1
|
Li J, Guo F, Bao Y, Si Q, Lu Y, Fu Q, Shi J. Cellulose-Based Electromagnetic Functional Aerogels: Mechanism, Fabrication, Structural Design, and Application. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27579-27604. [PMID: 40324338 DOI: 10.1021/acsami.4c22875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Electromagnetic functional materials offer a promising solution to reduce impacts from electromagnetic pollution and interference, such as digital communications, national defenses, and military fields. Cellulose-based aerogels, featured with their hierarchical porous structure, high specific surface area, and surface activity, can be engineered to possess electromagnetic wave shielding and absorption capabilities through structural regulation, composition optimization, and material functionalization. Moreover, these cellulose-based aerogels exhibit remarkable renewability and biocompatibility, highlighting their significant potential in the field of electromagnetic functional materials. In this review, we stigmatically overview the state-of-the-art of cellulosic electromagnetic functional aerogels, which begins with elucidating the mechanisms behind electromagnetic interference shielding and microwave absorption. The material design based on the physical and chemical characteristics of cellulose aerogels is discussed. Furthermore, the hierarchical design strategies of the cellulosic electromagnetic functional aerogels are reviewed including macro-structures, micro/nanostructures, and supramolecular structures. Multifunctional applications of cellulose electromagnetic functional aerogels are presented, such as infrared and radar stealth materials, intelligent responsive electromagnetic devices, and radiation protection equipment. Finally, an up-to-date summary and an outlook on developing the cellulose-based electromagnetic functional aerogels are provided in the fields of electromagnetic interference shielding and microwave absorption, as well as outlining future research perspectives.
Collapse
Affiliation(s)
- Jiayao Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fakun Guo
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yunhui Bao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qingshan Si
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yun Lu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Qiliang Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Dehua TB New Decoration Material Co., Ltd., Huzhou 313200, China
| | - Jiangtao Shi
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Jian S, Wu X, Yu H, Wang L. Enhancing strategies of MOFs-derived materials for microwave absorption: review and perspective. Adv Colloid Interface Sci 2025; 338:103412. [PMID: 39874775 DOI: 10.1016/j.cis.2025.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/19/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Microwave absorption materials (MAMs) gradually exhibit crucial applications in reducing electromagnetic wave (EMW) pollution, avoiding EMW information leakage, and solving radar stealth. Metal-organic frameworks (MOFs)-derived materials are flourishing in the domain of EMW absorption attributed to their especial structures, heteroatom doping and controllable components. Herein, various strategies to enhance the EMW absorption ability of MOFs-derived materials are outlined, covering structural design and compositional regulation. Additionally, the applications of MOFs-derived composites in EMW absorption domains are introduced in detail, with emphasis on recent progress in MOFs-derived composites materials like foams, films and aerogels. Finally, existent opportunities, challenges and future orientations of MOFs-derived MAMs are proposed.
Collapse
Affiliation(s)
- Shan Jian
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xudong Wu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Orasugh JT, Temane LT, Ray SS. Nanocellulose-based conductive composites: A review of systems for electromagnetic interference shielding applications. Int J Biol Macromol 2024; 277:133891. [PMID: 39025190 DOI: 10.1016/j.ijbiomac.2024.133891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Electronic systems and telecommunications have grown in popularity, leading to increasing electromagnetic (EM) radiation pollution. Environmental protection from EM radiation demands the use of environmentally friendly products. The design of EM interference (EMI) shielding materials using resources like nanocellulose (NC) is gaining traction. Cellulose, owing to its biocompatibility, biodegradability, and excellent mechanical and thermal properties, has attracted significant interest for developing EMI shielding materials. Recent advancements in cellulose-based EMI shielding materials, particularly modified cellulosic composites, are highlighted in this study. By incorporating metallic coatings compounded with conductive fillers and modified with inherently conductive elements, conductivity and effectiveness of EMI shielding can be significantly improved. This review discusses the introduction of EMI shields, cellulose, and NC, assessing environmentally friendly EMI shield options and diverse NC-based composite EMI shields considering their low reflectivity. The study offers new insights into designing advanced NC-based conductive composites for EMI shielding applications.
