1
|
Podder S, Jungi H, Mitra J. In Pursuit of Carbon Neutrality: Progresses and Innovations in Sorbents for Direct Air Capture of CO 2. Chemistry 2025; 31:e202500865. [PMID: 40192268 DOI: 10.1002/chem.202500865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Direct air capture (DAC) is of immense current interest, as a means to facilitate CO2 capture at low concentrations (∼400 ppm) directly from the atmosphere, with the aim of addressing global warming caused by excessive anthropogenic CO2 production. Traditionally, DAC of CO2 has relied on amine scrubbing and metal carbonate /hydroxide solutions. However, recent years have seen notable progress in DAC sorbents, with key advancements aimed at improving efficiency, capacity, and regenerability while reducing energy consumption. This review delivers an exhaustive analysis of contemporary developments in DAC sorbents, addressing the innovations in material design and consequent performance enhancement. The limitations of the sorbents have also been discussed, with future perspectives for improving sustainable CO2 capture strategies. We anticipate that this overview will help lay the groundwork for further development and large-scale implementation of sustainable sorbents and cutting-edge technologies toward attaining carbon neutrality.
Collapse
Affiliation(s)
- Sumana Podder
- IMC Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hiren Jungi
- IMC Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Joyee Mitra
- IMC Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Huang A, Gupta AK, Jiang HZH, Zhuang H, Wenny MB, Klein RA, Kwon H, Meihaus KR, Furukawa H, Brown CM, Reimer JA, de Jong WA, Long JR. Phase Change-Mediated Capture of Carbon Dioxide from Air with a Molecular Triamine Network Solid. J Am Chem Soc 2025; 147:10519-10529. [PMID: 40073297 PMCID: PMC11951144 DOI: 10.1021/jacs.4c18643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
The efficient removal of CO2 from exhaust streams and even directly from air is necessary to forestall climate change, lending urgency to the search for new materials that can rapidly capture CO2 at high capacity. The recent discovery that diamine-appended metal-organic frameworks can exhibit cooperative CO2 uptake via the formation of ammonium carbamate chains begs the question of whether simple organic polyamine molecules could be designed to achieve a similar switch-like behavior with even higher separation capacities. Here, we present a solid molecular triamine, 1,3,5-tris(aminomethyl)benzene (TriH), that rapidly captures large quantities of CO2 upon exposure to humid air to form the porous, crystalline, ammonium carbamate network solid TriH(CO2)1.5·xH2O (TriHCO2). The phase transition behavior of TriH converting to TriHCO2 was studied through powder and single-crystal X-ray diffraction analysis, and additional spectroscopic techniques further verified the formation of ammonium carbamate species upon exposing TriH to humid air. Detailed breakthrough analyses conducted under varying temperatures, relative humidities, and flow rates reveal record CO2 absorption capacities as high as 8.9 mmol/g. Computational analyses reveal an activation barrier associated with TriH absorbing CO2 under dry conditions that is lowered under humid conditions through hydrogen bonding with a water molecule in the transition state associated with N-C bond formation. These results highlight the prospect of tunable molecular polyamines as a new class of candidate absorbents for high-capacity CO2 capture.
