1
|
Tandel AM, Agarwal M, Deng E, Zhu L, Friedman K, Yu M, Cheng C, Lin H. Scalable Graphene Oxide Hollow Fiber Membranes for Dye Desalination Enabled by Multi-Purpose Polyamine Functionalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403620. [PMID: 39221703 DOI: 10.1002/smll.202403620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/09/2024] [Indexed: 09/04/2024]
Abstract
2D nanosheets such as graphene oxide (GO) can be stacked to construct membranes with fine-tuned nanochannels to achieve molecular sieving ability. These membranes are often thin to achieve high water permeance, but their fabrication with consistent nanostructures on a large scale presents an enormous challenge. Herein, GO-based hollow fiber membranes (HFMs) are developed for dye desalination by synergistically combining chemical etching to form in-plane nanopores (10-30 nm) to increase water permeance and polyamine functionalization to improve underwater stability and enable facile large-scale production using existing membrane manufacturing processes. HFM modules with areas of 88 cm2 and GO layer thicknesses of ≈500 nm are fabricated, and they exhibited a stable dye water permeance of 75 L m-2 h-1 bar-1, rejection of >99.5% for Direct red and Congo red, and Na2SO4/dye separation factor of 300-500, superior to state-of-the-art commercial membranes. The versatility of this approach is also demonstrated using different short polyamines and porous substrates. This study reveals a scalable way of designing 2D materials into high-performance robust membranes for practical applications.
Collapse
Affiliation(s)
- Ameya Manoj Tandel
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Manas Agarwal
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Erda Deng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Lingxiang Zhu
- Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA, 15236, USA
- NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA, 15236, USA
| | - Kaleb Friedman
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Miao Yu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
2
|
Galyaltdinov S, Safina G, Kiiamov A, Dimiev AM. Membranes Based on Aminated Graphene Oxide with High Selectivity Toward Organic Substances. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17667-17674. [PMID: 39107677 DOI: 10.1021/acs.langmuir.4c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In this work, membranes based on graphene oxide, modified with oleylamine, have been prepared by a simple wet chemistry protocol without the use of complex equipment, elevated temperature, and additional reagents. The membrane material was characterized by a set of physicochemical methods: thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffractometry, and X-ray photoelectron spectroscopy. The prepared membranes are stable in both aqueous and organic media. The membranes have a high flux for organic substances and do not permeate water at room temperature and atmospheric pressure. The selectivity of the membranes toward organic substances increases with their thickness. The highest flux among the tested organic liquids is registered for methanol. The membranes have high selectivity toward ethanol/1-butanol and acetone/1-butanol pairs, which opens up the possibility of separating actual industrial mixtures. The membrane retains 90% of methylene blue from the alcohol solution. Our work expands the possibilities of using modified GO-based membranes in purification and filtration technologies.
