1
|
Liu Y, Wang CZ, Wu QY, Lan JH, Wu WS, Chai ZF, Shi WQ. Theoretical Exploration of Transplutonium Element Separation by Phosphine Oxide-Functionalized Ligands with Different Backbones. Inorg Chem 2025; 64:9549-9557. [PMID: 40327793 DOI: 10.1021/acs.inorgchem.5c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
At present, transplutonium materials have applications in industry and basic and applied research. In order to obtain the corresponding heavy actinides, separation between these heavy actinides is essential. Currently, the development of efficient separation extractants is urgent and requires an in-depth investigation of the structures and properties of ligands and transplutonium complexes. In this work, we investigated the extraction and separation capacity of three phosphine oxide ligands (Ph2PyPO, Ph2BipyPO, Ph2BPPhen) toward transplutonium cations of Am3+-Cf3+ by means of quasi-relativistic density functional theory. The Ph2BPPhen ligand has better affinity for transplutonium elements by the electronic property analysis of ligands. The Mayer bonding order and quantum theory of atoms in molecules reveal that the strength of the An-O bonds progressively increases between Am and Cf. Energy decomposition analysis suggests that the covalent interaction between An(III) and the ligand in AnL(NO3)3 is enhanced between Am and Cf. In terms of the extraction reactions of AnL(NO3)3, the separation effect of the ligand is superior to that of [AnL2(NO3)]2+. This work demonstrates how ligand backbone modifications influence bonding and extraction, providing insights for designing transplutonium extractants.
Collapse
Affiliation(s)
- Yang Liu
- Radiochemistry Laboratory, School of Nuclear Science and Technology/Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wang-Suo Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology/Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Fang Chai
- Radiochemistry Laboratory, School of Nuclear Science and Technology/Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Institute of Nuclear Fuel Cycle and Materials, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Hu SX, Gao JH, Zhang L, Wei ZY, Zhang P. Phosphine Oxide Group Enhances the In-Plane σ-Bonding Covalency in Actinyl Phenanthroline-Derivative Complexes. J Phys Chem A 2025; 129:2411-2419. [PMID: 40014671 DOI: 10.1021/acs.jpca.4c07549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The separation of nuclear waste is one of the urgent problems to be solved in the nuclear industry; therefore, designing a new and promising extractant to deal with nuclear waste is a desirable but difficult task. Here, using quantum-mechanical calculations at the scalar-relativistic and spin-orbit coupling levels, we assessed the complexation of a series of actinyl moieties by phenanthroline-derived organophosphorus ligands. Specifically, we considered the [UO2(L)]2+ and [AnO2(BPP)]2+, An = U, Np, Pu, and L = DAP, BPP, and PIP species. First, we find that ligand BPP binds more strongly to the uranyl dication than DAP or PIP, and similarly, BPP binds more strongly to uranyl and neptunyl than plutonyl, as a result of the significant ionic bonding and covalent bonding in the equatorial plane. The results of this work generate a fundamental and qualitative understanding of bonding properties in actinyl complexes, suggest phosphine oxide-derived phenanthroline ligands as a potential extractant for uranyl, and provide some knowledge when designing efficient ligands for the extraction behaviors toward actinide elements.
Collapse
Affiliation(s)
- Shu-Xian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jia-Hao Gao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Lu Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhi-Yu Wei
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
3
|
Cao H, Guo Y, Li B, Tang Q, Hao H, Wang Z, Xu C. Extraction and complexation of trivalent americium and lanthanides using an asymmetric picolinic acid-derived tridentate N,O-hybrid ligand. Dalton Trans 2025; 54:1964-1971. [PMID: 39670795 DOI: 10.1039/d4dt03016h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The extraction and complexation of trivalent americium (Am) and lanthanides (Ln) using an asymmetric picolinic acid-derived tridentate N,O-hybrid ligand, 6-(dioctylcarbamoyl)picolinic acid (DOAPA), have been studied through both experimental and theoretical methods. DOAPA exhibits effective and fast extraction of Am(III) and Ln(III). The extraction is driven by favorable enthalpy change. Slope analysis, absorption spectroscopy and NMR titration indicate that both Am(III) and Ln(III) coordinate with DOAPA to form complexes of a 1 : 3 stoichiometry (metal to ligand). Meanwhile, luminescence and mass spectral studies suggest that three deprotonated tridentate DOAPA ligands (L-) substitute all the H2O molecules in the primary coordination sphere of Eu(III), resulting in the extraction of a neutral complex into the organic phase. Further theoretical calculations reveal that a more robust interaction between DOAPA and Am(III) relative to Eu(III) as well as a higher degree of covalence in Am-N/O bonds than in Eu-N/O bonds leads to slight selectivity of Am(III) over Eu(III).
Collapse
Affiliation(s)
- Hong Cao
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Yuxiao Guo
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Bin Li
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Qilong Tang
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Huaixin Hao
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
4
|
Konopkina EA, Pavlova EA, Gopin AV, Kalle P, Chernysheva MG, Nechitailova IO, Guda AA, Petrov VG, Borisova NE, Matveev PI. Role of H + in Solvent Extraction of Am(III) and Eu(III) Using a Polydentate Bipyridine N-,O-Donor Ligand: Chemical Equilibrium States and Kinetic Aspects. J Phys Chem B 2025; 129:360-371. [PMID: 39700411 DOI: 10.1021/acs.jpcb.4c06244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In this work, the influence of protonation on the kinetics and thermodynamics of extraction of the Am/Eu pair using N-heterocyclic dicarboxylic acid diamide N,N'-diethyl-N,N'-bis(4-ethylphenyl)-[2,2'-bipyridine]-6,6'-dicarboxamide (L) was investigated. The extraction efficiency of the ligand did not decrease, even at a nitric acid concentration 4 times higher than that of the ligand in the organic phase. X-ray diffraction analysis established that protonation leads to the preorganization of the ligand due to the reversal of bipyridyl rings into the binding conformation when both nitrogen atoms are turned to one side. Also, the effect of protonation on the chemical shifts of the functional binding groups (bipyridyl and amide) in solution was demonstrated by NMR spectroscopy. However, the presaturation of the organic phase with nitric acid did not lead to significant changes in the surface activity of the ligand. For extraction kinetics, a mechanism was proposed in which protonation and preorganization of the ligand was the limiting stage.
