1
|
Schatz P, Xu W, Rynek S, Maser L, Heise N, Fuhr O, Fenske D, Haeri HH, Hinderberger D, Vogt M, Langer R. Carbon-Centered Reactivity in Carbodiphosphorane-Based Ligands Allowing for Redox-Non-Innocent Ligand/Ligand Dual Bond-Activation. Angew Chem Int Ed Engl 2025; 64:e202419786. [PMID: 39753512 PMCID: PMC11811687 DOI: 10.1002/anie.202419786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025]
Abstract
A pronounced nucleophilicity in combination with a distinct redox non-innocence is a unique feature of a coordinated ligand, which in the current case, leads to unprecedented carbon-centered reactivity patterns: A carbodiphosphorane-based (CDP) pincer-type rhodium complex allows to cleave two C-Cl-bonds of geminal dichlorides via two consecutive S.
Collapse
Affiliation(s)
- Philipp Schatz
- Institute of Chemistry, Faculty of Natural Science IIMartin Luther University Halle-WittenbergKurt-Mothes-Str. 206120Halle(Saale)Germany
| | - Weiqin Xu
- Chemistry DepartmentGuangdong University of EducationGuangzhou510303PR China
| | - Sebastian Rynek
- Institute of Chemistry, Faculty of Natural Science IIMartin Luther University Halle-WittenbergKurt-Mothes-Str. 206120Halle(Saale)Germany
| | - Leon Maser
- Institute of Chemistry, Faculty of Natural Science IIMartin Luther University Halle-WittenbergKurt-Mothes-Str. 206120Halle(Saale)Germany
| | - Niels Heise
- Institute of Chemistry, Faculty of Natural Science IIMartin Luther University Halle-WittenbergKurt-Mothes-Str. 206120Halle(Saale)Germany
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) and Karlsruhe Nano Micro Facility (KNMFi)Karlsruher Institut für Technologie (KIT)Kaiserstraße 1276131KarlsruheGermany
- Lehn Institute of Functional Materials (LIFM), School of ChemistrySun Yat-Sen UniversityGuangzhou510000PR China
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) and Karlsruhe Nano Micro Facility (KNMFi)Karlsruher Institut für Technologie (KIT)Kaiserstraße 1276131KarlsruheGermany
- Lehn Institute of Functional Materials (LIFM), School of ChemistrySun Yat-Sen UniversityGuangzhou510000PR China
| | - Haleh Hashemi Haeri
- Institute of Chemistry, Faculty of Natural Science IIMartin Luther University Halle-WittenbergKurt-Mothes-Str. 206120Halle(Saale)Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Faculty of Natural Science IIMartin Luther University Halle-WittenbergKurt-Mothes-Str. 206120Halle(Saale)Germany
| | - Matthias Vogt
- Institute of Chemistry, Faculty of Natural Science IIMartin Luther University Halle-WittenbergKurt-Mothes-Str. 206120Halle(Saale)Germany
| | - Robert Langer
- Institute of Chemistry, Faculty of Natural Science IIMartin Luther University Halle-WittenbergKurt-Mothes-Str. 206120Halle(Saale)Germany
| |
Collapse
|
2
|
He Y, Lyu Y, Tymann D, Antoni PW, Hansmann MM. Cleavage of Carbodicarbenes with N 2O for Accessing Stable Diazoalkenes: Two-Fold Ligand Exchange at a C(0)-Atom. Angew Chem Int Ed Engl 2025; 64:e202415228. [PMID: 39238432 DOI: 10.1002/anie.202415228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The cleavage of carbophosphinocarbenes and carbodicarbenes with nitrous oxide (N2O) leads to the formation of room-temperature stable diazoalkenes. The utility of Ph3P/N2 and NHC/N2 ligand exchange reactions were demonstrated by accessing novel benzimidazole- and benzothiazole derived diazoalkenes, which are not accessible by the current state-of-the-art methods. The stable diazoalkenes subsequently allow further ligand exchange reactions at C(0) with carbon monoxide, isocyanide, or a diamidocarbene (DAC). Overall, the combination of hitherto unknown NHC/N2 and N2/L (L = DAC, CO, R-NC) ligand exchange reactions at a C(0) center allow the selective functionalization of the carbodicarbene ligand structure which represents a new methodology to rapidly assemble novel carbodicarbenes or cumulenic compounds.