Collapse
Affiliation(s)
- Shamil Galyaltdinov
- Laboratory for Advanced Carbon Nanomaterials, Chemical Institute, Kazan Federal University, Kremlyovskaya Str. 18, Kazan 420008 Tatarstan, Russian Federation
| | - Gulfina Safina
- Laboratory for Advanced Carbon Nanomaterials, Chemical Institute, Kazan Federal University, Kremlyovskaya Str. 18, Kazan 420008 Tatarstan, Russian Federation
| | - Airat Kiiamov
- Institute of Physics, Kazan Federal University, Kremlyovskaya Str. 18, Kazan 420008 Tatarstan, Russian Federation
| | - Ayrat M Dimiev
- Laboratory for Advanced Carbon Nanomaterials, Chemical Institute, Kazan Federal University, Kremlyovskaya Str. 18, Kazan 420008 Tatarstan, Russian Federation
- Department of Chemistry, Rice University, 6100, Main Street, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Wang J, Cheng C, Zheng X, Idrobo JC, Lu AY, Park JH, Shin BG, Jung SJ, Zhang T, Wang H, Gao G, Shin B, Jin X, Ju L, Han Y, Li LJ, Karnik R, Kong J. Cascaded compression of size distribution of nanopores in monolayer graphene. Nature 2023; 623:956-963. [PMID: 38030784 DOI: 10.1038/s41586-023-06689-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/28/2023] [Indexed: 12/01/2023]
Abstract
Monolayer graphene with nanometre-scale pores, atomically thin thickness and remarkable mechanical properties provides wide-ranging opportunities for applications in ion and molecular separations1, energy storage2 and electronics3. Because the performance of these applications relies heavily on the size of the nanopores, it is desirable to design and engineer with precision a suitable nanopore size with narrow size distributions. However, conventional top-down processes often yield log-normal distributions with long tails, particularly at the sub-nanometre scale4. Moreover, the size distribution and density of the nanopores are often intrinsically intercorrelated, leading to a trade-off between the two that substantially limits their applications5-9. Here we report a cascaded compression approach to narrowing the size distribution of nanopores with left skewness and ultrasmall tail deviation, while keeping the density of nanopores increasing at each compression cycle. The formation of nanopores is split into many small steps, in each of which the size distribution of all the existing nanopores is compressed by a combination of shrinkage and expansion and, at the same time as expansion, a new batch of nanopores is created, leading to increased nanopore density by each cycle. As a result, high-density nanopores in monolayer graphene with a left-skewed, short-tail size distribution are obtained that show ultrafast and ångström-size-tunable selective transport of ions and molecules, breaking the limitation of the conventional log-normal size distribution9,10. This method allows for independent control of several metrics of the generated nanopores, including the density, mean diameter, standard deviation and skewness of the size distribution, which will lead to the next leap in nanotechnology.
Collapse
Affiliation(s)
- Jiangtao Wang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Chi Cheng
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales, Australia.
| | - Xudong Zheng
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Juan Carlos Idrobo
- Materials Science and Engineering Department, University of Washington, Seattle, WA, USA
| | - Ang-Yu Lu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ji-Hoon Park
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bong Gyu Shin
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Soon Jung Jung
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Tianyi Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haozhe Wang
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Guanhui Gao
- Materials Science and NanoEngineering Department, Rice University, Houston, TX, USA
| | - Bongki Shin
- Materials Science and NanoEngineering Department, Rice University, Houston, TX, USA
| | - Xiang Jin
- Department of Physics, Tsinghua University, Beijing, China
| | - Long Ju
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yimo Han
- Materials Science and NanoEngineering Department, Rice University, Houston, TX, USA
| | - Lain-Jong Li
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong SAR, China
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Xu M, Tang Q, Liu Y, Shi J, Zhang W, Guo C, Liu Q, Lei W, Chen C. Charged Boron Nitride Nanosheet Membranes for Improved Organic Solvent Nanofiltration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12524-12533. [PMID: 36820819 DOI: 10.1021/acsami.2c20893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional nanomaterial-based membranes have earned broad attention because of their excellent capability of separation performance in a mixture that can challenge the conventional membrane materials utilized in the organic solvent nanofiltration (OSN) field. Boron nitride (BN) nanosheet membranes have displayed superb stability and separation ability in aqueous and organic solutions compared to the widely researched analogous graphene-based membranes; nevertheless, the concentration polarization of organic dye pollutants fades their separation performance and eclipses their potential adoption as a feasible technology. Herein, PDDA-modified BN (PBN) and sodium alginate-modified BN (SBN) nanosheet membranes with a thinner laminar structure are facially fabricated to improve the molecule separation performance compared to that of the pristine BN membrane. In aqueous separation application, the SBN membranes (2 μm) can reject positively charged dyes up to 100% and the PBN membrane (2 μm) could reject negatively charged dyes up to 100%. Impressively, the PBN membranes (3 μm) and SBN membranes (3 μm) demonstrate record high performances in OSN, with a permeance of 809 L m-2 h-1 bar-1 and 97.71% rejection to acid fuchsin in acetonitrile and 290 L m-2 h-1 bar-1 and 94.94% rejection to Azure B in dimethyl sulfoxide, respectively. The charged PBN and SBN nanosheet membranes demonstrate stable separation capability, exhibiting their potential for practical water and organic solvent purification processes.