Collapse
Affiliation(s)
- Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Lesego Tabea Temane
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa.
| |
Collapse
|
4
|
Zeng X, Nie T, Zhao C, Gao Y, Liu X. In Situ Exsolution-Prepared Solid-Solution-Type Sulfides with Intracrystal Polarization for Efficient and Selective Absorption of Low-Frequency Electromagnetic Wave. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403723. [PMID: 39013079 PMCID: PMC11425237 DOI: 10.1002/advs.202403723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Indexed: 07/18/2024]
Abstract
The excellent dielectric properties and tunable structural design of metal sulfides have attracted considerable interest in realizing electromagnetic wave (EMW) absorption. However, compared with traditional monometallic and bimetallic sulfides that are extensively studied, the unique physical characteristics of solid-solution-type sulfides in response to EMW have not been revealed yet. Herein, a unique method for preparing high-purity solid-solution-type sulfides is proposed based on solid-phase in situ exsolution of different metal ions from hybrid precursors. Utilizing CoAl-LDH/MIL-88A composite as a precursor, Fe0.8Co0.2S single-phase nanoparticles are uniformly in situ formed on an amorphous substrate (denoted as CoAl), forming CoAl/Fe0.8Co0.2S heterostructure. Combing with density functional theory (DFT) calculations and wave absorption simulations, it is revealed that Fe0.8Co0.2S solid solution has stronger intracrystal polarization and electronic conductivity than traditional monometallic and bimetallic sulfides, which lead to higher dielectric properties in EM field. Therefore, CoAl/Fe0.8Co0.2S heterostructure exhibits significantly enhanced EMW absorption ability in the low-frequency region (2-6 GHz) and can achieve frequency screening by selectively absorbing EMW of specific frequency. This work not only provides a unique method for preparing high-purity solid-solution-type sulfides but also fundamentally reveals the physical essence of their excellent EMW absorption performance.
Collapse
Affiliation(s)
- Xiaojun Zeng
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Tianli Nie
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Chao Zhao
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiaofang Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
5
|
Mai T, Chen L, Wang PL, Liu Q, Ma MG. Hollow Metal-Organic Framework/MXene/Nanocellulose Composite Films for Giga/Terahertz Electromagnetic Shielding and Photothermal Conversion. NANO-MICRO LETTERS 2024; 16:169. [PMID: 38587615 PMCID: PMC11001847 DOI: 10.1007/s40820-024-01386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/24/2024] [Indexed: 04/09/2024]
Abstract
With the continuous advancement of communication technology, the escalating demand for electromagnetic shielding interference (EMI) materials with multifunctional and wideband EMI performance has become urgent. Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest, but remain a huge challenge. Herein, we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose (HMN) by alternating vacuum-assisted filtration process. The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency (66.8 dB at Ka-band) and THz frequency (114.6 dB at 0.1-4.0 THz). Besides, the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz. Moreover, HMN composite films show remarkable photothermal conversion performance, which can reach 104.6 °C under 2.0 Sun and 235.4 °C under 0.8 W cm-2, respectively. The unique micro- and macro-structural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect. These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
Collapse
Affiliation(s)
- Tian Mai
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Lei Chen
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Pei-Lin Wang
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Qi Liu
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Ming-Guo Ma
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- State Silica-Based Materials Laboratory of Anhui Province, Bengbu, 233000, People's Republic of China.
| |
Collapse
|
6
|
Zecchi S, Cristoforo G, Bartoli M, Tagliaferro A, Torsello D, Rosso C, Boccaccio M, Acerra F. A Comprehensive Review of Electromagnetic Interference Shielding Composite Materials. MICROMACHINES 2024; 15:187. [PMID: 38398916 PMCID: PMC10891677 DOI: 10.3390/mi15020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
The interaction between matter and microwaves assumes critical significance due to the ubiquity of wireless communication technology. The selective shielding of microwaves represents the only way to achieve the control on crucial technological sectors. The implementation of microwave shielding ensures the proper functioning of electronic devices. By preventing electromagnetic pollution, shielding safeguards the integrity and optimal performances of devices, contributing to the reliability and efficiency of technological systems in various sectors and allowing the further step forwards in a safe and secure society. Nevertheless, the microwave shielding research is vast and can be quite hard to approach due to the large number and variety of studies regarding both theory and experiments. In this review, we focused our attention on the comprehensive discussion of the current state of the art of materials used for the production of electromagnetic interference shielding composites, with the aim of providing a solid reference point to explore this research field.