Collapse
Affiliation(s)
- Ekaterina A Konopkina
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Elizaveta A Pavlova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Alexander V Gopin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Paulina Kalle
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Maria G Chernysheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Irina O Nechitailova
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Alexander A Guda
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Vladimir G Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Petr I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
5
|
Evsiunina MV, Huang PW, Kalle P, Abel AS, Korinskiy NA, Konopkina EA, Kirsanova AA, Lanin LO, Borisova NE, Shi WQ, Matveev PI. Coordination of Fluorine-Substituted 1,10-Phenanthroline Diphosphonates with Americium(III) and Lanthanides(III): Solvent Extraction, Complexation, XRD, and Theoretical Study. Inorg Chem 2024; 63:23789-23801. [PMID: 39601782 DOI: 10.1021/acs.inorgchem.4c03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hybrid N,O-donor ligands based on 1,10-phenanthroline are a promising class of compounds for processing high-level waste. Here, we synthesized novel phenanthroline-based diphosphonates containing electron-withdrawing fluorine atoms in alkyl substituents. We studied their extraction properties for Am(III) and, for the first time, for the entire series of lanthanides(III). The extraction of nitric acid for these diphosphonates was also studied. It has been shown that replacing one hydrogen atom with a fluorine atom in the ethyl substituent of a diphosphonate leads to a decrease in the affinity of the ligands for metal cations. Replacing two hydrogen atoms leads to a decrease in the affinity of the ligands for both metal cations and protons. But such modifications led to a change in the nature of the extraction of Am(III) and Eu(III) from nitric acid solutions, and as a result, the diphosphonate with two substituted hydrogen atoms retains its extraction properties when extracted from 5 mol/L HNO3. The complexation in solution was studied by using ultraviolet-visible (UV-vis) titration for Nd(NO3)3 and Eu(NO3)3. The study of complexation in solid form using SC-XRD revealed the formation of complexes of the composition LnL(NO3)3, as well as the possibility of the formation of hydrolyzed binuclear complexes [Eu(μ2,κ4-(RO)2P(O)Phen(O)2(OR))(NO3)2]2. Density functional theory (DFT) calculations were performed to gain more insight into coordination properties and describe experimental data. It was shown that introducing fluorine atoms decreases the charge modules for both Nphen and OP═O and decreases the protonation energy.
Collapse
Affiliation(s)
- Mariia V Evsiunina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - Pin-Wen Huang
- Nanxun Innovation Institute, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Paulina Kalle
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russia
| | - Anton S Abel
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - Nikolay A Korinskiy
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - Ekaterina A Konopkina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - Anna A Kirsanova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - Leonid O Lanin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Petr I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| |
Collapse
|
6
|
Yang H, Huang T, Chen Y, Wang YH, Jin YD, Chen XC, Xia CQ. Introducing Phosphate Ester into DAPhen by Propyl Enhanced the Selectivity for UO 22+ over Th 4. Inorg Chem 2024; 63:20762-20773. [PMID: 39415319 DOI: 10.1021/acs.inorgchem.4c03489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
A new type of phenanthroline carboxamide(DAPhen)-phosphate ester ligand (L1/L2) was synthesized for the selective separation of U(VI) over Th(IV). Liquid-liquid extraction experiments showed that the introduction of phosphate ester could increase the extraction ability of ligands for U(VI), especially L2, which showed high selectivity for the separation of U(VI) over Th(IV). The slope analysis indicated that L1 could form 1:1 and 1:2 complexes with U(VI) and 1:1 complexes with Th(IV). NMR titration revealed that the DAPhen unit of ligands combined with one U(VI) to form 1:1 complexes, and then the phosphate ester unit of the 1:1 complexes further combined with another U(VI) to form 1:2 complexes. Ligands provide only the DAPhen unit to Th(IV) to form 1:1 complexes. The crystal structures found 1:2 complexes of L1 and U(VI), 1:1 complexes of L2 and U(VI), and 1:1 complexes of L1 and Th(IV). The larger stability constant (log β) of the 1:1 complexes of L2 with U(VI) than that of the 1:1 complexes of L1 with U(VI) showed that the binding ability of U(VI) with the DAPhen unit of L2 is stronger than that of U(VI) with the DAPhen unit of L1. This study provides new ideas for designing extractants with excellent properties.
Collapse
Affiliation(s)
- Han Yang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Tian Huang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yu Chen
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yuan-Hua Wang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yong-Dong Jin
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Chuan Chen
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chuan-Qin Xia
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
7
|
Yang X, Xu L, Fang D, Zhang A, Xiao C. Progress in phenanthroline-derived extractants for trivalent actinides and lanthanides separation: where to next? Chem Commun (Camb) 2024; 60:11415-11433. [PMID: 39235311 DOI: 10.1039/d4cc03810j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Spent nuclear fuel (SNF) released from reactors possesses significant radioactivity, heat release properties, and high-value radioactive nuclides. Therefore, using chemical methods for reprocessing can enhance economic efficiency and reduce the potential environmental risks of nuclear energy. Due to the presence of relatively diffuse f-electrons, the chemical properties of trivalent lanthanides (Ln(III)) and actinides (An(III)) in SNF solutions are quite similar. Separation methods have several limitations, including poor separation efficiency and the need for multiple stripping agents. The use of novel multi-dental phenanthroline-derived extractants with nitrogen donor atoms to effectively separate An(III) over Ln(III) has been widely accepted. This review first introduces the development history of phenanthroline-derived extractants for extraction and complexation with An(III) over Ln(III). Then, based on structural differences, these extractants are classified into four categories: nitrogen-coordinated, N,O-hybrid coordinated, highly preorganized structure, and unsymmetric structure. Each category's design principles, extraction, and separation performance as well as their advantages and disadvantages are discussed. Finally, we have summarized and compared the unique characteristics of the existing extractants and provided an outlook. This work may offer a reliable reference for the precise identification and selective separation between An(III) and Ln(III), and point the way for future development and exploration.
