerging pollutant. However, hospitals which are part of every urban landscape have yet to gain attention in terms of its hospital wastewater treatment to inhibit pharmaceutical compounds from reaching environment. Hence this study evaluated performance of constructed wetland in combination with tubesettler and aeration based on removal efficiency and ecological risk assessment (HQ). The removal efficiency of constructed wetland with plantation was higher by 31% (paracetamol), 102% (ibuprofen), 46%, (carbamazepine), 57% (lorazepam), 54% (erythromycin), 31% (ciprofloxacin) and 20% (simvastatin) against constructed wetland without plantation. Constructed wetland with aeration efficiency increased for paracetamol, ibuprofen, carbamazepine, lorazepam, erythromycin, ciprofloxacin, and simvastatin removal efficiency were higher by 58%, 130%, 52%, 79%, 107%, 57%, and 29% respectively. In constructed wetland with plantation, removal efficiency was higher by 20% (paracetamol), 13% (ibuprofen), 4% (carbamazepine), 14% (lorazepam), 34% (erythromycin), 19% (ciprofloxacin) and 7% (simvastatin). High ecological risk was observed for algae, invertebrate and fish with hazard quotient values in range of 2.5-484, 10-631 and 1-78 respectively. This study concludes that if space is the limitation at hospitals aeration with constructed wetland can be adopted. If space is available, constructed wetland with tubesettler is suitable, economic and environmentally friendly option. Future research works can focus on evaluating other processes combination with constructed wetland.
Collapse
Affiliation(s)
- Roohul Abad Khan
- Department of Civil Engineering, King Khalid University, Abha, Saudi Arabia
| | - Nadeem A Khan
- Department of Civil Engineering, Mewat Engineering College, Nuh, 122107, India; Department of Civil Engineering Jamia Millia Islamia, New Delhi, 110025, India
| | - Rachida El Morabet
- Lades Lab, FLSH-M, Department of Geography, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Abha, Saudi Arabia
| | - Amadur Rahman Khan
- Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Saimah Khan
- Department of Chemistry, Integral University, Lucknow, India
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000 Kuala Lumpur, Malaysia.
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Rehan ZA, Zahid M, Kanwal S, Nadeem N, Hafeez A, Jamil A, Zubair Z. Optimization of carboxylated graphene oxide (C-GO) content in polymer matrix: Synthesis, characterization, and application study. CHEMOSPHERE 2023; 310:136900. [PMID: 36265713 DOI: 10.1016/j.chemosphere.2022.136900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Carboxylated graphene oxide (C-GO) embedded in polysulfone (PSF) membrane composites were prepared with different wt. % (i.e., 0.2% M - 1, 0.3% M - 2, 0.4% M - 3, and 0.5% M - 4) using non-solvent induced phase separation (NIPS) method and ultrafiltration assembly was applied for the removal of dye effluents. The optimization of C-GO content into polymer matrix was found influencing factor in determining the composite membranes efficiency and application in various research fields. The membranes were characterized in terms of surface morphology (SEM), crystallinity (XRD), and functional groups identification (FTIR). The water permeability of the developed membranes was analyzed, and it is observed that increasing the content of C-GO in PSF membranes imposed a positive impact on permeation performance. M - 3 was found to be a potential candidate among all the membranes with a maximum water flux of about 183 LMH which is considerably higher as compared to the pristine PSF membrane's water flux (i.e., 27 LMH). Moreover, contact angle measurements of membranes were also checked to assess the hydrophilicity of PSF membranes. The results of contact angle also support the water permeability and efficient correlation was observed as contact angle decreases with increasing the content of C-GO. The minimum contact angle with excellent hydrophilicity was shown by the M - 3 membrane and it was found of about ±58.19° and this value is close to the M - 4 membrane having maximum C-GO content. The photocatalytic performance of the M - 3 membrane was checked under UV-254 nm using methylene blue dye and 97% dye removal was achieved within 220 min of reaction time under neutral pH conditions. The M - 3 membrane having C-GO content of 0.4% was found to be the best membrane with high pure water flux (183 LMH) and efficient dye rejection (82%) capability.
