1
|
Tahmasebi Sefiddashti F, Homayoonfal M. Nanostructure-manipulated filtration performance in nanocomposite membranes: A comprehensive investigation for water and wastewater treatment. Heliyon 2024; 10:e36874. [PMID: 39319140 PMCID: PMC11419920 DOI: 10.1016/j.heliyon.2024.e36874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
The main objective of this article is to examine one of the most important challenges facing researchers in the field of nanocomposite membranes: what is the most suitable arrangement (unmodified, functionalized, coated, or composite) and the most suitable loading site for the nanostructure? In the review articles published on nanocomposite membranes in recent years, the focus has been either on a specific application area (such as nanofiltration or desalination), or on a specific type of polymeric materials (such as polyamide), or on a specific feature of the membrane (such as antibacterial, antimicrobial, or antifouling). However, none of them have targeted the aforementioned objectives on the efficacy of improving filtration performance (IFP). Through IFP calculation, the results will be repeatable and generalizable in this field. The novelty of the current research lies in examining and assessing the impact of the loading site and the type of nanostructure modification on enhancing IFP. Based on the performed review results, for the researchers who tend to use nanocomposite membranes for treatment of organic, textile, brine and pharmaceutical wastewaters as well as membrane bioreactors, thePES NH 2 - PDA - Fe 3 O 4 M ,PAN Fe 3 O 4 / ZrO 2 M ,PVDF CMC - ZnO M ,AA AA - CuS PSf M andPVDF OCMCS / Fe 3 O 4 M with IFP equal to 132.27, 15, 423.6, 16.025 and 5, were proposed, respectively.
Collapse
Affiliation(s)
- Fateme Tahmasebi Sefiddashti
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| |
Collapse
|
2
|
Mostashari A, Sanei E, Ganjidoust H. The effect of silica-doped graphene oxide (GO-SiO 2) on persulfate activation for the removal of Acid Blue 25. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56565-56577. [PMID: 39276286 DOI: 10.1007/s11356-024-34828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/23/2024] [Indexed: 09/16/2024]
Abstract
The release of synthetic dyes into water bodies poses many environmental issues, and their removal is a necessity. Advanced oxidation processes (AOPs) can be employed for removal, in many of which a catalyst is used. graphene oxide (GO) is a viable catalyst due to its distinctive structural properties; however, it is reportedly incapable of effectively activating persulfate. Thus, this study delves for the first time into the influence of doping silica on enhancing GO's catalytic performance to activate persulfate for decolorizing Acid Blue 25 (AB25). Based on the results, an equal weight proportion of GO to silica was selected as the most efficient ratio. In addition, pH had no significant effect on removal efficiency, while temperature had the highest impact. Within 150 min with 0.075 gr/L of GO-SiO2 as the catalyst and 1 gr/L of Na2S2O8 as the oxidant, the investigated process removed Acid Blue 25 up to 82%, which was 9% higher than when GO alone was used as the catalyst. As for COD removal, the contribution of doping silica was more significant and led to 37% COD removal, which was 17% higher than when GO alone was used.
Collapse
Affiliation(s)
- Amir Mostashari
- Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
| | - Emad Sanei
- School of Engineering & Technology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Hossein Ganjidoust
- Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Joseph TM, Al-Hazmi HE, Śniatała B, Esmaeili A, Habibzadeh S. Nanoparticles and nanofiltration for wastewater treatment: From polluted to fresh water. ENVIRONMENTAL RESEARCH 2023; 238:117114. [PMID: 37716387 DOI: 10.1016/j.envres.2023.117114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Water pollution poses significant threats to both ecosystems and human health. Mitigating this issue requires effective treatment of domestic wastewater to convert waste into bio-fertilizers and gas. Neglecting liquid waste treatment carries severe consequences for health and the environment. This review focuses on intelligent technologies for water and wastewater treatment, targeting waterborne diseases. It covers pollution prevention and purification methods, including hydrotherapy, membrane filtration, mechanical filters, reverse osmosis, ion exchange, and copper-zinc cleaning. The article also highlights domestic purification, field techniques, heavy metal removal, and emerging technologies like nanochips, graphene, nanofiltration, atmospheric water generation, and wastewater treatment plants (WWTPs)-based cleaning. Emphasizing water cleaning's significance for ecosystem protection and human health, the review discusses pollution challenges and explores the integration of wastewater treatment, coagulant processes, and nanoparticle utilization in management. It advocates collaborative efforts and innovative research for freshwater preservation and pollution mitigation. Innovative biological systems, combined with filtration, disinfection, and membranes, can elevate recovery rates by up to 90%, surpassing individual primary (<10%) or biological methods (≤50%). Advanced treatment methods can achieve up to 95% water recovery, exceeding UN goals for clean water and sanitation (Goal 6). This progress aligns with climate action objectives and safeguards vital water-rich habitats (Goal 13). The future holds promise with advanced purification techniques enhancing water quality and availability, underscoring the need for responsible water conservation and management for a sustainable future.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Hussein E Al-Hazmi
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Bogna Śniatała
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology, and Industrial Trades, College of the North Atlantic-Qatar, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran 1599637111, Iran.