Collapse
Affiliation(s)
- Xiaofan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Lei Xu
- Institute of Nuclear-Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dong Fang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Anyun Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
8
|
Schlittenhardt S, Vasilenko E, Unni C V, Jobbitt N, Fuhr O, Hunger D, Ruben M, Kuppusamy SK. Spectral Hole-Burning Studies of a Mononuclear Eu(III) Complex Reveal Narrow Optical Linewidths of the 5D 0→ 7F 0 Transition and Seconds Long Nuclear Spin Lifetimes. Chemphyschem 2024; 25:e202400280. [PMID: 38887965 DOI: 10.1002/cphc.202400280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Coordination complexes of rare-earth ions (REI) show optical transitions with narrow linewidths enabling the creation of coherent light-matter interfaces for quantum information processing (QIP) applications. Among the REI-based complexes, Eu(III) complexes showing the 5D0→7F0 transition are of interest for QIP applications due to the narrow linewidths associated with the transition. Herein, we report on the synthesis, structure, and optical properties of a novel Eu(III) complex and its Gd(III) analogue composed of 2,9-bis(pyrazol-1-yl)-1,10-phenanthroline (dpphen) and three nitrate (NO3) ligands. The Eu(III) complex-[Eu(dpphen)(NO3)3]-showed sensitized metal-centred emission (5D0→7FJ; J=0,1,2,3, 4, 5, or 6) in the visible region, upon irradiation of the ligand-centred band at 369 nm, with the 5D0→7F0 transition centred at 580.9 nm. Spectral hole-burning (SHB) studies of the complex with stoichiometric Eu(III) concentration revealed a narrow homogeneous linewidth (Γh) of 1.55 MHz corresponding to a 0.205 μs long optical coherence lifetime (T2opt). Remarkably, long nuclear spin lifetimes (T1spin) of up to 41 s have been observed for the complex. The narrow optical linewidths and long T1spin lifetimes obtained for the Eu(III) complex showcase the utility of Eu(III) complexes as tuneable, following molecular engineering principles, coherent light-matter interfaces for QIP applications.
Collapse
Affiliation(s)
- Sören Schlittenhardt
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Evgenij Vasilenko
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Physikalisches Institut (PHI), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Vishnu Unni C
- Physikalisches Institut (PHI), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Nicholas Jobbitt
- Physikalisches Institut (PHI), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - David Hunger
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Physikalisches Institut (PHI), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Mario Ruben
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
9
|
Yang JF, Ma YY, Xie N, Tang YT, Du J, Yin XR, Lin ZG, Han ZG. In Situ Ligand-Transformation-Assisted Assembly of a Polyoxometalate and Silver-Phosphine Oxide Cluster for Colorimetric Detection of Phenol Contaminants. Inorg Chem 2024; 63:18200-18210. [PMID: 39302043 DOI: 10.1021/acs.inorgchem.4c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In situ ligand transformation strategies represent an efficient pathway for constructing function-oriented polyoxometalate (POM)-based crystalline materials. Herein, three POM-based hybrid networks were synthesized through in situ transformation of the phosphine ligand, formulated as [Ag(dppeo)6][H2PMo12O40]·5H2O (1), [Ag(dedpo)]4[SiW12O40]·6H2O (2), and [Ag(dppeo)]3[PW12O40]·3H2O (3) (dedpo = (2-(diphenylphosphaneyl)ethyl)diphenylphosphine oxide; dppeo = ethane-1,2-diylbis(diphenylphosphine oxide)). During the synthesis of these compounds, the 1,2-diphenylphosphine ethane molecule underwent in situ oxidation, transforming into dppeo and dedpo ligands, respectively. Compound 1 features a supramolecular architecture assembled from [Ag(dppeo)3]+/[Ag2(dppeo)6]2+ cationic clusters with disordered Ag centers and protonated [H2PMo12O40]- anions. Compound 2 presents a 3-D POM-supported metal-organic framework consisting of binuclear [Ag(dedpo)]22+ units, {-dedpo-Ag-dedpo-} chains, and [SiW12O40]4- polyoxoanions. Compound 3 displays a 2-D layered structure formed by {-dppeo-Ag3-dppeo-} chains and [PW12O40]3- clusters. Pronounced argentophilic interactions are observed in compounds 1 and 3. The three compounds demonstrate satisfactory heterogeneous catalytic activity in the colorimetric detection reactions toward phenol pollutants with detection limits of 1.73, 1.92, and 4.6 μM, respectively. Additionally, compounds 1-3 show high anti-interference capabilities and high sensitivity in differentiating phenol from its halogenated derivatives. This work presents some guidance for designing specific function-oriented POM-based materials via an in situ ligand transformation strategy.