Collapse
Affiliation(s)
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sidra Kanwal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nimra Nadeem
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Asif Hafeez
- Department of Materials, National Textile University, Faisalabad, Pakistan
| | - Asif Jamil
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Pakistan
| | - Zakariya Zubair
- Department of Materials, National Textile University, Faisalabad, Pakistan.
| |
Collapse
|
5
|
Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydr Polym 2022; 291:119539. [DOI: 10.1016/j.carbpol.2022.119539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 12/18/2022]
|
6
|
Liu Y, Sim J, Hailemariam RH, Lee J, Rho H, Park KD, Kim DW, Woo YC. Status and future trends of hollow fiber biogas separation membrane fabrication and modification techniques. CHEMOSPHERE 2022; 303:134959. [PMID: 35580646 DOI: 10.1016/j.chemosphere.2022.134959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
With the increasing global demand for energy, renewable and sustainable biogas has attracted considerable attention. However, the presence of various gases such as methane, carbon dioxide (CO2), nitrogen, and hydrogen sulfide in biogas, and the potential emission of acid gases, which may adversely influence the environment, limits the efficient application of biogas in many fields. Consequently, researchers have focused on the upgrade and purification of biogas to eliminate impurities and obtain high-quality and high-purity biomethane with an increased combustion efficiency. In this context, the removal of CO2 gas, which is the most abundant contaminant in biogas, is of significance. Compared to conventional biogas purification processes such as water scrubbing, chemical absorption, pressure swing adsorption, and cryogenic separation, advanced membrane separation technologies are simpler to implement, easier to scale, and incur lower costs. Notably, hollow fiber membranes enhance the gas separation efficiency and decrease costs because their large specific surface area provides a greater range of gas transport. Several reviews have described biogas upgrading technologies and gas separation membranes composed of different materials. In this review, five commonly used commercial biogas upgrading technologies, as well as biological microalgae-based techniques are compared, the advantages and limitations of polymeric and mixed matrix hollow fiber membranes are highlighted, and methods to fabricate and modify hollow fiber membranes are described. This will provide more ideas and methods for future low-cost, large-scale industrial biogas upgrading using membrane technology.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeonghoo Sim
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Ruth Habte Hailemariam
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jonghun Lee
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Hojung Rho
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Kwang-Duck Park
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Yun Chul Woo
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
7
|
Hu Z, Miu J, Zhang X, Jia M, Yao J.
UiO‐66‐NH
2
particle size effects on gas separation performance of cellulose acetate composite membranes. J Appl Polym Sci 2022. [DOI: 10.1002/app.52810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhirong Hu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Jiayu Miu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Xiong‐Fei Zhang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Mingmin Jia
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory for Environment Functional Materials Huaiyin Normal University Huaian China
| | - Jianfeng Yao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing China
| |
Collapse
|
8
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Mubashir M, Ashena R, Bokhari A, Mukhtar A, Saqib S, Ali A, Saidur R, Khoo KS, Ng HS, Karimi F, Karaman C, Show PL. Effect of process parameters over carbon-based ZIF-62 nano-rooted membrane for environmental pollutants separation. CHEMOSPHERE 2022; 291:133006. [PMID: 34813846 DOI: 10.1016/j.chemosphere.2021.133006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The paper evaluates the routes towards the evaluation of membranes using ZIF-62 metal organic framework (MOF) nano-hybrid dots for environmental remediation. Optimization of interaction of operating parameters over the rooted membrane is challenging issue. Subsequently, the interaction of operating parameters including temperature, pressure and CO2 gas concentration over the resultant rooted membranes are evaluated and optimized using response surface methodology for environmental remediation. In addition, the stability and effect of hydrocarbons on the performance of the resulting membrane during the gas mixture separation are evaluated at optimum conditions to meet the industrial requirements. The characterization results verified the fabrication of the ZIF-62 MOF rooted composite membrane. The permeation results demonstrated that the CO2 permeability and CO2/CH4 selectivity of the composite membrane was increased from 15.8 to 84.8 Barrer and 12.2 to 35.3 upon integration of ZIF-62 nano-glass into cellulose acetate (CA) polymer. Subsequently, the optimum conditions have been found at a temperature of 30 °C, the pressure of 12.6 bar and CO2 feed concentration of 53.3 vol%. These optimum conditions revealed the highest CO2 permeability, CH4 permeability and CO2/CH4 separation factor of 47.9 Barrer, 0.2 Barrer and 26.8. The presence of hydrocarbons in gas mixture dropped the CO2 permeability of 56.5% and separation factor of 46.4% during 206 h of testing. The separation performance of the composite membrane remained stable without the presence of hydrocarbons for 206 h.