Collapse
Affiliation(s)
- Silvia Zecchi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.Z.); (G.C.); (D.T.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy;
| | - Giovanni Cristoforo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.Z.); (G.C.); (D.T.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy;
| | - Mattia Bartoli
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy;
- Italian Institute of Technology, Via Livorno 60, 10144 Torino, Italy
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.Z.); (G.C.); (D.T.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy;
| | - Daniele Torsello
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.Z.); (G.C.); (D.T.)
- Istituto Nazionale di Fisica Nucleare, Sez. Torino, Via P. Giuria 1, 10125 Torino, Italy
| | - Carlo Rosso
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Marco Boccaccio
- Leonardo Labs, OGR Tech, Corso Castelfidardo 22, 10138 Torino, Italy
| | - Francesco Acerra
- Leonardo Aircraft, Viale dell’Aeronautica Sns, 80038 Pomigliano d’Arco, Italy;
| |
Collapse
|
7
|
Xu Y, Hou M, Wang J. Porous Gradient Composite with Dependable Superhydrophobic Protection for Multifunctional Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3978-3990. [PMID: 38193850 DOI: 10.1021/acsami.3c15242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Simultaneously realizing high electromagnetic interference (EMI) shielding and superhydrophobic properties of materials to ensure long-term stability in harsh environments is a very challenging task. In this work, an efficient superhydrophobic EMI shielding composite with a gradient conductivity and porous structure was prepared by chemical plating, in situ polymerization, and spraying processes. Benefiting from the structural characteristics of porous multilayers and the rational distribution of electromagnetic two-component fillers in the composite, as well as the synergistic effect of various electromagnetic loss mechanisms, a perfect unification of high EMI shielding effectiveness of 62 dB and high absorption coefficient (A) of 0.77 was achieved. Meanwhile, a thin layer with further enhanced impedance matching was constructed on the surface of the composite using double-sized mixed particles of Fe3O4 and graphite particles (GP) in conjunction with the spraying process. The rough surface microstructure of the thin layer bestows the composite superhydrophobicity, and even after long-term immersion in acidic and alkali solutions or repetitive bending, the water contact angle still remains at a high level. Additionally, the sprayed materials also endow the composite with outstanding photothermal conversion properties that enhance the ability to adapt to environmental changes, significantly raising the practical application value.
Collapse
Affiliation(s)
- Yujie Xu
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Minghuan Hou
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Jian Wang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| |
Collapse
|
8
|
Yang J, Wang H, Zhang Y, Zhang H, Gu J. Layered Structural PBAT Composite Foams for Efficient Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2023; 16:31. [PMID: 37994969 PMCID: PMC10667195 DOI: 10.1007/s40820-023-01246-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 11/24/2023]
Abstract
The utilization of eco-friendly, lightweight, high-efficiency and high-absorbing electromagnetic interference (EMI) shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing. In this work, magnetic poly (butyleneadipate-co-terephthalate) (PBAT) microspheres were firstly synthesized via phase separation method, then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques. The merits of integrating ferroferric oxide-loaded multi-walled carbon nanotubes (Fe3O4@MWCNTs) nanoparticles, a microcellular framework, and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration. Microwaves are consumed throughout the process of "absorption-reflection-reabsorption" as much as possible, which greatly declines the secondary radiation pollution. The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%, and authenticated favorable stabilization after the tape adhesion experiment.
Collapse
Affiliation(s)
- Jianming Yang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, People's Republic of China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, People's Republic of China
| | - Hu Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, People's Republic of China
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Hexin Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, People's Republic of China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
9
|
Govindasamy T, Mathew NK, Asapu VK, Asokan V, Subramanian V, Subramanian B. High-performance EMI shielding effectiveness of Fe 3O 4-3D rPC nanocomposites: a systematic optimization in the X-band region. Phys Chem Chem Phys 2023; 25:30501-30515. [PMID: 37921624 DOI: 10.1039/d3cp04679f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
In this work, the microwave absorption (MWA) performance of a Fe3O4-3D reduced porous carbon nanocomposite (3D rPC NC) in the X-band region is reported. Three different shields are fabricated by altering the ratio of Fe3O4 nanoparticles (NPs) and 3D rPC and evaluating their microwave (MW) shielding performance with appropriate in-wearing instruments due to their minimum thickness. The chemical interaction between Fe3O4 NPs and 3D rPC is examined from chemical composition analysis of Fe3O4-3D rPC (1 : 2 ratio), which is confirmed by the presence of the Fe-O-C bond in the O 1s spectrum obtained from XPS analysis and subsequent analysis using FESEM images. Furthermore, it is found from N2 adsorption/desorption analysis that 3D rPC possesses a huge surface area of 787.312 m2 g-1 and showcases a type-V isotherm (mesoporous and/or microporous) behavior. The dielectric and magnetic losses of Fe3O4-3D rPC with a 1 : 2 ratio (tan δεr = 1.27 and tan δμr = 5.03) are higher than those of Fe3O4 NPs, 3D rPC and their NCs due to its magnetic and electrical conducting pathways modifying the material's polarization and dipole moment. The lightweight, polymer-free Fe3O4-3D rPC (1 : 2) NCs with minimum thickness on the order of 0.5 mm exhibited a higher total shielding effectiveness (SET = 41.285 dB), and it effectively blocked 99.9963% of the transmittance due to electric and magnetic polarization resulting from the presence of a heterogeneous interface surface.