Collapse
Affiliation(s)
- Adrian
J. Huang
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Ankur K. Gupta
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Applied
Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Henry Z. H. Jiang
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Hao Zhuang
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Malia B. Wenny
- Center for
Neutron Research, National Institute of
Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ryan A. Klein
- Center for
Neutron Research, National Institute of
Standards and Technology, Gaithersburg, Maryland 20899, United States
- Materials,
Chemical, and Computational Sciences Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hyunchul Kwon
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Katie R. Meihaus
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Hiroyasu Furukawa
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Craig M. Brown
- Center for
Neutron Research, National Institute of
Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffrey A. Reimer
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Wibe A. de Jong
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Applied
Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Sylvanus AG, Jones GM, Custelcean R, Vogiatzis KD. In Silico Screening of CO 2-Dipeptide Interactions for Bioinspired Carbon Capture. Chemphyschem 2025; 26:e202400498. [PMID: 39607812 DOI: 10.1002/cphc.202400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
Carbon capture, sequestration and utilization offers a viable solution for reducing the total amount of atmospheric CO2 concentrations. On an industrial scale, amine-based solvents are extensively employed for CO2 capture through chemisorption. Nevertheless, this method is marked by the high cost associated with solvent regeneration, high vapor pressure, and the corrosive and toxic attributes of by-products, such as nitrosamines. An alternative approach is the biomimicry of sustainable materials that have strong affinity and selectivity for CO2. Bioinspired approaches, such as those based on naturally occurring amino acids, have been proposed for direct air capture methodologies. In this study, we present a database consisting of 960 dipeptide molecular structures, composed of the 20 naturally occurring amino acids. Those structures were analyzed with a novel computational workflow presented in this work that considers certain interaction sites that determine CO2 affinity. Density functional theory (DFT) and symmetry-adapted perturbation theory (SAPT) computations were performed for the calculation of CO2 interaction energies, which allowed to limit our search space to 400 unique dipeptide structures. Using this computational workflow, we provide statistical insights into dipeptides and their affinity for CO2 binding, as well as design principles that can further enhance CO2 capture through cooperative binding.
Collapse
Affiliation(s)
- Amarachi G Sylvanus
- Department of Chemistry, University of Tennessee, 37996, Knoxville, Tennessee, United States
| | - Grier M Jones
- Department of Chemistry, University of Tennessee, 37996, Knoxville, Tennessee, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, 37830-6119, Oak Ridge, Tennessee, United States
| | | |
Collapse
|
4
|
Kumar N, Bryantsev VS. Self-Assembled Oligomers Facilitate Amino Acid-Driven CO 2 Capture at the Air-Aqueous Interface. J Phys Chem B 2025; 129:1818-1826. [PMID: 39879123 DOI: 10.1021/acs.jpcb.4c05994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Direct air capture of CO2 using amino acid absorbents, such as glycine or sarcosine, is constrained by the relatively slow mass transfer of CO2 through the air-aqueous interface. Our recent study showed a marked improvement in CO2 capture by introducing CO2-permeable oligo-dimethylsiloxane (ODMS-MIM+) oligomers with cationic (imidazolium, MIM+) headgroups. In this work, we have employed all-atom molecular dynamics simulations in combination with subensemble analysis using network theory to provide a detailed molecular picture of the behavior of CO2 and the glycinate anions (Gly-) at the ODMS-MIM+ decorated air-aqueous interfaces. We show that the cationic head groups of the surfactants enhance the concentration and lifetime of Gly- in the interfacial region, while ODMS tails promote the physisorption of CO2 in the interfacial region. Together, these two factors increase the effective region of contact and the probability of interactions between CO2 and Gly- compared to that of the pure air-aqueous interface. The fundamental insights gained in this work establish essential foundations for developing hybrid systems with oligomer-decorated interfaces to maximize the overall CO2 capture rates.
Collapse
Affiliation(s)
- Nitesh Kumar
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
5
|
Premadasa UI, Kumar N, Stamberga D, Bocharova V, Damron JT, Li T, Roy S, Ma YZ, Bryantsev VS, Doughty B. Hierarchical ion interactions in the direct air capture of CO2 at air/aqueous interfaces. J Chem Phys 2024; 161:164707. [PMID: 39450735 DOI: 10.1063/5.0231272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