Collapse
Affiliation(s)
- Yijie He
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Yichong Lyu
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - David Tymann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Patrick W Antoni
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Max M Hansmann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Epping RF, Vesseur D, Zhou M, de Bruin B. Carbene Radicals in Transition-Metal-Catalyzed Reactions. ACS Catal 2023; 13:5428-5448. [PMID: 37123600 PMCID: PMC10127290 DOI: 10.1021/acscatal.3c00591] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Discovered as organometallic curiosities in the 1970s, carbene radicals have become a staple in modern-day homogeneous catalysis. Carbene radicals exhibit nucleophilic radical-type reactivity orthogonal to classical electrophilic diamagnetic Fischer carbenes. Their successful catalytic application has led to the synthesis of a myriad of carbo- and heterocycles, ranging from simple cyclopropanes to more challenging eight-membered rings. The field has matured to employ densely functionalized chiral porphyrin-based platforms that exhibit high enantio-, regio-, and stereoselectivity. Thus far the focus has largely been on cobalt-based systems, but interest has been growing for the past few years to expand the application of carbene radicals to other transition metals. This Perspective covers the advances made since 2011 and gives an overview on the coordination chemistry, reactivity, and catalytic application of carbene radical species using transition metal complexes and catalysts.
Collapse
Affiliation(s)
- Roel F.J. Epping
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - David Vesseur
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Wang Y, Robinson GH. Counterintuitive Chemistry: Carbene Stabilization of Zero-Oxidation State Main Group Species. J Am Chem Soc 2023; 145:5592-5612. [PMID: 36876997 DOI: 10.1021/jacs.2c13574] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Carbenes have evolved from transient laboratory curiosities to a robust, diverse, and surprisingly impactful ligand class. A variety of different carbenes have significantly contributed to the development of low-oxidation state main group chemistry. This Perspective focuses upon advances in the chemistry of carbene complexes containing main group element cores in the formal oxidation state of zero, including their diverse synthetic strategies, unusual bonding and structural motifs, and utility in transition metal coordination chemistry and activation of small molecules.
Collapse
Affiliation(s)
- Yuzhong Wang
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Gregory H Robinson
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States
| |
Collapse
|
5
|
Dolai R, Kumar R, Elvers BJ, Pal PK, Joseph B, Sikari R, Nayak MK, Maiti A, Singh T, Chrysochos N, Jayaraman A, Krummenacher I, Mondal J, Priyakumar UD, Braunschweig H, Yildiz CB, Schulzke C, Jana A. Carbodicarbenes and Striking Redox Transitions of their Conjugate Acids: Influence of NHC versus CAAC as Donor Substituents. Chemistry 2023; 29:e202202888. [PMID: 36129127 PMCID: PMC10100033 DOI: 10.1002/chem.202202888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/11/2023]
Abstract
Herein, a new type of carbodicarbene (CDC) comprising two different classes of carbenes is reported; NHC and CAAC as donor substituents and compare the molecular structure and coordination to Au(I)Cl to those of NHC-only and CAAC-only analogues. The conjugate acids of these three CDCs exhibit notable redox properties. Their reactions with [NO][SbF6 ] were investigated. The reduction of the conjugate acid of CAAC-only based CDC with KC8 results in the formation of hydrogen abstracted/eliminated products, which proceed through a neutral radical intermediate, detected by EPR spectroscopy. In contrast, the reduction of conjugate acids of NHC-only and NHC/CAAC based CDCs led to intermolecular reductive (reversible) carbon-carbon sigma bond formation. The resulting relatively elongated carbon-carbon sigma bonds were found to be readily oxidized. They were, thus, demonstrated to be potent reducing agents, underlining their potential utility as organic electron donors and n-dopants in organic semiconductor molecules.
Collapse
Affiliation(s)
- Ramapada Dolai
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Rahul Kumar
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Benedict J. Elvers
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Pradeep Kumar Pal
- International Institute of Information Technology GachibowliHyderabad500032India
| | - Benson Joseph
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Rina Sikari
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Tejender Singh
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Arumugam Jayaraman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - U. Deva Priyakumar
- International Institute of Information Technology GachibowliHyderabad500032India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray UniversityAksaray68100Turkey
| | - Carola Schulzke
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| |
Collapse
|
6
|
Breitwieser K, Bahmann H, Weiss R, Munz D. Gauging Radical Stabilization with Carbenes. Angew Chem Int Ed Engl 2022; 61:e202206390. [PMID: 35796423 PMCID: PMC9545232 DOI: 10.1002/anie.202206390] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 11/29/2022]
Abstract
Carbenes, including N-heterocyclic carbene (NHC) ligands, are used extensively to stabilize open-shell transition metal complexes and organic radicals. Yet, it remains unknown, which carbene stabilizes a radical well and, thus, how to design radical-stabilizing C-donor ligands. With the large variety of C-donor ligands experimentally investigated and their electronic properties established, we report herein their radical-stabilizing effect. We show that radical stabilization can be understood by a captodative frontier orbital description involving π-donation to- and π-donation from the carbenes. This picture sheds a new perspective on NHC chemistry, where π-donor effects usually are assumed to be negligible. Further, it allows for the intuitive prediction of the thermodynamic stability of covalent radicals of main group- and transition metal carbene complexes, and the quantification of redox non-innocence.