Collapse
Affiliation(s)
| | | | - Vinaya Kumar Asapu
- Microwave Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India
| | - Vijayshankar Asokan
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Venkatachalam Subramanian
- Microwave Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India
| | - Balakumar Subramanian
- National Centre for Nanoscience and Nanotechnology University of Madras, Chennai-600025, India.
| |
Collapse
|
10
|
Zhang H, Zheng X, Jiang R, Liu Z, Li W, Zhou X. Research progress of functional composite electromagnetic shielding materials. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Gao Z, Iqbal A, Hassan T, Zhang L, Wu H, Koo CM. Texture Regulation of Metal-Organic Frameworks, Microwave Absorption Mechanism-Oriented Structural Optimization and Design Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204151. [PMID: 36253151 PMCID: PMC9762306 DOI: 10.1002/advs.202204151] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/15/2022] [Indexed: 05/12/2023]
Abstract
Texture regulation of metal-organic frameworks (MOFs) is essential for controlling their electromagnetic wave (EMW) absorption properties. This review systematically summarizes the recent advancements in texture regulation strategies for MOFs, including etching and exchange of central ions, etching and exchange of ligands, chemically induced self-assembly, and MOF-on-MOF heterostructure design. Additionally, the EMW absorption mechanisms in approaches based on structure-function dependencies, including nano-micro topological engineering, defect engineering, interface engineering, and hybrid engineering, are comprehensively explored. Finally, current challenges and future research orientation are proposed. This review aims to provide new perspectives for designing MOF-derived EMW-absorption materials to achieve essential breakthroughs in mechanistic investigations in this promising field.
Collapse
Affiliation(s)
- Zhenguo Gao
- MOE Key Laboratory of Material Physics and Chemistry under ExtraordinaryNorthwestern Polytechnical UniversityXi'an710072China
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Aamir Iqbal
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| | - Tufail Hassan
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under ExtraordinaryNorthwestern Polytechnical UniversityXi'an710072China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under ExtraordinaryNorthwestern Polytechnical UniversityXi'an710072China
| | - Chong Min Koo
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Chemical EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| |
Collapse
|
12
|
Saleh MR, Thabet SM, El-Gendy RA, Saleh M, El-Bery HM. MIL−53 (Fe) for constructing hydrogenated Fe3O4@C@TiO2 double core-shell nanocrystals as superior bifunctional photocatalyst. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Zhu SQ, Shu JC, Cao MS. Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. NANOSCALE 2022; 14:7322-7331. [PMID: 35535465 DOI: 10.1039/d2nr01024k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The upcoming 5G era will powerfully promote the development of intelligent society in the future, but it will also bring serious electromagnetic pollution. Thus, the development of efficient, lightweight and multifunctional electromagnetic shielding materials and devices is an important research hotspot around the world. Herein, a novel needlelike Co3O4/C array architecture is constructed from MOF precursor via a simple pyrolysis process, and its microstructure is controllably tailored by changing the pyrolysis temperature. The unique 3D hierarchical structure and multiphase components enable the architecture to provide high-efficiency electromagnetic interference (EMI) shielding, along with good thermal insulation. More importantly, the architecture possesses fast ion transport channels, which can be used to construct supercapacitors with high specific capacitance and excellent cycle stability. Obviously, this work offers a new inspiration for the design and construction of multifunctional electromagnetic materials and devices.