Collapse
Affiliation(s)
- Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia.
| | - Rahman Ashena
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic; Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Defense Road, Lahore, Punjab, Pakistan.
| | - Ahmad Mukhtar
- Department of Chemical Engineering, NFC Institute of Engineering and Fertilizer Research Faisalabad, 38000, Pakistan
| | - Sidra Saqib
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Defense Road, Lahore, Punjab, Pakistan
| | - Abulhassan Ali
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - R Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Petaling Jaya, Selangor, 47500, Sunway University, Malaysia; Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Hui Suan Ng
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, Turkey
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
10
|
Khan MI, Mubashir M, Zaini D, Mahnashi MH, Alyami BA, Alqarni AO, Show PL. Cumulative impact assessment of hazardous ionic liquids towards aquatic species using risk assessment methods. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125364. [PMID: 33740721 DOI: 10.1016/j.jhazmat.2021.125364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
In the present research work, a comprehensive tool for cumulative ecotoxicological impact assessment of ionic liquids (ILs) to aquatic life has been constructed. Using the probabilistic tool, impact of individual ILs to a group of aquatic species is assessed by chemical toxicity distributions (CTDs). The impact of group of ILs to individual aquatic species is assessed by species sensitivity distributions (SSDs). Acute toxicity data of imidazolium ILs with chloride (Cl-), bromide (Br-), tetrafluoroborate (BF4-), and hexafluorophosphate (PF6-) anions are used in CTD and SSD. Allowable concentrations for a group of Imidazolium ILs with the same mode of action (SMOA) to five aquatic species; Daphnia magna, Vibrio fischeri, Algae, Zebrafish, and Escherichia coli are estimated by CTDs. It has been concluded that 1-Butyl-3-methylimidazolium chloride (BMIMCl) possess the lowest risk at an acceptable risk value of 750 × 10-5 mmol/L which is 12% less than that of OMIMCl. Furthermore, the sensitivities towards the aquatic species reveal that from the studied ILs, BMIMBF4 with an acceptable risk value of 3200 × 10-5 mmol/L is the most suitable IL towards the selected aquatic species. Hence, current work provides cumulative allowable concentrations and acceptable risk values for ILs which release to aquatic compartment of ecosystem.
Collapse
Affiliation(s)
- Muhammad Ishaq Khan
- Centre of Advanced Process Safety (CAPS), Department of Chemical Engineering, Universiti Teknologi PETRONAS (UTP), 32610 Seri Iskandar, Perak, Malaysia
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000 Kuala Lumpur, Malaysia
| | - Dzulkarnain Zaini
- Centre of Advanced Process Safety (CAPS), Department of Chemical Engineering, Universiti Teknologi PETRONAS (UTP), 32610 Seri Iskandar, Perak, Malaysia
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
11
|
Mubashir M, Dumée LF, Fong YY, Jusoh N, Lukose J, Chai WS, Show PL. Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO 2 separation. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125639. [PMID: 33740720 DOI: 10.1016/j.jhazmat.2021.125639] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/21/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Composite membranes typically used for gas separation are susceptible to interfacial voids and CO2 plasticization which adversely affects the gas permeation performance. This paper evaluates routes towards the enhancement of CO2 permeation performance and CO2 plasticization resistance of composite membranes using non-stoichiometric ZIF-62 MOF glass and cellulose acetate (CA). Single and mixed gas permeation results, obtained with CO2 and CH4, demonstrate that the presence of ZIF-62 glass in CA polymer enhanced the CO2 permeability and CO2/CH4 ideal selectivity from 15.8 to 84.8 Barrer and 12.2-35.3, respectively. The composite membrane loaded with 8 wt% of ZIF-62 glass showed the highest CO2 permeability and CO2/CH4 ideal selectivity of 84.8 Barrer and 35.3, which were 436.7% and 189.3% higher compared to the pristine CA membrane, respectively. A CO2 plasticization pressure of 26 bar was achieved for the composite membranes, which is 160% higher compared to the pristine CA membranes, at about 10 bar. The mechanisms for the materials stabilization and greater separation performance were attributed to higher pore size (7.3 Å) and significant CO2 adsorption on the unsaturated metal nodes followed by metal cites electrostatic interaction with CO2. These findings confirm the potential of ZIF-62 glass materials as promising materials solutions towards the design of composite membranes for CO2 separation at industrial scale.