Collapse
Affiliation(s)
- Kevin Breitwieser
- Coordination ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Hilke Bahmann
- Physical and Theoretical ChemistrySaarland UniversityCampus B2.266123SaarbrückenGermany
| | - Robert Weiss
- Organische ChemieFriedrich-Alexander-Universität (FAU) Erlangen-NürnbergHenkestr. 4291054ErlangenGermany
| | - Dominik Munz
- Coordination ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
- Inorganic and General ChemistryFriedrich-Alexander-Universität (FAU) Erlangen-NürnbergEgerlandstr. 191058ErlangenGermany
| |
Collapse
|
7
|
Breitwieser K, Bahmann H, Weiss R, Munz D. Gauging Radical Stabilization with Carbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kevin Breitwieser
- Saarland University: Universitat des Saarlandes Coordination Chemistry GERMANY
| | - Hilke Bahmann
- Saarland University: Universitat des Saarlandes Theoretical Chemistry GERMANY
| | - Robert Weiss
- FAU Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Organic Chemistry GERMANY
| | - Dominik Munz
- Universitat des Saarlandes Inorganic Chemistry: Coordination Chemistry Campus C 4.1 66123 Saarbrücken GERMANY
| |
Collapse
|
8
|
Zhao Q, Wu XF, Xiao X, Wang ZY, Zhao J, Wang BW, Lei H. Group 4 Metallocene Complexes Supported by a Redox-Active O, C-Chelating Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiuting Zhao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Xiao-Fan Wu
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiang Xiao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Zi-Yu Wang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jixing Zhao
- Analysis and Testing Center, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Bing-Wu Wang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Lei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Zhang S, Krogman JP. Synthesis and Characterization of Bis(phosphine)carbodicarbene Complexes of Iron, Cobalt, and Nickel. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengwei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jeremy P. Krogman
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| |
Collapse
|
10
|
Munz D, Meyer K. Charge frustration in ligand design and functional group transfer. Nat Rev Chem 2021; 5:422-439. [PMID: 37118028 DOI: 10.1038/s41570-021-00276-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Molecules with different resonance structures of similar importance, such as heterocumulenes and mesoionics, are prominent in many applications of chemistry, including 'click chemistry', photochemistry, switching and sensing. In coordination chemistry, similar chameleonic/schizophrenic entities are referred to as ambidentate/ambiphilic or cooperative ligands. Examples of these had remained, for a long time, limited to a handful of archetypal compounds that were mere curiosities. In this Review, we describe ambiphilicity - or, rather, 'charge frustration' - as a general guiding principle for ligand design and functional group transfer. We first give a historical account of organic zwitterions and discuss their electronic structures and applications. Our discussion then focuses on zwitterionic ligands and their metal complexes, such as those of ylidic and redox-active ligands. Finally, we present new approaches to single-atom transfer using cumulated small molecules and outline emerging areas, such as bond activation and stable donor-acceptor ligand systems for reversible 1e- chemistry or switching.
Collapse
|
11
|
Liu SK, Chen WC, Yap GPA, Ong TG. Synthesis of Carbophosphinocarbene and Their Donating Ability: Expansion of the Carbone Class. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shu-kai Liu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- The Department of Applied Chemistry, National Chiao Tung University, Hsin-chu, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Chiao Tung University, Hsin-chu,Taiwan
| | | | - Glenn P. A. Yap
- The Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Tiow-Gan Ong
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- The Department of Applied Chemistry, National Chiao Tung University, Hsin-chu, Taiwan
- The Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
A New Tetradentate Mixed Aza-Thioether Macrocycle and Its Complexation Behavior towards Fe(II), Ni(II) and Cu(II) Ions. Molecules 2020; 25:molecules25092030. [PMID: 32349309 PMCID: PMC7248963 DOI: 10.3390/molecules25092030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
A new tetradentate mixed aza-thioether macrocyclic ligand 2,6-dithia[7](2,9)-1,10-phenanthrolinophane ([13]ane(phenN2)S2) was successfully synthesized. Reacting metal precursors [Fe(CH3CN)2(OTf)2], Ni(ClO4)2·6H2O, and Cu(ClO4)2·6H2O with one equivalent of [13]ane(phenN2)S2 afforded [Fe([13]ane(phenN2)S2)(OTf)2] (1), [Ni([13]ane(phenN2)S2)](ClO4)2 (2(ClO4)2), and [Cu([13]ane(phenN2)S2)(OH2)](ClO4)2 (3(ClO4)2), respectively. The structures of [13]ane(phenN2)S2 and all of its metal complexes were investigated by X-ray crystallography. The [13]ane(phenN2)S2 was found to behave as a tetradentate ligand via its donor atoms N and S.
Collapse
|
13
|
Elsby MR, Baker RT. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chem Soc Rev 2020; 49:8933-8987. [DOI: 10.1039/d0cs00509f] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of metal–ligand cooperation (MLC) by transition metal bifunctional catalysts has emerged at the forefront of homogeneous catalysis science.
Collapse
Affiliation(s)
- Matthew R. Elsby
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - R. Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|