Collapse
Affiliation(s)
- Si-Qi Zhu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jin-Cheng Shu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
14
|
Yu Y, Zhao Y, Dai Y, Su Y, Liao B, Pang H. Multi-nanocavities and multi-defects synergetic enhancement for the electromagnetic absorption of the rGO-NG film. NANOTECHNOLOGY 2022; 33:315603. [PMID: 35453126 DOI: 10.1088/1361-6528/ac6961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Dielectric loss is an important way to eliminate electromagnetic pollution. In order to achieve high dielectric loss, a graphene film reduced graphene oxide-N doped graphene (rGO-NG) was constructed from graphene oxide-Ni@polydopamine (GO-Ni@PDA) via thein situsynthesis of hollow graphene spheres between graphene sheets. Thisin situwas achieved by means of electrostatic self-assembly and metal-catalyzed crystallization. Owing to the synergetic effect of multi-nanocavities and multi-defects, the prepared rGO-NG film shows an average shielding effectiveness (SE) of 50.0 dB in the range of 8.2-12.4 GHz with a thickness of 12.2μm, and the SE reflection is only 7.3 dB on average. It also exhibits an average dielectric loss tangent (tanδ) of 23.1, which is 26 and 105 times higher than those of rGO and rGO-Ni, respectively. This work provides a simple but effective route to develop high performance graphene-based materials for application as an electromagnetic interference shielding film in today's electronic devices.
Collapse
Affiliation(s)
- Yue Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510665, People's Republic of China
| | - Yifang Zhao
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510665, People's Republic of China
| | - Yongqiang Dai
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510665, People's Republic of China
| | - Yu Su
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510665, People's Republic of China
- Guangdong Jinbai Chemical Co., LTD, Sihui, Guangdong 526253, People's Republic of China
| | - Bing Liao
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510665, People's Republic of China
| | - Hao Pang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510665, People's Republic of China
| |
Collapse
|
15
|
Xu J, Chen R, Yun Z, Bai Z, Li K, Shi S, Hou J, Guo X, Zhang X, Chen J. Lightweight Epoxy/Cotton Fiber-Based Nanocomposites with Carbon and Fe 3O 4 for Electromagnetic Interference Shielding. ACS OMEGA 2022; 7:15215-15222. [PMID: 35572748 PMCID: PMC9089691 DOI: 10.1021/acsomega.2c01293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Cotton fiber (CF)-based electroconductive papers were prepared by facile aqueous dispersion and drying processes combined with carbon nanotubes (CNTs) or graphene nanosheets (GNPs). To enhance the electromagnetic interference (EMI) shielding performance of the manufactured nanocomposites, the electroconductive papers were soaked with epoxy resin, which cooperated with the inner sprayed Fe3O4 nanoparticles. The EMI shielding effectiveness of Epoxy/CF-30-Fe3O4-30GNPs reached 33.1 dB, of which over 85.0% is attributed to absorption, which is mainly believed to be caused by the combination of GNPs and Fe3O4 nanoparticles due to their special structures and synergetic effects. Moreover, the infiltration of epoxy between the randomly distributed loose CFs and the multiple reflections inside the interconnected networks could also help to improve the EMI shielding performance of GNP-added samples. The prepared lightweight and stiff Epoxy/CF-30-Fe3O4-30GNP composites have promising applications in civil or military fields.
Collapse
Affiliation(s)
- Jianwei Xu
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
| | - Ruiyue Chen
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
| | - Zhigeng Yun
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
| | - Zhongyi Bai
- School
of Materials Science and Engineering, Henan Key Laboratory of Aeronautical
Materials and Application Technology, Zhengzhou
University of Aeronautics, Zhengzhou 450046, China
| | - Kun Li
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
| | - Shaozhe Shi
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Junji Hou
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
| | - Xiaoqin Guo
- School
of Materials Science and Engineering, Henan Key Laboratory of Aeronautical
Materials and Application Technology, Zhengzhou
University of Aeronautics, Zhengzhou 450046, China
| | - Xiaoli Zhang
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
| | - Jingbo Chen
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Gao G, Zhang L, Shi Y, Yang S, Wang G, Xu H, Ding D, Chen R, Jin P, Wang XC. Mutual-activation between Zero-Valent iron and graphitic carbon for Cr(VI) Removal: Mechanism and inhibition of inherent Side-reaction. J Colloid Interface Sci 2022; 608:588-598. [PMID: 34628318 DOI: 10.1016/j.jcis.2021.09.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
The low reactivity of zero-valent iron (ZVI) usually limits its application for pollutant remediation. Therefore, a microscopic galvanic cell (mGC) with short-circuited cathode and anode was synthesized to intensify its galvanic corrosion. The prepared mGC exhibited 7.14 times higher Fe(II) release performance than ordinary nanoscale-ZVI (nZVI), rendering efficient Cr(VI) removal performance. Density functional theory (DFT) revealed mutual-activation of the cathode and anode due to close proximity, dramatically enhancing the galvanic corrosion of Fe(0) in mGC. The corrosion potential of mGC was measured as -0.77 V, which was 100 mV more negative than nZVI. The released electrons and surface-bond Fe(II) from anode in mGC was proved to be the dominant reductive species. More importantly, Cr(VI) reduction was slightly inhibited by hydroxyl radicals generated by a series of inherent side-reactions in the system, which could be well eliminated by low concentrations of 4-acetamido phenol. This study provides a promising strategy for ZVI activation, and sheds light on its environmental applications.