Collapse
Affiliation(s)
- Jun-Fang Yang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Yuan-Yuan Ma
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Nan Xie
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Yu-Tao Tang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Jing Du
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Xin-Ran Yin
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Zheng-Guo Lin
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Zhan-Gang Han
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| |
Collapse
|
10
|
Fang D, Yang X, Li J, Zhang Z, Gao Y, Xiao C. Preorganization Effects on Eu(III) Ion Coordination by Dipyridyl-Phenanthroline Ligands: A Combined Experimental and Theoretical Analysis. Inorg Chem 2024; 63:8171-8179. [PMID: 38655575 DOI: 10.1021/acs.inorgchem.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although 1,10-phenanthroline has been proven to hold a strong complexing capacity for f-block elements and their derivatives have been applied in many fields, research on more highly or completely rigid phenanthroline ligands is still rare due to the challenging syntheses. Here, we reported three tetradentate ligands 2,9-di(pyridin-2-yl)-1,10-phenanthroline (L1), 12-(pyridin-2-yl)-5,6-dihydroquinolino[8,7b][1,10]phenanthroline (L2), and 5,6,11,12-tetrahydrobenzo[2,1-b:3,4-b']bis([1,10]phenanthroline) (L3) with increasing preorganization on the side chain; among which, L3 is fully preorganized. Their complexation reactions with Eu(III) were systematically investigated by electrospray ionization mass spectrometry (ESI-MS), UV-vis titrations, and single-crystal structures. It is found that all three ligands form only 1:1 M/L complexes with Eu(III). The single-crystal structures revealed that the three ligands hold similar coordination modes, while their stability constants determined by UV-vis titrations were L3 (4.80 ± 0.01) > L2 (4.38 ± 0.01) > L1 (3.88 ± 0.01). This trend is supported not only by the thermodynamic stability of rigid ligands compared to free ligands but also by the conclusion that rigid ligands exhibit faster reaction rates (lower energy barrier) than free ligands kinetically. This work is helpful in providing theoretical guidance for the subsequent development of highly preorganized chelating ligands with strong coordination ability and high selectivity for f-block elements.
Collapse
Affiliation(s)
- Dong Fang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Xiaofan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiarui Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Zhiyuan Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Yang Gao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
11
|
Zhang X, Ye L, Chen W, Zhang X, Chen W, Chen M, Huang P. Theoretical Study of Am(III) and Eu(III) Separation by a Bipyridyl Phosphate Ligand. ACS OMEGA 2024; 9:12060-12068. [PMID: 38496969 PMCID: PMC10938453 DOI: 10.1021/acsomega.3c09940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Actinide An(III) and lanthanide Ln(III) are known to exhibit similar chemical properties; thus, it is difficult to distinguish them in the separation of highly radioactive waste liquids. One potential method to efficiently separate actinides and lanthanides involves the design and development of phosphorus-oxygen-bonded ligands with solvent extraction separation. Here, a bipyridine phosphate ligand with two isopropyl and phosphate groups is introduced to selectively extract actinides. The electronic structure, bonding properties, thermodynamic behavior, and quantum theory of atoms in molecules (QTAIM) of Am(III) and Eu(III) complexes with the bipyridine phosphate ligands were analyzed by using density functional theory (DFT) calculations. The analysis demonstrates that the Am-N bond exhibits stronger covalent characteristics than the Eu-N bond, indicating that the bipyridine phosphate ligand had better selectivity for Am(III) than for Eu(III) in terms of binding affinity. The thermodynamic analysis established the complex [ML(NO3)2(H2O)2]+ as the most stable species during the complexation process. The results indicate great potential for utilizing the bipyridine phosphate ligand for the effective separation of An(III)/Ln(III) in spent fuel reprocessing experiments.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Lulu Ye
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Weihao Chen
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Xiaofei Zhang
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Weiwei Chen
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Miaogen Chen
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Pinwen Huang
- Zhejiang
University of Water Resources and Electric Power, Hangzhou 310018, China
| |
Collapse
|
12
|
Wang S, Yang X, Liu Y, Xu L, Xu C, Xiao C. Enhancing the Selectivity of Trivalent Actinide over Lanthanide Using Asymmetrical Phenanthroline Diamide Ligands. Inorg Chem 2024; 63:3063-3074. [PMID: 38285631 DOI: 10.1021/acs.inorgchem.3c03997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Phenanthroline diamide ligands have been widely used in the separation of trivalent actinides and lanthanides, but little research has focused on extractants with asymmetrical substitutes. Two novel asymmetrical phenanthroline-based ligands N2,N2,N9-triethyl-N9-tolyl-1,10-phenanthroline-2,9-dicarboxamide (DE-ET-DAPhen) and N2-ethyl-N9,N9-dioctyl-N2-tolyl-1,10-phenanthroline-2,9-dicarboxamide (DO-ET-DAPhen) were first synthesized in this work, whose extraction ability and complexation mechanism to trivalent actinides [An(III)] and lanthanides [Ln(III)] were systematically investigated. The ligands dissolved in n-octanol exhibit good extraction ability and high selectivity toward Am(III) in acidic solutions. The complexation mechanism of the ligands with Ln(III) in solution and solid state was analyzed using slope analysis, 1H NMR spectrometric titration, ESI-MS, and calorimetric titration. It is revealed that the ligands complex with Am(III)/Eu(III) with 1:1 stoichiometry. The stability constant (log β) of the complexation reaction of Eu(III) with DE-ET-DAPhen determined by UV-vis spectrophotometric and calorimetric titration is higher than that of DO-ET-DAPhen, indicating the stronger complexation ability of DE-ET-DAPhen. Meanwhile, the calorimetric titration results show that the complexation process is exothermic with a decreased entropy. The structures of 1:1 complexes of Eu(III) and Nd(III) with DE-ET-DAPhen were analyzed through single-crystal X-ray diffraction. This work proves that ligands containing asymmetrical functional groups are promising for An(III)/Ln(III) separation, which shows great significance in efficient extractants designed for the spent nuclear fuel reprocessing process.