| |
Collapse
|
4
|
Zhang X, Fan Z, Xu W, Meng Q, Shen C, Zhang G, Gao C. Thin film composite nanofiltration membrane with nanocluster structure mediated by graphene oxide/metal-polyphenol nanonetwork scaffold interlayer. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Trimethylamine N-oxide-derived zwitterionic polyamide thin-film composite nanofiltration membranes with enhanced anti-dye deposition ability for efficient dye separation and recovery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Bakhodaye Dehghanpour S, Parvizian F, Vatanpour V. The role of CuO/TS-1, ZnO/TS-1, and Fe2O3/TS-1 on the desalination performance and antifouling properties of thin-film nanocomposite reverse osmosis membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Al-Gamal AQ, Satria M, Alghunaimi FI, Aljuryyed NW, Saleh TA. Synthesis of thin-film nanocomposite membranes using functionalized silica nanoparticles for water desalination with drastically improved properties. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Wu LK, Zhu QY, Li LQ, Xu ZL, Xue SM, Ji CH, Tang CY, Zhuang L, Tang YJ. Exploration of Permeation Resistance Change of the Polyamide Nanofiltration Membrane during Heat Curing by Using Organic Molecules as Functional Fillers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Liu-Kun Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Qiu-Yu Zhu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Lan-Qian Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Shuang-Mei Xue
- Institute for Advanced Study, Shenzhen University, Shenzhen518060, China
| | - Chen-Hao Ji
- Institute for Advanced Study, Shenzhen University, Shenzhen518060, China
| | - Chuyang Y. Tang
- Department of Civil Engineering, The University of Hong Kong, PokfulamHW619B, Hong Kong, China
| | - Liwei Zhuang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Yong-Jian Tang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| |
Collapse
|
9
|
Synthesis of amine-modified graphene integrated membrane as protocols for simultaneous rejection of hydrocarbons, metal ions, and salts from water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Dehghanpour SB, Parvizian F, Vatanpour V, He T. Enhancing the flux and salt rejection of thin-film composite nanofiltration membranes prepared on plasma-treated polyethylene using PVA/TS-1 composite. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Metal-Coordinated Nanofiltration Membranes Constructed on Metal Ions Blended Support toward Enhanced Dye/Salt Separation and Antifouling Performances. MEMBRANES 2022; 12:membranes12030340. [PMID: 35323815 PMCID: PMC8954445 DOI: 10.3390/membranes12030340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022]
Abstract
Metal-phenol coordination is a widely used method to prepare nanofiltration membrane. However, the facile, controllable and scaled fabrication remains a great challenge. Herein, a novel strategy was developed to fabricate a loose nanofiltration membrane via integrating blending and interfacial coordination strategy. Specifically, iron acetylacetonate was firstly blended in Polyether sulfone (PES) substrate via non-solvent induced phase separation (NIPS), and then the loose selective layer was formed on the membrane surface with tannic acid (TA) crosslinking reaction with Fe3+. The surface properties, morphologies, permeability and selectivity of the membranes were carefully investigated. The introduction of TA improved the surface hydrophilicity and negative charge. Moreover, the thickness of top layer increased about from ~30 nm to 119 nm with the increase of TA assembly time. Under the optimum preparation condition, the membrane with assembly 3 h (PES/Fe-TA3h) showed pure water flux of 175.8 L·m−2·h−1, dye rejections of 97.7%, 97.1% and 95.0% for Congo red (CR), Methyl blue (MB) and Eriochrome Black T (EBT), along with a salt penetration rate of 93.8%, 95.1%, 97.4% and 98.1% for Na2SO4, MgSO4, NaCl and MgCl2 at 0.2 MPa, respectively. Both static adhesion tests and dynamic fouling experiments implied that the TA modified membranes showed significantly reduced adsorption and high FRR for the dye solutions separation. The PES/Fe-TA3h membrane exhibited high FRR of 90.3%, 87.5% and 81.6% for CR, EBT and MB in the fouling test, stable CR rejection (>97.2%) and NaCl permeation (>94.6%) in 24 h continuous filtration test. The combination of blending and interfacial coordination assembly method could be expected to be a universal way to fabricate the loose nanofiltration membrane for effective fractionation of dyes and salts in the saline textile wastewater.