Collapse
Affiliation(s)
- Ge Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Lei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Yixin Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China.
| | - Gen Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Huining Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu 210095, China
| | - Rongzhi Chen
- College of Resources and Environment, University of Chinese Academic of Science, 19A Yuquan Road, Beijing 100049, China.
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| |
Collapse
|
17
|
Ayub S, Guan BH, Ahmad F, Oluwatobi YA, Nisa ZU, Javed MF, Mosavi A. Graphene and Iron Reinforced Polymer Composite Electromagnetic Shielding Applications: A Review. Polymers (Basel) 2021; 13:2580. [PMID: 34372183 PMCID: PMC8347896 DOI: 10.3390/polym13152580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
With advancements in the automated industry, electromagnetic inferences (EMI) have been increasing over time, causing major distress among the end-users and affecting electronic appliances. The issue is not new and major work has been done, but unfortunately, the issue has not been fully eliminated. Therefore, this review intends to evaluate the previous carried-out studies on electromagnetic shielding materials with the combination of Graphene@Iron, Graphene@Polymer, Iron@Polymer and Graphene@Iron@Polymer composites in X-band frequency range and above to deal with EMI. VOSviewer was also used to perform the keyword analysis which shows how the studies are interconnected. Based on the carried-out review it was observed that the most preferable materials to deal with EMI are polymer-based composites which showed remarkable results. It is because the polymers are flexible and provide better bonding with other materials. Polydimethylsiloxane (PDMS), polyaniline (PANI), polymethyl methacrylate (PMMA) and polyvinylidene fluoride (PVDF) are effective in the X-band frequency range, and PDMS, epoxy, PVDF and PANI provide good shielding effectiveness above the X-band frequency range. However, still, many new combinations need to be examined as mostly the shielding effectiveness was achieved within the X-band frequency range where much work is required in the higher frequency range.
Collapse
Affiliation(s)
- Saba Ayub
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia; (B.H.G.); (Y.A.O.); (Z.U.N.)
| | - Beh Hoe Guan
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia; (B.H.G.); (Y.A.O.); (Z.U.N.)
| | - Faiz Ahmad
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia;
| | - Yusuff Afeez Oluwatobi
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia; (B.H.G.); (Y.A.O.); (Z.U.N.)
| | - Zaib Un Nisa
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia; (B.H.G.); (Y.A.O.); (Z.U.N.)
| | - Muhammad Faisal Javed
- Department of Civil Engineering, COMSATS University Islamabad Abbottabad Campus, Abbottabad 22060, Pakistan;
| | - Amir Mosavi
- Faculty of Civil Engineering, Technische Universität Dresden, 01069 Dresden, Germany
- John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary
- Information Systems, University of Siegen, 57072 Siegen, Germany
- Department of Informatics, J. Selye University, 94501 Komarno, Slovakia
| |
Collapse
|
18
|
Preparation Methods for Graphene Metal and Polymer Based Composites for EMI Shielding Materials: State of the Art Review of the Conventional and Machine Learning Methods. METALS 2021. [DOI: 10.3390/met11081164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advancement of novel electromagnetic inference (EMI) materials is essential in various industries. The purpose of this study is to present a state-of-the-art review on the methods used in the formation of graphene-, metal- and polymer-based composite EMI materials. The study indicates that in graphene- and metal-based composites, the utilization of alternating deposition method provides the highest shielding effectiveness. However, in polymer-based composite, the utilization of chemical vapor deposition method showed the highest shielding effectiveness. Furthermore, this review reveals that there is a gap in the literature in terms of the application of artificial intelligence and machine learning methods. The results further reveal that within the past half-decade machine learning methods, including artificial neural networks, have brought significant improvement for modelling EMI materials. We identified a research trend in the direction of using advanced forms of machine learning for comparative analysis, research and development employing hybrid and ensemble machine learning methods to deliver higher performance.