Collapse
Affiliation(s)
- Shihui Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiaofan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yaoyang Liu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Lei Xu
- Institute of Nuclear-Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou 310058, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Wang X, Song L, Yu Q, Li Q, He L, Xiao X, Pan Q, Yang Y, Ding S. Complexation of a Nitrilotriacetate-Derived Triamide Ligand with Trivalent Lanthanides: A Thermodynamic and Crystallographic Study. Inorg Chem 2023; 62:3916-3928. [PMID: 36821293 DOI: 10.1021/acs.inorgchem.2c04311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Non-heterocyclic N-donor nitrilotriacetate-derived triamide ligands are one of the most promising extractants for the selective extraction separation of trivalent actinides over lanthanides, but the thermodynamics and mechanism of the complexation of this kind of ligand with actinides and lanthanides are still not clear. In this work, the complexation behaviors of N,N,N',N',N″,N″-hexaethylnitrilotriacetamide (NTAamide(Et)) with four representative trivalent lanthanides (La3+, Nd3+, Eu3+, and Lu3+) were systematically investigated by using 1H nuclear magnetic resonance (1H NMR), ultraviolet-visible (UV-vis) and fluorescence spectrophotometry, microcalorimetry, and single-crystal X-ray diffractometry. 1H NMR spectroscopic titration of La3+ and Lu3+ indicates that two species of 1:2 and 1:1 metal-ligand complexes were formed in NO3- and ClO4- media. The stability constants of NTAamide(Et) with Nd3+ and Eu3+ obtained by UV-vis and fluorescence titration show that the complexing strength of NTAamide(Et) with Nd3+ is lower than that with Eu3+ in the same anionic medium, while that of the same lanthanide complex is higher in ClO4- medium than in NO3- medium. Meanwhile, the formation reactions for all metal-ligand complexes are driven by both enthalpy and entropy. The structures of lanthanide complexes in the single ClO4- and NO3- medium and the mixed one were determined to be [LnL2(MeOH)](ClO4)3 (Ln = La, Nd, Eu, and Lu), [LaL2(EtOH)2][La(NO3)6], and [LaL2(NO3)](ClO4)2, separately. The average bond lengths of lanthanide complexes decrease gradually with the decrease in ionic radii of Ln3+, indicating that heavier lanthanides form stronger complexes due to the lanthanide contraction effect, which coincides with the trend of the complexing strength obtained by spectroscopic titration. This work not only reveals the thermodynamics and mechanism of the complexation between NTAamide ligands and lanthanides but also obtains the periodic tendency of complexation between them, which may facilitate the separation of trivalent lanthanides from actinides.
Collapse
Affiliation(s)
- Xueyu Wang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lianjun Song
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qiao Yu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qiuju Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lanlan He
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qingjiang Pan
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Yanqiu Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, P. R. China
| | - Songdong Ding
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
14
|
Ebenezer C, Solomon RV. Complexation of N‐Heterocyclic Substituted 1,10‐Phenanthroline‐2,9‐diamide with Am
3+
/Eu
3+
Ions for Nuclear Waste Water Treatment. ChemistrySelect 2022. [DOI: 10.1002/slct.202203535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cheriyan Ebenezer
- Department of Chemistry Madras Christian College (Autonomous) [Affiliated to the University of Madras Chennai 600 059 Tamil Nadu India
| | - Rajadurai Vijay Solomon
- Department of Chemistry Madras Christian College (Autonomous) [Affiliated to the University of Madras Chennai 600 059 Tamil Nadu India
| |
Collapse
|
15
|
Konopkina EA, Matveev PI, Huang PW, Kirsanova AA, Chernysheva MG, Sumyanova TB, Domnikov KS, Shi WQ, Kalmykov SN, Petrov VG, Borisova NE. Pyridine-di-phosphonates as chelators for trivalent f-elements: kinetics, thermodynamic and interfacial study of Am(III)/Eu(III) solvent extraction. Dalton Trans 2022; 51:11180-11192. [PMID: 35801576 DOI: 10.1039/d2dt01007k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fractionation of high-level radioactive waste from nuclear power plants simplifies the handling of its components, and facilitates the reduction of radiotoxic effects on the environment. The search and study of new ligands for solvent extraction, as one of the methods in fractionation, remains a complex and important research task. In this work, four pyridine diphosphonate ligands were synthesized. These ligands are part of the class of the N,O-donor extractants, which are selective towards Am(III). The separation factor SF(Am/Eu) for the best extractant reached values up to 10. The influence of the substituents on the efficiency of extraction and complexation of trivalent f-elements, the kinetics of extraction, and the behavior of the ligand at the interface were described. The effect of nitric acid concentration on the extraction was shown. The stoichiometry of the complexes was determined by slope analysis in solvent extraction experiment and verified by spectrophotometric titration in acetonitrile. Liquid tension experiments with a pendant drop method revealed the interfacial properties of the ligands in "F-3 solvent/H2O" and "F-3 solvent/HNO3" systems. The relationship between the surface activity and the ligand structure was shown. Studies of the extraction kinetics were performed in a modified Lewis cell. The effect of the ligand structure on the extraction rate was shown. The DFT calculation with the B3LYP density functional was used to explain the extraction properties of the ligands, including selectivity. The calculation of the pre-organization energy of the ligands explained the kinetics and extraction patterns for the studied series.
Collapse
Affiliation(s)
- Ekaterina A Konopkina
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Petr I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Pin-Wen Huang
- Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Anna A Kirsanova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Maria G Chernysheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Tsagana B Sumyanova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Kirill S Domnikov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Stepan N Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Vladimir G Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| |
Collapse
|
16
|
Ebenezer C, Solomon RV. Uptake of Am(III) Ions and Eu(III) Ions Using Cyclic Substituted N, O‐hybrid 1,10‐Phenanthroline Derived Phosphine Oxide Ligands ‐ A DFT Exploration. ChemistrySelect 2022. [DOI: 10.1002/slct.202200446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cheriyan Ebenezer
- Department of Chemistry Madras Christian College (Autonomous) University of Madras, East Tambaram Chennai 600 059 Tamil Nadu India
| | - Rajadurai Vijay Solomon
- Department of Chemistry Madras Christian College (Autonomous) University of Madras, East Tambaram Chennai 600 059 Tamil Nadu India
| |
Collapse
|
17
|
Huang PW. Theoretical unraveling of the separation of trivalent Am and Eu ions by phosphine oxide ligands with different central heterocyclic moieties. Dalton Trans 2022; 51:7118-7126. [PMID: 35466979 DOI: 10.1039/d2dt00509c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment of nuclear spent fuels, especially the separation of minor actinides, is an imperative task for the healthy development of the nuclear industry. Up to now, it still remains a worldwide challenge to separate trivalent An3+ from Ln3+ because of their similar chemical properties. Therefore, investigating the mechanism behind the selective extraction of An3+ by theoretical methods is necessary. In this work, three phosphine oxide ligands with the same side structures but different bridging frameworks, Ph2PyPO, Ph2BipyPO and Ph2PhenPO, were investigated theoretically, and compared with each other using relativistic density functional theory. The results of QTAIM and MBO suggest that the Am-N bonds in the studied complexes have more covalent character than those in the Eu-N bonds, whereas the PDOS analysis indicates that more overlap exists between Am-5f and the Ph2PyPO's N-2p orbital than between Am-5f and Ph2BipyPO's N-2p, and Am-5f and Ph2PhenPO's N-2p orbital. However, the studied ligands all possess stronger affinities towards Am3+ than Eu3+, which partly results in the Am3+ selectivity towards Eu3+ in these three ligands. The calculated reaction free energy can reproduce the Am/Eu separation ability difference of three ligands well. This work offers some useful information for An/Ln separation of phosphine oxide ligands, and may help to design more efficient An3+/Ln3+ separation ligands.