Collapse
Affiliation(s)
- Mao Xu
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Qi Tang
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Yuchen Liu
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
- Institute for Frontier Materials, Deakin University, Locked Bag 2000, Geelong, Victoria 3220, Australia
| | - Jiaqi Shi
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Weiyu Zhang
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Chan Guo
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Qiuwen Liu
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Locked Bag 2000, Geelong, Victoria 3220, Australia
| | - Cheng Chen
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| |
Collapse
|
5
|
Zhou K, Guo C, Gan F, Xin JH, Yu H. Large-area ultra-thin GO nanofiltration membranes prepared by a pre-crosslinking rod coating technique. J Colloid Interface Sci 2023; 640:261-269. [PMID: 36863182 DOI: 10.1016/j.jcis.2023.02.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
In existing separation membranes, it is difficult to quickly produce large-area graphene oxide (GO) nanofiltration membranes with high permeability and high rejection, which is the bottleneck of industrialization. In this study, a pre-crosslinking rod-coating technique is reported. A GO-P-Phenylenediamine (PPD) suspension was obtained by chemically crosslinking GO and PPD for 180 min. After scraping and coating with a Mayer rod, the ultra-thin GO-PPD nanofiltration membrane with an area of 400 cm2 and a thickness of 40 nm was prepared in 30 s. The PPD formed an amide bond with GO to improve its stability. It also increased the layer spacing of GO membrane, which could improve the permeability. The prepared GO nanofiltration membrane had a 99 % rejection rate for dyes such as methylene blue, crystal violet, and Congo red. Meanwhile, the permeation flux reached to 42 LMH/bar, which was 10 times that of the GO membrane without PPD crosslinking, and it still maintained excellent stability under strongly acidic and basic conditions. This work successfully solved the problems of GO nanofiltration membranes, including the large-area fabrication, high permeability and high rejection.
Collapse
Affiliation(s)
- Kai Zhou
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Changsheng Guo
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Feng Gan
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - John H Xin
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Hui Yu
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
6
|
Mohammed S. Graphene oxide: A mini-review on the versatility and challenges as a membrane material for solvent-based separation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Pandey RP, Kallem P, Hegab HM, Rasheed PA, Banat F, Hasan SW. Cross-linked laminar graphene oxide membranes for wastewater treatment and desalination: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115367. [PMID: 35636111 DOI: 10.1016/j.jenvman.2022.115367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) lamellar graphene oxide (GO) membranes are emerging as attractive materials for molecular separation in water treatment because of their single atomic thickness, excellent hydrophilicity, large specific surface areas, and controllable properties. To yet, commercialization of GO laminar membranes has been hindered by their propensity to swell in hydrated conditions. Thus, chemical crosslinking of GO sheets with the polymer matrix is used to improve GO membrane hydration stability. This review focuses on pertinent themes such as how chemical crosslinking improves the hydration stability, separation performance, and antifouling properties of GO membranes.