Collapse
|
12
|
Enhanced efficiency of polyamide membranes by incorporating cyclodextrin-graphene oxide for water purification. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Farahbakhsh J, Vatanpour V, Khoshnam M, Zargar M. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Seah MQ, Khoo YS, Lau WJ, Goh PS, Ismail AF. New Concept of Thin-Film Composite Nanofiltration Membrane Fabrication Using a Mist-Based Interfacial Polymerization Technique. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mei Qun Seah
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, 81310 Johor, Malaysia
| | - Ying Siew Khoo
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, 81310 Johor, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, 81310 Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, 81310 Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, 81310 Johor, Malaysia
| |
Collapse
|
15
|
Gu Z, Li P, Gao X, Qin Y, Pan Y, Zhu Y, Yu S, Xia Q, Liu Y, Zhao D, Liu G. Surface-crumpled thin-film nanocomposite membranes with elevated nanofiltration performance enabled by facilely synthesized covalent organic frameworks. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Ren L, Chen J, Lu Q, Han J, Wu H. Antifouling Nanofiltration Membrane Fabrication via Surface Assembling Light-Responsive and Regenerable Functional Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52050-52058. [PMID: 33156605 DOI: 10.1021/acsami.0c16858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane fouling, caused by aggregation of organics and microorganisms from filtrate on the membrane surface, seriously reduces the service life of a nanofiltration (NF) membrane. Developing facile and renewable antifouling modification methods without sacrificing separation properties of the membrane remain an imperative requirement. Herein, a thin-film composite (TFC) NF membrane with a light-responsive and regenerable functional layer (P-TFC) was fabricated via host-guest interactions between the azobenzene (guest) labeled functional polymers and the β-cyclodextrin (host) bonded membrane surface (H-TFC). The P-TFC-3 not only showed outstanding antifouling ability and high flux recovery ratio (FRR > 90% at the fourth antiadhesive test) but also exhibited enhanced water permeability (17.9 L m-2 h-1 bar-1) and high selectivity (αMgSO4NaCl = 33.4 and fast antibiotics enrichment capacity) compared with the pristine membrane. Furthermore, when the functional layer was contaminated, it can be removed by ultraviolet light irradiation and a new functional layer can be rebuilt by adding fresh azobenzene labeled functional polymers. After several regeneration processes, the membranes still showed constant separation properties and high flux recovery ability (FRR > 90%). This work proposes an easy-to-assemble and regenerable surface modification strategy to endow TFC NF membranes with excellent fouling resistance and sustainable utilization ability while maintaining high separation properties.
Collapse
Affiliation(s)
- Liang Ren
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jianxin Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Qing Lu
- Tianjin Bokelin Medical Packaging Technology Co., Ltd., Tasly Group, Tianjin 300410, China
| | - Jian Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hong Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
17
|
Ghiasi S, Behboudi A, Mohammadi T, Ulbricht M. High-performance positively charged hollow fiber nanofiltration membranes fabricated via green approach towards polyethyleneimine layer assembly. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
Yap Ang MBM, Huang SH, Tsai SJ, De Guzman MR, Lee KR, Lai JY. Embedding hollow silica nanoparticles of varying shapes and dimensions in nanofiltration membranes for optimal performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118333] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Aghili F, Ghoreyshi AA, Rahimpour A, Van der Bruggen B. New Chemistry for Mixed Matrix Membranes: Growth of Continuous Multilayer UiO-66-NH2 on UiO-66-NH2-Based Polyacrylonitrile for Highly Efficient Separations. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b07063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Fatemeh Aghili
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Street, 47148-71167 Babol, Iran
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Ali Asghar Ghoreyshi
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Street, 47148-71167 Babol, Iran
| | - Ahmad Rahimpour
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Street, 47148-71167 Babol, Iran
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|