Collapse
Affiliation(s)
- Pin-Wen Huang
- Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
18
|
Sun M, Xu L, Yang X, Wang S, Lei L, Xiao C. Complexation Behaviors of a Tridentate Phenanthroline Carboxamide Ligand with Trivalent f-Block Elements in Different Anion Systems: A Thermodynamic and Crystallographic Perspective. Inorg Chem 2022; 61:2824-2834. [PMID: 35104133 DOI: 10.1021/acs.inorgchem.1c03270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The counteranion has a strong influence on the complexation behavior of tridentate phenanthroline carboxamide ligands with actinides and lanthanides, but the thermodynamic and underlying interaction mechanism at the molecular level is still not clear. In this work, a tridentate ligand, N-ethyl-N-tolyl-2-amide-1,10-phenanthroline (Et-Tol-PTA), was synthesized, and the effects of different anions (Cl-, NO3-, and ClO4-) on the complexation behavior of Et-Tol-PTA with typical lanthanides were thoroughly studied by using 1H nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-vis) spectrophotometry, and single-crystal X-ray diffraction. The NMR spectroscopic titration of Lu(III) showed that there were three species (1:1, 2:1, and 3:1 ligand-metal complexes) formed in Cl- solution systems while two species (2:1 and 1:1) were formed in NO3- and ClO4- solution systems. When Et-Tol-PTA was titrated with La(III), two species (2:1 and 1:1) were formed in NO3- systems and only one species (1:1) was formed in Cl- and ClO4- systems. In addition, the stability constant was determined via UV-vis spectroscopic titration, which showed that the complexation strength between Et-Tol-PTA and Eu(III) decreased in the following order: ClO4- > NO3- > Cl-. This indicated that Et-Tol-PTA had the strongest complexation ability with Eu(III) in the ClO4- system. The structures of Et-Tol-PTA complexed with EuCl3, Eu(NO3)3, and Eu(ClO4)3 were further elucidated by single-crystal X-ray diffraction and agreed well with the results of UV-vis titration experiments. The results of this work revealed that the mechanisms of complexation of lanthanides with the asymmetric ligand Et-Tol-PTA were strongly affected by different anionic environments in solution and in the solid state. These findings may lead to the improvement of the separation of trivalent actinides and lanthanides in nuclear waste.
Collapse
Affiliation(s)
- Mingze Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihui Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
19
|
Lemport PS, Evsiunina MV, Matveev PI, Petrov VS, Pozdeev AS, Khult EK, Nelyubina YV, Isakovskaya KL, Roznyatovsky VA, Gloriozov IP, Tarasevich BN, Aldoshin AS, Petrov VG, Kalmykov SN, Ustynyuk YA, Nenajdenko VG. 2-Methylpyrrolidine derived 1,10-phenanthroline-2,9-diamides: promising extractants for Am( iii)/Ln( iii) separation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00803c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we report on new examples of phenanthrolindiamides containing asymmetric centers in amide substituents.
Collapse
Affiliation(s)
- P. S. Lemport
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - M. V. Evsiunina
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - P. I. Matveev
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - V. S. Petrov
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - A. S. Pozdeev
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - E. K. Khult
- Department of Materials Science, Lomonosov Moscow State University, Leninskie gory 1 bld. 73, Moscow 119991, Russia
| | - Yu. V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Russia
| | - K. L. Isakovskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Russia
- D.I. Mendeleev University of Chemical Technology of Russia, Russia
| | - V. A. Roznyatovsky
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - I. P. Gloriozov
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - B. N. Tarasevich
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - A. S. Aldoshin
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - V. G. Petrov
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - S. N. Kalmykov
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Yu. A. Ustynyuk
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - V. G. Nenajdenko
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
20
|
Ebenezer C, Vijay Solomon R. Preorganization of N, O-hybrid phosphine oxide chelators for effective extraction of trivalent Am/Eu ions - A computational study. NEW J CHEM 2022. [DOI: 10.1039/d1nj06029e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N, O-hybrid phosphine oxide ligands with N-heterocyclic cores are the advanced extractants for extracting actinides over lanthanides. Yet, the challenging task in designing an efficient hybrid ligand is tracing the...
Collapse
|
21
|
Yang X, Wang S, Xu L, Yan Q, Xu C, Matveev P, Lei L, Xiao C. New tetradentate N, O-hybrid phenanthroline-derived organophosphorus extractants for the separation and complexation of trivalent actinides and lanthanides. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01153k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparison of the extraction and separation properties between two novel phenanthroline-derived organophosphorus ligands, Et-Ph-BPPhen and Et-Ph-PIPhen.