The direct air capture (DAC) of CO2 using aqueous solvents is plagued by slow kinetics and interfacial barriers that limit effectiveness in combating climate change. Functionalizing air/aqueous surfaces with charged amphiphiles shows promise in accelerating DAC; however, insight into these interfaces and how they evolve in time remains poorly understood. Specifically, competitive ion interactions between DAC reagents and reaction products feedback onto the interfacial structure, thereby modulating interfacial chemical composition and overall function. In this work, we probe the role of glycine amino acid anions (Gly-), an effective CO2 capture reagent, that promotes the organization of cationic oligomers at air/aqueous interfaces. These surfaces are probed with vibrational sum frequency generation spectroscopy and molecular dynamics simulations. Our findings demonstrate that the competition for surface sites between Gly- and captured carbonaceous anions (HCO3-, CO32-, carbamates) drives changes in surface hydration, which in turn tunes oligomer ordering. This phenomenon is related to a hierarchical ordering of anions at the surface that are electrostatically attracted to the surface and their ability to compete for interfacial water. These results point to new ways to tune interfaces for DAC via stratification of ions based on relative surface propensities and specific ion effects.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Nitesh Kumar
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Diana Stamberga
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Joshua T Damron
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
6
|
Premadasa UI, Doughty B, Custelcean R, Ma YZ. Towards Energy-Efficient Direct Air Capture with Photochemically-Driven CO 2 Release and Solvent Regeneration. Chempluschem 2024; 89:e202300713. [PMID: 38456801 DOI: 10.1002/cplu.202300713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
The intensive energy demands associated with solvent regeneration and CO2 release in current direct air capture (DAC) technologies makes their deployment at the massive scales (GtCO2/year) required to positively impact the climate economically unfeasible. This challenge underscores the critical need to develop new DAC processes with significantly reduced energy costs. Recently, we developed a new approach to photochemically drive efficient release of CO2 through an intermolecular proton transfer reaction by exploiting the unique properties of an indazole metastable-state photoacid (mPAH), opening a new avenue towards energy efficient on-demand CO2 release and solvent regeneration using abundant solar energy instead of heat. In this Concept Article, we will describe the principle of our photochemically-driven CO2 release approach for solvent-based DAC systems, discuss the essential prerequisites and conditions to realize this cyclable CO2 release chemistry under ambient conditions. We outline the key findings of our approach, discuss the latest developments from other research laboratories, detail approaches used to monitor DAC systems in situ, and highlight experimental procedures for validating its feasibility. We conclude with a summary and outlook into the immediate challenges that must be addressed in order to fully exploit this novel photochemically-driven approach to DAC solvent regeneration.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, 37831, Oak Ridge, TN, USA
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, 37831, Oak Ridge, TN, USA
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, 37831, Oak Ridge, TN, USA
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, 37831, Oak Ridge, TN, USA
| |
Collapse
|
7
|
Xiao YC, Sun SS, Zhao Y, Miao RK, Fan M, Lee G, Chen Y, Gabardo CM, Yu Y, Qiu C, Guo Z, Wang X, Papangelakis P, Huang JE, Li F, O'Brien CP, Kim J, Han K, Corbett PJ, Howe JY, Sargent EH, Sinton D. Reactive capture of CO 2 via amino acid. Nat Commun 2024; 15:7849. [PMID: 39245666 PMCID: PMC11381538 DOI: 10.1038/s41467-024-51908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Reactive capture of carbon dioxide (CO2) offers an electrified pathway to produce renewable carbon monoxide (CO), which can then be upgraded into long-chain hydrocarbons and fuels. Previous reactive capture systems relied on hydroxide- or amine-based capture solutions. However, selectivity for CO remains low (<50%) for hydroxide-based systems and conventional amines are prone to oxygen (O2) degradation. Here, we develop a reactive capture strategy using potassium glycinate (K-GLY), an amino acid salt (AAS) capture solution applicable to O2-rich CO2-lean conditions. By employing a single-atom catalyst, engineering the capture solution, and elevating the operating temperature and pressure, we increase the availability of dissolved in-situ CO2 and achieve CO production with 64% Faradaic efficiency (FE) at 50 mA cm-2. We report a measured CO energy efficiency (EE) of 31% and an energy intensity of 40 GJ tCO-1, exceeding the best hydroxide- and amine-based reactive capture reports. The feasibility of the full reactive capture process is demonstrated with both simulated flue gas and direct air input.