Collapse
Affiliation(s)
- Ravi P Pandey
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Parashuram Kallem
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, 678 557, Kerala, India
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
8
|
Yao A, Hua D, Gao ZF, Pan J, Ibrahim AR, Zheng D, Hong Y, Liu Y, Zhan G. Fabrication of organic solvent nanofiltration membrane using commercial PVDF substrate via interfacial polymerization on top of metal-organic frameworks interlayer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Nanofiltration Performance of Glutaraldehyde Crosslinked Graphene Oxide-Cellulose Nanofiber Membrane. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Feng W, Li J, Fang C, Zhang L, Zhu L. Controllable thermal annealing of polyimide membranes for highly-precise organic solvent nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Nam YT, Kang JH, Jang JD, Bae JH, Jung HT, Kim DW. Recent Developments in Nanoporous Graphene Membranes for Organic Solvent Nanofiltration: A Short Review. MEMBRANES 2021; 11:membranes11100793. [PMID: 34677558 PMCID: PMC8538602 DOI: 10.3390/membranes11100793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022]
Abstract
Graphene-based membranes are promising candidates for efficient organic solvent nanofiltration (OSN) processes because of their unique structural characteristics, such as mechanical/chemical stability and precise molecular sieving. Recently, to improve organic solvent permeance and selectivity, nanopores have been fabricated on graphene planes via chemical and physical methods. The nanopores serve as an additional channel for facilitating ultrafast solvent permeation while filtering organic molecules by size exclusion. This review summarizes the recent developments in nanoporous graphene (NG)-based membranes for OSN applications. The membranes are categorized depending on the membrane structure: single-layer NG, multilayer NG, and graphene-based composite membranes hybridized with other porous materials. Techniques for nanopore generation on graphene, as well as the challenges faced and the perspectives required for the commercialization of NG membranes, are also discussed.
Collapse
Affiliation(s)
- Yoon-Tae Nam
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Yuseong-gu, Daejeon 34141, Korea; (Y.-T.N.); (J.-D.J.)
| | - Jun-Hyeok Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea; (J.-H.K.); (J.-H.B.)
| | - Jae-Dong Jang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Yuseong-gu, Daejeon 34141, Korea; (Y.-T.N.); (J.-D.J.)
| | - Jun-Hyuk Bae
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea; (J.-H.K.); (J.-H.B.)
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Yuseong-gu, Daejeon 34141, Korea; (Y.-T.N.); (J.-D.J.)
- Correspondence: (H.-T.J.); (D.-W.K.)
| | - Dae-Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea; (J.-H.K.); (J.-H.B.)
- Correspondence: (H.-T.J.); (D.-W.K.)
| |
Collapse
|
12
|
Bera R, Priyadarshini A, Ong PJ, Hong L. Strategy to Chemically Decorate Nanopores of a Carbon Membrane for Filtrating Polyphenolics from Ethanol. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10524-10536. [PMID: 33605145 DOI: 10.1021/acsami.0c17977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study invents a post-pyrolysis modification approach to render the resulting carbon membrane (CM) competent for organic solvent nanofiltration (OSN). A bitumen coating on a porous stainless-steel disk (PSD) serves as the precursor for the intended carbon membrane (CM), which is attained through pyrolysis in Ar. The bitumen coating casts dual-pore networks in the CM because of the dominant asphaltene constituent in bitumen. The subsequent chemical decoration of CM was pursued through the following protocol: dopamine (DA) was deployed in the nanopores of CM via pressurized infiltration and followed by Tris buffer passes through to trigger in situ conversion of DA to polydopamine (PDA), which was affixed over the pore walls to furnish chemical affinity (termed as CMPDA). Additionally, the catechol moiety of PDA was arranged to chelate with the Zn2+ ion, aiming to trim the -OH anchor (termed as CMPDA-Zn) to probe the effect of chelate on separation. The three membranes (CM, CMPDA, and CMPDA-Zn) were thereafter assessed by the separation of ethanol or isopropanol from phenolics [tannic acid (TA)/tetracycline (TC)]. A significantly improved OSN performance [rejection (%) ↔ permeance (L/(m2·h·bar))] of CM vs CMPDA was observed: (i) for TA feed, 13% ↔ 85 L/(m2·h·bar) vs 83% ↔ 12 L/(m2·h·bar); and (ii) for TC feed, 20% ↔ 78 L/(m2·h·bar) vs 78% ↔ 12 L/(m2·h·bar). Compared to CMPDA, CMPDA-Zn further advances the rejection performance (∼89% for TA and ∼80% for TC) over 50 h separation. They are benchmarked by the latest literature results. The performance enhancements can be attributed to the spreading of PDA or PDA-Zn sites in the dual-pore networks, so that they are able to offer H-bonding and steric blocking roles, a chemicomechanical effect, to seize solute molecules over pore walls. It is this interfacial drag effect that sustains the solute rejection.