Collapse
Affiliation(s)
- Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihui Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Xu
- Institute of Nuclear-Agricultural Science, Zhejiang University, Hangzhou 310058, China
| | - Qiang Yan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Petr Matveev
- Radiochemistry Division, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
22
|
Jin GY, Zhang L, Hu FZ, Hu C, Lu YL, Li YY, Han HL, Liu JM, Yang Y, Jin Q, Li XR. Photocatalysis, terahertz time domain spectroscopy and weak interactions of six polyoxometalate-based lanthanide phosphine oxide complexes. CrystEngComm 2022. [DOI: 10.1039/d2ce00779g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using triphenylphosphine oxide (OPPh3) or tetraethyl ethylenebisphosphonate (L) as ligands, phosphomolybdic acid hydrate as the anion template, six new lanthanide complexes [Nd(OPPh3)4(H2O)3](PMo12O40)∙4CH3CN (1a), [Ln(OPPh3)4(H2O)3](PMo12O40)∙4C2H5OH (2a-4a) (Ln = Dy, Ho, Er),...
Collapse
|
23
|
Does the length of the alkyl chain affect the complexation and selectivity of phenanthroline-derived phosphonate ligands? – Answers from DFT calculations. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Matveev PI, Huang PW, Kirsanova AA, Ananyev IV, Sumyanova TB, Kharcheva AV, Khvorostinin EY, Petrov VG, Shi WQ, Kalmykov SN, Borisova NE. Way to Enforce Selectivity via Steric Hindrance: Improvement of Am(III)/Eu(III) Solvent Extraction by Loaded Diphosphonic Acid Esters. Inorg Chem 2021; 60:14563-14581. [PMID: 34546034 DOI: 10.1021/acs.inorgchem.1c01432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid donor extractants are a promising class of compounds for the separation of trivalent actinides and lanthanides. Here, we investigated a series of sterically loaded diphosphonate ligands based on bipyridine (BiPy-PO-iPr and BiPy-PO-cHex) and phenanthroline (Phen-PO-iPr and Phen-PO-cHex). We studied their complex formation with nitrates of trivalent f-elements in solvent extraction systems (Am and Eu) and homogeneous acetonitrile solutions (Nd, Eu, and Lu). Phenanthroline extractants demonstrated the highest efficiency and selectivity [SF(Am/Eu) up to 14] toward Am(III) extraction from nitric acid solutions among all of the studied diphosphonates of N-heterocycles. The binding constants established by UV-vis titration also indicated stronger binding of sterically impaired diphosphonates compared to the primary substituted diphosphonates. NMR titration and slope analysis during solvent extraction showed the formation of 2:1 complexes at high concentrations (>10-3 mol/L) for phenanthroline-based ligands. According to UV-vis titrations at low concentrations (10-5-10-6 mol/L), the phenanthroline-based ligands formed 1:1 complexes. Bipyridine-based ligands formed 1:1 complexes regardless of the ligand concentration. Luminescence titrations revealed that the quantum yields of the complexes with Eu(III) were 81 ± 8% (BiPy-PO-iPr) and 93 ± 9% (Phen-PO-iPr). Single crystals of the structures [Lu(μ2,κ4-(iPrO)2P(O)Phen(O)2(OiPr))(NO3)2]2 and Eu(Phen-PO-iPr)(NO3)3 were obtained by chemical synthesis with the Phen-PO-iPr ligand. X-ray diffraction studies revealed a closer contact of the f-element with the aromatic N atoms in the case of sterically loaded P═O ligands compared with sterically deficient ligands. Density functional theory calculations allowed us to rationalize the observed selectivity trends in terms of the bond length, Mayer bond order, and preorganization energy.
Collapse
Affiliation(s)
- Petr I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Pin-Wen Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Anna A Kirsanova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Ivan V Ananyev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Avilova St. 28, Moscow 119991, Russian Federation
| | - Tsagana B Sumyanova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Anastasia V Kharcheva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation.,Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/2, Moscow 119991, Russian Federation
| | - Evgenii Yu Khvorostinin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Vladimir G Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Wei-Qun Shi
- Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Stepan N Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation.,A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Avilova St. 28, Moscow 119991, Russian Federation
| |
Collapse
|
25
|
George Thomas M, Ebenezer C, Solomon RV. Tuning the structure of disulfonated phenanthroline based ligands for effective separation of Am(III)/Eu(III) ions : A DFT investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Xu L, Hao Y, Yang X, Wang Z, Xu C, Borisova NE, Sun M, Zhang X, Lei L, Xiao C. Comparative Investigation into the Complexation and Extraction Properties of Tridentate and Tetradentate Phosphine Oxide-Functionalized 1,10-Phenanthroline Ligands toward Lanthanides and Actinides. Chemistry 2021; 27:10717-10730. [PMID: 34002918 DOI: 10.1002/chem.202101224] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/06/2022]
Abstract
Two new phosphine oxide-functionalized 1,10-phenanthroline ligands, tetradentate 2,9-bis(butylphenylphosphine oxide)-1,10-phenanthroline (BuPh-BPPhen, L1 ) and tridentate 2-(butylphenylphosphine oxide)-1,10-phenanthroline (BuPh-MPPhen, L2 ), were synthesized and studied comparatively for their coordination with trivalent actinides and lanthanides. The complexation mechanisms of these two ligands toward trivalent f-block elements were thoroughly elucidated by NMR spectroscopy, UV/vis spectrophotometry, fluorescence spectrometry, single-crystal X-ray diffraction, solvent extraction, and theoretical calculation methods. NMR titration results demonstrated that 1 : 1 and 1 : 2 (metal to ligand) lanthanides complexes formed for L1 , whereas 1 : 1, 1 : 2 and 1 : 3 lanthanide complexes formed for L2 in methanol. The formation of these species was validated by fluorescence spectrometry, and the corresponding stability constants for the complexes of NdIII with L1 and L2 were determined by using UV/vis spectrophotometry. Structures of the 10-coordinated 1 : 1-type complexes of EuL1 (NO3 )3 and [EuL2 (NO3 )3 (H2 O)] Et2 O in the solid state were characterized by X-ray crystallography. In solvent-extraction experiments, L1 exhibited extremely strong extraction ability for both AmIII and EuIII , whereas L2 showed nearly no extraction toward AmIII or EuIII due to its high hydrophilicity. Finally, the structures and bonding natures of the complex species formed between AmIII /EuIII and L1 /L2 were analyzed in DFT calculations.