Collapse
Affiliation(s)
- Yurou Celine Xiao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Siyu Sonia Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Yong Zhao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Mengyang Fan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Yuanjun Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Christine M Gabardo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Yan Yu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Chenyue Qiu
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada
| | - Zunmin Guo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Xinyue Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Panagiotis Papangelakis
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Jianan Erick Huang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Feng Li
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Jiheon Kim
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Kai Han
- Shell Global Solutions International B.V., Amsterdam, The Netherlands
| | - Paul J Corbett
- Shell Global Solutions International B.V., Amsterdam, The Netherlands
| | - Jane Y Howe
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Li C, Ziller JW, Barlow JM, Yang JY. Aqueous Electrochemical and pH Studies of Redox-Active Guanidino Functionalized Aromatics for CO 2 Capture. ACS ORGANIC & INORGANIC AU 2024; 4:387-394. [PMID: 39132019 PMCID: PMC11311035 DOI: 10.1021/acsorginorgau.3c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 08/13/2024]
Abstract
Escalating levels of carbon dioxide (CO2) in the atmosphere have motivated interest in CO2 capture and concentration from dilute streams. A guanidino-functionalized aromatic 1,4-bis(tetramethylguanidino)benzene (1,4-btmgb) was evaluated both as a redox-active sorbent and as a pH swing mediator for electrochemical CO2 capture and concentration. Spectroscopic and crystallographic studies demonstrate that 1,4-btmgb reacts with CO2 in water to form 1,4-btmgbH2(HCO3 -)2. The product suggests that 1,4-btmgb could be used in an aqueous redox pH swing cycle for the capture and concentration of CO2. The synthesis and characterization of the mono- and diprotonated forms (1,4-btmgbH+ and 1,4-btmgbH2 2+) and their pK a values were measured to be 13.5 and 11.0 in water, respectively. Electrochemical pH swing experiments indicate the formation of an intermediate radical species and other degradation pathways, which ultimately inhibited fully reversible redox-induced pH cycling.
Collapse
Affiliation(s)
- Clarabella
J. Li
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Jeffrey M. Barlow
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
9
|
Premadasa UI, Kumar N, Zhu Z, Stamberga D, Li T, Roy S, Carrillo JMY, Einkauf JD, Custelcean R, Ma YZ, Bocharova V, Bryantsev VS, Doughty B. Synergistic Assembly of Charged Oligomers and Amino Acids at the Air-Water Interface: An Avenue toward Surface-Directed CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12052-12061. [PMID: 38411063 DOI: 10.1021/acsami.3c18225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Interfaces are considered a major bottleneck in the capture of CO2 from air. Efforts to design surfaces to enhance CO2 capture probabilities are challenging due to the remarkably poor understanding of chemistry and self-assembly taking place at these interfaces. Here, we leverage surface-specific vibrational spectroscopy, Langmuir trough techniques, and simulations to mechanistically elucidate how cationic oligomers can drive surface localization of amino acids (AAs) that serve as CO2 capture agents speeding up the apparent rate of absorption. We demonstrate how tuning these interfaces provides a means to facilitate CO2 capture chemistry to occur at the interface, while lowering surface tension and improving transport/reaction probabilities. We show that in the presence of interfacial AA-rich aggregates, one can improve capture probabilities vs that of a bare interface, which holds promise in addressing climate change through the removal of CO2 via tailored interfaces and associated chemistries.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nitesh Kumar
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zewen Zhu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Diana Stamberga
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jeffrey D Einkauf
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
10
|
Dejam M, Hassanzadeh H. Upscaling of dispersion in gas-liquid absorption on an inclined surface. Phys Rev E 2023; 108:035104. [PMID: 37849203 DOI: 10.1103/physreve.108.035104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/17/2023] [Indexed: 10/19/2023]
Abstract
We extend the Taylor-Aris dispersion theory to upscale the gas absorption into a viscous incompressible liquid flowing along an inclined surface. A reduced-order model of advection-dispersion-reaction is developed with the aid of Reynolds decomposition and cross-sectional averaging techniques. The upscaled model allowed evaluation of the dispersion, advection, and absorption kinetics as a function of the Peclet number (Pe) and the Damköhler number (Da). The transport and kinetics parameters for the limiting cases of nonabsorption and absorption dominant are also evaluated. The upscaled model is solved analytically, and the obtained solution is used to evaluate the upscaled mass transfer between the gas and liquid. The results for the overall Sherwood number identify three regions: (i) advection dominant, (ii) transition where both advection and absorption play a role, and (iii) absorption dominant. The scaling relation between the Sherwood number (Sh) and the Da for the last region was determined to follow Sh∼Da^{1/2}. It is also revealed that in the first two regions, the Sherwood number versus the Peclet number exhibits a bell-shaped (or Gaussian) behavior, suggesting an optimal Pe that maximizes mass transfer between gas and liquid in these regions. The model and insights presented have the potential to be applied in a wide range of industrial separation processes involving the interaction of a gas exposed to a liquid flowing downward on an inclined surface under gravity.