Collapse
Affiliation(s)
- Muhammad Mubashir
- Department of Petroleum Engineering, Faculty of Computing, Engineering & Technology, School of Engineering, Asia Pacific University of Technology, and Innovation, 57000 Kuala Lumpur, Malaysia
| | - Ludovic F Dumée
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds, 3216 Victoria, Australia; Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Yeong Yin Fong
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Perak, Malaysia
| | - Norwahyu Jusoh
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Perak, Malaysia
| | - Jacqueline Lukose
- Department of Petroleum Engineering, Faculty of Computing, Engineering & Technology, School of Engineering, Asia Pacific University of Technology, and Innovation, 57000 Kuala Lumpur, Malaysia
| | - Wai Siong Chai
- Department of Chemical and Environmental Engineering, Faculty Science and Egineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Egineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
12
|
Babar M, Mubashir M, Mukhtar A, Saqib S, Ullah S, Bustam MA, Show PL. Sustainable functionalized metal-organic framework NH 2-MIL-101(Al) for CO 2 separation under cryogenic conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116924. [PMID: 33751951 DOI: 10.1016/j.envpol.2021.116924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/02/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
In this study, a sustainable NH2-MIL-101(Al) is synthesized and subjected to characterization for cryogenic CO2 adsorption, isotherms, and thermodynamic study. The morphology revealed a highly porous surface. The XRD showed that NH2-MIL-101(Al) was crystalline. The NH2-MIL-101(Al) decomposes at a temperature (>500 °C) indicating excellent thermal stability. The BET investigation revealed the specific surface area of 2530 m2/g and the pore volume of 1.32 cm3/g. The CO2 adsorption capacity was found to be 9.55 wt% to 2.31 wt% within the investigated temperature range. The isotherms revealed the availability of adsorption sites with favorable adsorption at lower temperatures indicating the thermodynamically controlled process. The thermodynamics showed that the process is non-spontaneous, endothermic, with fewer disorders, chemisorption. Finally, the breakthrough time of NH2-MIL-101(Al) is 31.25% more than spherical glass beads. The CO2 captured by the particles was 2.29 kg m-3. The CO2 capture using glass packing was 121% less than NH2-MIL-101(Al) under similar conditions of temperature and pressure.
Collapse
Affiliation(s)
- Muhammad Babar
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Muhammad Mubashir
- Department of Petroleum Engineering, Faculty of Computing, Engineering & Technology, School of Engineering, Asia Pacific University of Technology, and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Ahmad Mukhtar
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia; Department of Chemical Engineering, NFC Institute of Engineering and Fertilizer Research, Faisalabad, Punjab, 38000, Pakistan
| | - Sidra Saqib
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defense Road, Punjab, 54000, Pakistan
| | - Sami Ullah
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamad Azmi Bustam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
13
|
Raza A, Askari M, Liang CZ, Peng N, Farrukh S, Hussain A, Chung TS. Advanced multiple-layer composite CTA/CDA hollow fiber membranes for CO2 separations. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Ullah S, Al-Sehemi AG, Mubashir M, Mukhtar A, Saqib S, Bustam MA, Cheng CK, Ibrahim M, Show PL. Adsorption behavior of mercury over hydrated lime: Experimental investigation and adsorption process characteristic study. CHEMOSPHERE 2021; 271:129504. [PMID: 33445018 DOI: 10.1016/j.chemosphere.2020.129504] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
This study reports the application of hydrated lime for the effective adsorption of the heavy mercury metal from the aqueous phase solutions. Initially, hydrated lime was subjected to structural characterization and thermal stability analysis. The FT-IR spectrum analysis revealed that the existence of the O-H bonds as a confirmation of hydrated lime formation. Subsequently, the XRD powder-based analysis demonstrated that most of the hydrated lime is pure crystalline material known as Portlandite while a small amount of calcite is also present in the structure of the hydrated lime. The thermal stability analysis revealed that the hydrated lime is highly thermally stable under harsh conditions without decomposing at higher temperatures up to 500 °C. Furthermore, the hydrated lime was subjected to the selective adsorption of heavy metal mercury to investigate the potential influence of the adsorbent particle size and loading on adsorption capacity. The results demonstrated that the decrease in the adsorbent particle size leads to the improvement in the mercury adsorption attributing to the rise in specific surface area. The enhancement in the loading of the adsorbent resulted in a reduction in mercury adsorption directing to the fact that already adsorbed metal ions onto the adsorbent surface lead to hindrance for the adsorption of other ions of heavy metal. These results lead to a significant impact on modern in inventing different adsorbents with promising water treatment efficiency for more industrial applications and the related recovery of mercury.