Collapse
|
19
|
Yang S, Yan DX, Li Y, Lei J, Li ZM. Flexible Poly(vinylidene fluoride)-MXene/Silver Nanowire Electromagnetic Shielding Films with Joule Heating Performance. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01632] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Song Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ding-Xiang Yan
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Yue Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Liu R, Li T, Xu J, Zhang T, Xie Y, Li J, Wang L. Sandwich-structural Ni/Fe 3O 4/Ni/cellulose paper with a honeycomb surface for improved absorption performance of electromagnetic interference. Carbohydr Polym 2021; 260:117840. [PMID: 33712175 DOI: 10.1016/j.carbpol.2021.117840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Highly efficient shielding materials with an excellent electromagnetic wave absorption have gained increased attention. A new design was used to provide cellulose paper with a high electromagnetic shielding effectiveness (EMI SE) and improve the absorption performance by constructing an asymmetry sandwich structure that consisted of a dense nickel coating, Fe3O4 nanoparticles and a porous nickel layer. This unique structure caused a "multiple reflection-absorb-reflection" process when the electromagnetic waves penetrated the sample. The EMI absorption (SEA) and total SE (SET) increased with Fe3O4 absorption time increasing at 8.2-12.4 GHz, which was attributed to the synergistic effect between porous nickel layer and Fe3O4 nanoparticles. The SEA and SET of the sample with a thickness of 0.195 mm can achieved 18.57 and 41.88 dB, respectively. The design was conducive to improving the magnetic and corrosion resistance properties. This study provided a novel path to obtain a low cost and lightweight electromagnetic shielding material that can reduce secondary radiation.
Collapse
Affiliation(s)
- Ruoting Liu
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin, 150040, PR China
| | - Tingting Li
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin, 150040, PR China
| | - Jin Xu
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin, 150040, PR China
| | - Tongcheng Zhang
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin, 150040, PR China
| | - Yanjun Xie
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin, 150040, PR China
| | - Jian Li
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin, 150040, PR China
| | - Lijuan Wang
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin, 150040, PR China.
| |
Collapse
|
21
|
Zhang GQ, Gao LJ, Chai HM, Ren YX. Novel Multifunctional Samarium-Organic Framework for Fluorescence Sensing of Ag +, MnO 4 -, and Cimetidine and Electrochemical Sensing of o-Nitrophenol in Aqueous Solutions. ACS OMEGA 2021; 6:6810-6816. [PMID: 33748594 PMCID: PMC7970500 DOI: 10.1021/acsomega.0c05867] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 05/06/2023]
Abstract
A novel Sm-metal-organic framework (MOF) sensor with the molecular formula Sm8(HDBA)6·H2O has been prepared based on a penta-carboxyl organic ligand (H5DBA = 3,5-di(2',4'-dicarboxylphenyl)benzoic acid) and samarium nitrate under solvothermal conditions. Sm-MOF is characterized by single-crystal X-ray diffraction analysis, elemental analysis, thermogravimetric analysis, and powder X-ray diffraction analysis. Structural analysis shows that the dimer metal units are alternately connected to form a one-dimensional chain, and this chain is connected by the bridging carboxyl oxygen of the ligand H5DBA to form a two-dimensional double-layer plane, which then expands into a three-dimensional microporous framework. Fluorescence detection studies show that Sm-MOF can detect Ag+ ions, MnO4 - anions, and cimetidine tablets with high sensitivity and selectivity and can also be used to electrochemically detect o-nitrophenol in water. High-sensitivity detection capability of the Sm-MOF can enrich the application of samarium complexes in multifunctional sensors.
Collapse
Affiliation(s)
- Gang-qiang Zhang
- Shaanxi Key Laboratory
of
Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, P. R. China
| | - Lou-jun Gao
- Shaanxi Key Laboratory
of
Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, P. R. China
| | - Hong-mei Chai
- Shaanxi Key Laboratory
of
Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, P. R. China
| | - Yi-xia Ren
- Shaanxi Key Laboratory
of
Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, P. R. China
| |
Collapse
|