Collapse
Affiliation(s)
- Morteza Dejam
- Department of Energy and Petroleum Engineering, College of Engineering and Physical Sciences, University of Wyoming, 1000 E. University Avenue, Laramie, Wyoming 82071-2000, USA
| | - Hassan Hassanzadeh
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
11
|
Premadasa UI, Dong D, Stamberga D, Custelcean R, Roy S, Ma YZ, Bocharova V, Bryantsev VS, Doughty B. Chemical Feedback in the Self-Assembly and Function of Air-Liquid Interfaces: Insight into the Bottlenecks of CO 2 Direct Air Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19634-19645. [PMID: 36944180 DOI: 10.1021/acsami.3c00719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As fossil fuels remain a major source of energy throughout the world, developing efficient negative emission technologies, such as direct air capture (DAC), which remove carbon dioxide (CO2) from the air, becomes critical for mitigating climate change. Although all DAC processes involve CO2 transport from air into a sorbent/solvent, through an air-solid or air-liquid interface, the fundamental roles the interfaces play in DAC remain poorly understood. Herein, we study the interfacial behavior of amino acid (AA) solvents used in DAC through a combination of vibrational sum frequency generation spectroscopy and molecular dynamics simulations. This study revealed that the absorption of atmospheric CO2 has antagonistic effects on subsequent capture events that are driven by changes in bulk pH and specific ion effects that feedback on surface organization and interactions. Among the three AAs (leucine, valine, and phenylalanine) studied, we identify and separate behaviors from CO2 loading, chemical changes, variations in pH, and specific ion effects that tune structural and chemical degrees of freedom at the air-aqueous interface. The fundamental mechanistic findings described here are anticipated to enable new approaches to DAC based on exploiting interfaces as a tool to address climate change.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dengpan Dong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Diana Stamberga
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
12
|
Ultra-fast Microwave Regeneration of CO2 Solid Sorbents for Energy-Efficient Direct Air Capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Wang S, Long Q, Shen S. Regulating phase change behaviors of water-lean absorbents containing potassium prolinate and 2-butoxyethanol for CO2 capture: Effect of water content. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Lee YY, Wickramasinghe NP, Dikki R, Jan DL, Gurkan B. Facilitated transport membrane with functionalized ionic liquid carriers for CO 2/N 2, CO 2/O 2, and CO 2/air separations. NANOSCALE 2022; 14:12638-12650. [PMID: 36040354 DOI: 10.1039/d2nr03214g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CO2 separations from cabin air and the atmospheric air are challenged by the very low partial pressures of CO2. In this study, a facilitated transport membrane (FTM) is developed to separate CO2 from air using functionalized ionic liquid (IL) and poly(ionic liquid) (PIL) carriers. A highly permeable bicontinuous structured poly(ethersulfone)/poly(ethylene terephthalate) (bPES/PET) substrate is used to support the PIL-IL impregnated graphene oxide thin film. The CO2 separation performance was tested under a mixture feed of CO2/N2/O2/H2O. Under 410 ppm of CO2 at 1 atm feed gas, CO2 permanence of 3923 GPU, and CO2/N2 and CO2/O2 selectivities of 1200 and 300, respectively, are achieved with helium sweeping on the permeate side. For increased transmembrane pressure (>0 atm), a thicker PIL-IL/GO layer was shown to provide mechanical strength and prevent leaching of the mobile carrier. CO2 binding to the carriers, ion diffusivities, and the glass transition temperature of the PIL-IL gels were examined to determine the membrane composition and rationalize the superior separation performance obtained. This report represents the first FTM study with PIL-IL carriers for CO2 separation from air.
Collapse
Affiliation(s)
- Yun-Yang Lee
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nalinda P Wickramasinghe
- Northeast Ohio High Field NMR Facility, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Ruth Dikki
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Darrell L Jan
- Ames Research Center, National Aeronautics and Space Administration, Moffett Field, CA 94043, USA.