Collapse
Affiliation(s)
- Lei Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuxun Hao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, GSP-1, 119991, Moscow, Russian Federation
| | - Mingze Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xingwang Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
27
|
Liu Y, Wang CZ, Wu QY, Lan JH, Chai ZF, Liu Q, Shi WQ. Theoretical Insights into Transplutonium Element Separation with Electronically Modulated Phenanthroline-Derived Bis-Triazine Ligands. Inorg Chem 2021; 60:10267-10279. [PMID: 34232623 DOI: 10.1021/acs.inorgchem.1c00668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the process of spent fuel reprocessing, it is highly difficult to extract transplutonium elements from adjacent actinides. A deep understanding of the electronic structure of transplutonium complexes is essential for development of steady ligands for in-group separation of transplutonium actinides. In this work, we have systematically explored the potential in-group separation ability of transplutonium elements of typical quadridentate N-donor ligands (phenanthroline-derived bis-triazine, BTPhen derivatives) through quasi-relativistic density functional theory (DFT). Our calculations demonstrate that ligands with electron-donating groups have stronger coordination abilities, and the substitutions of Br and phenol at the 4-position of the 1,10-phenanthroline have a higher effect on the ligand than those at the 5-position. Bonding analysis indicates that the covalent interaction of An3+ complexes becomes stronger from Am to Cf apart from Cm, which is because the energy of the 5f orbital gradually decreases and becomes energy-degenerate with the 2p orbitals of ligands. The most negative values of binding energies indicate the higher stability of Cf3+ complexes, in line with the larger covalency in the Cf-L bonds compared with An-L (An = Am, Cm, Bk). In addition, electron-donating group phenol can enhance the covalent interaction between ligands and heavy actinides. Consequently, the extraction ability of ligands with electron-donating substituents for heavy actinides is generally stronger than other ligands. Nevertheless, these ligands exhibit diverse separation abilities to in-group actinide recovery. Therefore, the enhancement of covalency does not necessarily lead to the improvement of separation ability, which may be caused by different extraction abilities. Compared with the tetradentate N, O-donor ligands (2,9-diamide-1,10-phenanthrolinel, DAPhen derivatives), species with BTPhen ligands display stronger covalent interaction and higher extraction capacity. In terms of in-group separation ability, the BTPhen ligands seem to have advantages in separation of californium from curium, while the DAPhen ligands possess stronger abilities to separate americium from curium. These results may afford some afflatus for the development of effective agents for in-group separation of transplutonium elements.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Niu K, Yang F, Gaudin T, Ma H, Fang W. Theoretical Study of Effects of Solvents, Ligands, and Anions on Separation of Trivalent Lanthanides and Actinides. Inorg Chem 2021; 60:9552-9562. [PMID: 34161729 DOI: 10.1021/acs.inorgchem.1c00657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to its associated low CO2 emissions, nuclear energy production is rapidly growing. In this context, the treatment of high-level liquid waste (HLLW) of nuclear plants is of high concern to both scientific and industrial communities. Specifically, the separation of An(III) and Ln(III) cations when processing nuclear fuel is a vitally important, yet challenging, step within HLLW because An(III) and Ln(III) have similar chemical properties in solution. To guide the choice of relevant ligands, anions, and solvents for this separation step, in this work, we calculate and compare the free energy of formation of different Am(III) and Eu(III) complexes (which are typical and important An(III) and Ln(III) cation examples), involving two different ligands and three different counter ions in four different solvents. Based on our calculations, we predict that the chosen solvent is a key factor in the extraction of Am(III) and Eu(III) in treatment of HLLW. This study supports a systematic, computation-assisted screening of solvents and extractive ligands with counter anions as a proficient method to optimize the separation of Ln(III) and An(III).
Collapse
Affiliation(s)
- Ke Niu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Théophile Gaudin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Weihai Fang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
29
|
Yang XF, Ren P, Yang Q, Geng JS, Zhang JY, Yuan LY, Tang HB, Chai ZF, Shi WQ. Strong Periodic Tendency of Trivalent Lanthanides Coordinated with a Phenanthroline-Based Ligand: Cascade Countercurrent Extraction, Spectroscopy, and Crystallography. Inorg Chem 2021; 60:9745-9756. [PMID: 34115461 DOI: 10.1021/acs.inorgchem.1c01035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phenanthroline-diamide ligands have been reported in the selective separation of actinides over Eu(III); on the contrary, relevant basic coordination chemistry studies are still limited, and extraction under actual application conditions is rarely involved. In this work, N,N'-diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline [Et-Tol-DAPhen (L)] was applied to explore the coordination performance of lanthanides in simulative high-level liquid waste. For the first time, cascade countercurrent extraction was conducted with Et-Tol-DAPhen as the extractant, which reveals the periodic tendency of the extraction efficiency of lanthanides to decrease gradually as the atomic number increases. Comparison of elements with similar radii verifies the hypothesis that the increase in the atomic number leads to a decrease in the ionic radius, thus reducing the coordination and extraction capacity of ligands. Slope analysis, electrospray ionization mass spectrometry, and ultraviolet-visible titration results show that the ligand forms 1:1 and 1:2 complexes with lanthanides and the coordination ability follows the tendency of extraction efficiency, and the first crystal structures of Lns(III) with a phenanthroline-diamide ligand, i.e., [LaL(NO3)3(H2O)] and [LaL2(NO3)2][(NO3)], were obtained, which confirms the conclusions described above. This work promises to enhance our comprehension of the chemical properties of Lns(III) and offer new clues for the design and synthesis of novel separation ligands.
Collapse
Affiliation(s)
- Xiao-Fan Yang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Peng Ren
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Qi Yang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Jun-Shan Geng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Yu Zhang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Bin Tang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineer Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|