Collapse
Affiliation(s)
- Sami Ullah
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Ahmad Mukhtar
- Department of Chemical Engineering, NFC Institute of Engineering and Fertilizer Research, Faisalabad, 38000, Pakistan; Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Perak, Malaysia
| | - Sidra Saqib
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defense Road, Lahore, 54000, Pakistan
| | - Mohamad Azmi Bustam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Perak, Malaysia
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Punjab, Pakistan
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
15
|
Xie DH, Ge X, Qin WX, Zhang YX. NH2-MIL-53(Al) for simultaneous removal and detection of fluoride anions. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2004054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dong-hua Xie
- Key Laboratory of Materials Physics, Center for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiao Ge
- University of Science and Technology of China, Hefei 230026, China
| | - Wen-xiu Qin
- Key Laboratory of Materials Physics, Center for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Yun-xia Zhang
- Key Laboratory of Materials Physics, Center for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
16
|
Ye L, Jie X, Wang L, Xu G, Sun Y, Kang G, Cao Y. Preparation and gas separation performance of thermally rearranged poly(benzoxazole-co-amide) (TR-PBOA) hollow fiber membranes deriving from polyamides. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Wu T, Prasetya N, Li K. Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118493] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Mubashir M, Jusoh N, Majeed Z, Rambabu K, Banat F, Tao Y. WITHDRAWN: Sustainable liquid membrane separation using interfacial engineering of deep eutectic solvent and cellulose acetate. JOURNAL OF HAZARDOUS MATERIALS 2020:124345. [PMID: 33153798 DOI: 10.1016/j.jhazmat.2020.124345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Muhammad Mubashir
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands.
| | - Norwahyu Jusoh
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Perak, Malaysia
| | - Zahid Majeed
- Department of Biotechnology, University of Azad Jammu and Kashmir, State of Azad Jammu and Kashmir, Pakistan
| | - K Rambabu
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
19
|
Separation of CO2 from Small Gas Molecules Using Deca-Dodecasil 3 Rhombohedral (DDR3) Membrane Synthesized via Ultrasonically Assisted Hydrothermal Growth Method. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/1097309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deca-dodecasil 3 rhombohedral (DDR3) membrane has received much attention in CO2 separation from small gas molecules because of its molecular sieving property and stable characteristics. Therefore, the present work is focusing on the utilization of previously fabricated membrane (synthesized in 3 days as reported in our previous work) to study the effect of hydrocarbons and its durability at the previously optimized conditions. Subsequently, gas permeation study was conducted on the DDR3 membrane in CO2 separation from small gas molecules and it was found that the permeance of H2, CO2, N2, and CH4 decreased in the order of H2 > CO2 > N2 > CH4, according to the increase in kinetic diameter of these gas molecules. Besides, it was observed that the ideal selectivities of the gas pairs decreased in the sequence of CO2/CH4 > CO2/N2 > H2/CO2. On the other hand, it was found that the presence of hydrocarbon impurities in the gas mixture containing CO2 and CH4 has directly affected the performance of DDR3 membrane and contributed to the losses of CO2 permeability, CH4 permeability, and CO2/CH4 selectivity of 39.1%, 14.8%, and 4.2%, respectively. Consequently, from the stability test, the performance of DDR3 membrane remained stable for 96 h, even after the separation testing using CO2 and CH4 gas mixture containing hydrocarbon impurities.
Collapse
|