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
15
|
Kikkawa S, Amamoto K, Fujiki Y, Hirayama J, Kato G, Miura H, Shishido T, Yamazoe S. Direct Air Capture of CO 2 Using a Liquid Amine-Solid Carbamic Acid Phase-Separation System Using Diamines Bearing an Aminocyclohexyl Group. ACS ENVIRONMENTAL AU 2022; 2:354-362. [PMID: 37101968 PMCID: PMC10125313 DOI: 10.1021/acsenvironau.1c00065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The phase separation between a liquid amine and the solid carbamic acid exhibited >99% CO2 removal efficiency under a 400 ppm CO2 flow system using diamines bearing an aminocyclohexyl group. Among them, isophorone diamine [IPDA; 3-(aminomethyl)-3,5,5-trimethylcyclohexylamine] exhibited the highest CO2 removal efficiency. IPDA reacted with CO2 in a CO2/IPDA molar ratio of ≥1 even in H2O as a solvent. The captured CO2 was completely desorbed at 333 K because the dissolved carbamate ion releases CO2 at low temperatures. The reusability of IPDA under CO2 adsorption-and-desorption cycles without degradation, the >99% efficiency kept for 100 h under direct air capture conditions, and the high CO2 capture rate (201 mmol/h for 1 mol of amine) suggest that the phase separation system using IPDA is robust and durable for practical use.
Collapse
Affiliation(s)
- Soichi Kikkawa
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
- Elements
Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615−8245, Japan
| | - Kazushi Amamoto
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
| | - Yu Fujiki
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
| | - Jun Hirayama
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
- Elements
Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615−8245, Japan
| | - Gen Kato
- Department
of Applied Chemistry for Environment, Graduate School of Urban Environmental
Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
| | - Hiroki Miura
- Elements
Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615−8245, Japan
- Research
Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
- Department
of Applied Chemistry for Environment, Graduate School of Urban Environmental
Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
| | - Tetsuya Shishido
- Elements
Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615−8245, Japan
- Research
Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
- Department
of Applied Chemistry for Environment, Graduate School of Urban Environmental
Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
| | - Seiji Yamazoe
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
- Elements
Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615−8245, Japan
- Research
Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
16
|
Abstract
Large-scale deployment of negative emissions technologies (NETs) that permanently remove CO2 from the atmosphere is now considered essential for limiting the global temperature increase to less than 2°C by the end of this century. One promising NET is direct air capture (DAC), a technology that employs engineered chemical processes to remove atmospheric carbon dioxide, potentially at the scale of billions of metric tons per year. This review highlights one of the two main approaches to DAC based on aqueous solvents. The discussion focuses on different aspects of DAC with solvents, starting with the fundamental chemistry that includes the chemical species and reactions involved and the thermodynamics and kinetics of CO2 binding and release. Chemical engineering aspects are also discussed, including air-liquid contactor design, process development, and techno-economic assessments to estimate the cost of the DAC technologies. Various solvents employed in DAC are reviewed, from aqueous alkaline solutions (NaOH, KOH) to aqueous amines, amino acids, and peptides, along with different solvent regeneration methods, from the traditional thermal swinging to the more exploratory carbonate crystallization with guanidines or electrochemical methods. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA;
| |
Collapse
|
17
|
|
18
|
|
19
|
Custelcean R. Direct air capture of CO 2 via crystal engineering. Chem Sci 2021; 12:12518-12528. [PMID: 34703538 PMCID: PMC8494026 DOI: 10.1039/d1sc04097a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/12/2021] [Indexed: 12/21/2022] Open
Abstract
This article presents a perspective view of the topic of direct air capture (DAC) of carbon dioxide and its role in mitigating climate change, focusing on a promising approach to DAC involving crystal engineering of metal-organic and hydrogen-bonded frameworks. The structures of these crystalline materials can be easily elucidated using X-ray and neutron diffraction methods, thereby allowing for systematic structure-property relationships studies, and precise tuning of their DAC performance.