Collapse
Affiliation(s)
- Ranadip Bera
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Antara Priyadarshini
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Pin Jin Ong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Liang Hong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
13
|
Sui X, Yuan Z, Yu Y, Goh K, Chen Y. 2D Material Based Advanced Membranes for Separations in Organic Solvents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003400. [PMID: 33217172 DOI: 10.1002/smll.202003400] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/25/2020] [Indexed: 06/11/2023]
Abstract
2D materials have shown high potentials for fabricating next-generation membranes. To date, extensive studies have focused on the applications of 2D material membranes in gas and aqueous media. Recently, compelling opportunities emerge for 2D material membranes in separation applications in organic solvents because of their unique properties, such as ultrathin mono- to few-layers, outstanding chemical resistance toward organic solvents. Hence, this review aims to provide a timely overview of the current state-of-the-art of 2D material membranes focusing on their applications in organic solvent separations. 2D material membranes fabricated using graphene materials and a few representative nongraphene-based 2D materials, including covalent organic frameworks and MXenes, are summarized. The key membrane design strategies and their effects on separation performances in organic solvents are also examined. Last, several perspectives are provided in terms of the critical challenges for 2D material membranes, including standardization of membrane performance evaluation, improving understandings of separation mechanisms, managing the trade-off of permeability and selectivity, issues related to application versatility, long-term stability, and fabrication scalability. This review will provide a useful guide for researchers in creating novel 2D material membranes for advancing new separation techniques in organic solvents.
Collapse
Affiliation(s)
- Xiao Sui
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ziwen Yuan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yanxi Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
14
|
Iakunkov A, Talyzin AV. Swelling properties of graphite oxides and graphene oxide multilayered materials. NANOSCALE 2020; 12:21060-21093. [PMID: 33084722 DOI: 10.1039/d0nr04931j] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphite oxide (GtO) and graphene oxide (GO) multilayered laminates are hydrophilic materials easily intercalated by water and other polar solvents. By definition, an increase in the volume of a material connected to the uptake of a liquid or vapour is named swelling. Swelling is a property which defines graphite oxides and graphene oxides. Less oxidized materials not capable of swelling should be named oxidized graphene. The infinite swelling of graphite oxide yields graphene oxide in aqueous dispersions. Graphene oxide sheets dispersed in a polar solvent can be re-assembled into multilayered structures and named depending on applications as films, papers or membranes. The multilayered GO materials exhibit swelling properties which are mostly similar to those of graphite oxides but not identical and in some cases surprisingly different. Swelling is a key property of GO materials in all applications which involve the sorption of water/solvents from vapours, immersion of GO into liquid water/solvents and solution based chemical reactions. These applications include sensors, sorption/removal of pollutants from waste waters, separation of liquid and gas mixtures, nanofiltration, water desalination, water-permeable protective coatings, etc. Swelling defines the distance between graphene oxide sheets in solution-immersed GO materials and the possibility for penetration of ions and molecules inside of interlayers. A high sorption capacity of GO towards many molecules and cations is defined by swelling which makes the very high surface area of GO accessible. GtO and GO swelling is a surprisingly complex phenomenon which is manifested in a variety of different ways. Swelling is strongly different for materials produced using the most common Brodie and Hummers oxidation procedures; it depends on the degree of oxidation, ad temperature and pressure conditions. The value of the GO interlayer distance is especially important in membrane applications. Diffusion of solvent molecules and ions is defined by the size of "permeation channels" provided by the swelled GO structure. According to extensive studies performed over the last decade the exact value of the inter-layer distance in swelled GO depends on the nature of solvent, temperature and pressure conditions, and the pH and concentration of solutions and exhibits pronounced aging effects. This review provides insight into the fundamental swelling properties of multilayered GO and demonstrates links to advanced applications of these materials.
Collapse
Affiliation(s)
- Artem Iakunkov
- Department of Physics, Umeå University, SE-901 87 Umeå, Sweden.
| | | |
Collapse
|