Collapse
Affiliation(s)
- Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
20
|
Carbon dioxide capture with aqueous amino acids: Mechanistic study of amino acid regeneration by guanidine crystallization and process intensification. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
McDonald MA, Salami H, Harris PR, Lagerman CE, Yang X, Bommarius AS, Grover MA, Rousseau RW. Reactive crystallization: a review. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00272k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive crystallization is not new, but there has been recent growth in its use as a means of improving performance and sustainability of industrial processes.
Collapse
Affiliation(s)
- Matthew A. McDonald
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Hossein Salami
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Patrick R. Harris
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Colton E. Lagerman
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Xiaochuan Yang
- Office of Pharmaceutical Quality
- Center for Drug Evaluation and Research
- U.S. Food and Drug Administration
- Silver Spring
- USA
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Martha A. Grover
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Ronald W. Rousseau
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
22
|
Custelcean R, Williams NJ, Wang X, Garrabrant KA, Martin HJ, Kidder MK, Ivanov AS, Bryantsev VS. Dialing in Direct Air Capture of CO 2 by Crystal Engineering of Bisiminoguanidines. CHEMSUSCHEM 2020; 13:6381-6390. [PMID: 33411422 DOI: 10.1002/cssc.202001114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Indexed: 05/27/2023]
Abstract
Direct air capture (DAC) technologies that extract carbon dioxide from the atmosphere via chemical processes have the potential to restore the atmospheric CO2 concentration to an optimal level. This study elucidates structure-property relationships in DAC by crystallization of bis(iminoguanidine) (BIG) carbonate salts. Their crystal structures are analyzed by X-ray and neutron diffraction to accurately measure key structural parameters including molecular conformations, hydrogen bonding, and π-stacking. Experimental measurements of key properties, such as aqueous solubilities and regeneration energies and temperatures, are complemented by first-principles calculations of lattice and hydration free energies, as well as free energies of reactions with CO2, and BIG regenerations. Minor structural modifications in the molecular structure of the BIGs are found to result in major changes in the crystal structures and the aqueous solubilities within the series, leading to enhanced DAC.
Collapse
Affiliation(s)
- Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Neil J Williams
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaoping Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Halie J Martin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Michelle K Kidder
- Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
23
|
Liu M, Custelcean R, Seifert S, Kuzmenko I, Gadikota G. Hybrid Absorption–Crystallization Strategies for the Direct Air Capture of CO 2 Using Phase-Changing Guanidium Bases: Insights from in Operando X-ray Scattering and Infrared Spectroscopy Measurements. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meishen Liu
- School of Civil and Environmental Engineering, Cornell University, 527 College Avenue, 117 Hollister Hall, Ithaca, New York 14853, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Soenke Seifert
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ivan Kuzmenko
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Greeshma Gadikota
- School of Civil and Environmental Engineering, Cornell University, 527 College Avenue, 117 Hollister Hall, Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Custelcean R. Iminoguanidines: from anion recognition and separation to carbon capture. Chem Commun (Camb) 2020; 56:10272-10280. [PMID: 32716430 DOI: 10.1039/d0cc04332j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iminoguanidines, first reported in 1898, have received renewed attention in the last 5 years due to their ability to recognize and separate anions from competitive aqueous environments. Iminoguanidines display high recognition abilities towards hydrophilic oxyanions (e.g., sulfate, chromate, carbonate) through strong and complementary hydrogen bonding from the guanidinium groups. This feature article reviews the fundamental anion recognition chemistry of iminoguanidines, as well as real-world applications including sulfate removal from seawater and CO2 capture for climate change mitigations.
Collapse
Affiliation(s)
- Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| |
Collapse
|
25
|
Ye Y, Li D, Xu P, Sun J. B-Doped and NH2-functionalized SBA-15 with hydrogen bond donor groups for effective catalysis of CO2 cycloaddition to epoxides. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00703j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The novel B-SBA-15-NH2 catalyst with Lewis acid–base properties and hydrogen bond donor groups exhibited good catalytic performance for CO2 conversion under metal- and solvent-free conditions.
Collapse
Affiliation(s)
- Yifei Ye
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Dazhi Li
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Ping Xu
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| |
Collapse
|