1
|
Wang B, Huang Y, Cheng X, Song J, Wang Q, Zhu Y, Zhang L, Liu G. Transduction of jellyfish superoxide dismutase mediated by TAT peptide ameliorates H 2O 2-induced oxidative stress in HaCaT cells. Sci Rep 2024; 14:31037. [PMID: 39730660 DOI: 10.1038/s41598-024-82261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Superoxide dismutase (SOD) plays important roles in the balance of oxidation and antioxidation in body mostly by scavenging superoxide anion free radicals (O2.-). Previously, we reported a novel Cu/Zn SOD from jellyfish Cyanea capillata, named CcSOD1, which exhibited excellent SOD activity and high stability. TAT peptide is a common type of cell penetrating peptides (CPPs) that efficiently deliver extracellular biomacromolecules into cytoplasm. In this study, we constructed a recombinant expression vector that combined the coding sequences of TAT peptide and CcSOD1, and then obtained sufficient and high-purity TAT-CcSOD1 fusion protein. Compared with some reported SODs/CPP-SODs, TAT-CcSOD1 possessed stronger tolerance to heat and acid-base environment. TAT-CcSOD1 efficiently penetrated cell membrane and significantly enhanced the O2.- scavenging ability in cells, and attenuated H2O2-induced cytotoxicity and NO generation in HaCaT cells. This study serves as a critical step forward for the application of TAT-CcSOD1 as a potential protective/therapeutic agent against oxidative stress-related conditions in the future.
Collapse
Affiliation(s)
- Bo Wang
- Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
- Naval Special Medical Center, Naval Medical University, Shanghai, 200052, China
| | - Yichao Huang
- Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Xi Cheng
- Department of Pharmacy, Tianyou Hospital, Tongji University, Shanghai, China
| | - Juxingsi Song
- Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Qianqian Wang
- Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Yuanjie Zhu
- Naval Special Medical Center, Naval Medical University, Shanghai, 200052, China.
| | - Liming Zhang
- Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China.
| | - Guoyan Liu
- Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Hu Y, Sun Y, Zhang H, Luo L, Wang H, Zhang R, Ge M. 2-ethylhexyl diphenyl phosphate exposure induces duodenal inflammatory injury through oxidative stress in chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116784. [PMID: 39088896 DOI: 10.1016/j.ecoenv.2024.116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
2-ethylhexyl diphenyl phosphate (EHDPHP) is a widely used organophosphorus flame retardant and plasticizer, which is commonly found in the environment. EHDPHP not only potentially harms the environment but also causes different degrees of damage to the organism. In this study, the duodenum of chicks was selected as the potential toxic target organ to explore the mechanism of duodenal injury induced by EHDPHP exposure. Ninety one-day-old healthy male chicks were selected and randomly divided into C1(control group), C2(solvent control group), L(800 mg/kg), M(1600 mg/kg), H(3200 mg/kg) according to different doses of EHDPHP after one week of environmental adaptation. The chicks were given continuous gavage for 14 d, 28 d, and 42 d. It was found that constant exposure to EHDPHP caused an increase in duodenal MDA content, a decrease in P-gp, SOD, GSH-Px activities, and a decrease in duodenal mucosal immune factor (sIgA, GSH-Px). The expression of sIgM and mucosal link proteins (CLDN, OCLN, ZO-1, JAM) decreased, and the expression of the inflammatory protein (NF-κB, COX2) in duodenal tissues was up-regulated. The results showed that continuous exposure to EHDPHP could cause duodenal oxidative stress, inflammation, and mucosal barrier damage in chicks, which provided a basis for studying the mechanism of toxic damage caused by EHDPHP in poultry.
Collapse
Affiliation(s)
- Yihan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| | - Yiming Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| | - Haolin Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| | - Linghuan Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| | - Haibin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| |
Collapse
|
3
|
Lundahl MN, Greiner MB, Piquette MC, Gannon PM, Kaminsky W, Kovacs JA. Exploring the influence of H-bonding and ligand constraints on thiolate ligated non-heme iron mediated dioxygen activation. Chem Sci 2024; 15:12710-12720. [PMID: 39148773 PMCID: PMC11325341 DOI: 10.1039/d4sc02787f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
Converting triplet dioxygen into a powerful oxidant is fundamentally important to life. The study reported herein quantitatively examines the formation of a well-characterized, reactive, O2-derived thiolate ligated FeIII-superoxo using low-temperature stopped-flow kinetics. Comparison of the kinetic barriers to the formation of this species via two routes, involving either the addition of (a) O2 to [FeII(S2 Me2N3(Pr,Pr))] (1) or (b) superoxide to [FeIII(S2 Me2N3(Pr,Pr))]+ (3) is shown to provide insight into the mechanism of O2 activation. Route (b) was shown to be significantly slower, and the kinetic barrier 14.9 kJ mol-1 higher than route (a), implying that dioxygen activation involves inner-sphere, as opposed to outer sphere, electron transfer from Fe(ii). H-bond donors and ligand constraints are shown to dramatically influence O2 binding kinetics and reversibility. Dioxygen binds irreversibly to [FeII(S2 Me2N3(Pr,Pr))] (1) in tetrahydrofuran, but reversibly in methanol. Hydrogen bonding decreases the ability of the thiolate sulfur to stabilize the transition state and the FeIII-superoxo, as shown by the 10 kJ mol-1 increase in the kinetic barrier to O2 binding in methanol vs. tetrahydrofuran. Dioxygen release from [FeIII(S2 Me2N3(Pr,Pr))O2] (2) is shown to be 24 kJ mol-1 higher relative to previously reported [FeIII(SMe2N4(tren))(O2)]+ (5), the latter of which contains a more flexible ligand. These kinetic results afford an experimentally determined reaction coordinate that illustrates the influence of H-bonding and ligand constraints on the kinetic barrier to dioxygen activation an essential step in biosynthetic pathways critical to life.
Collapse
Affiliation(s)
- Maike N Lundahl
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Maria B Greiner
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Marc C Piquette
- Department of Chemistry, Tufts University 62 Talbot Avenue Medford Massachusetts 02155 USA
| | - Paige M Gannon
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Werner Kaminsky
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Julie A Kovacs
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| |
Collapse
|
4
|
Deng F, Olvera-Vargas H, Zhou M, Qiu S, Sirés I, Brillas E. Critical Review on the Mechanisms of Fe 2+ Regeneration in the Electro-Fenton Process: Fundamentals and Boosting Strategies. Chem Rev 2023; 123:4635-4662. [PMID: 36917618 DOI: 10.1021/acs.chemrev.2c00684] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.,Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos CP 62580, México
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Hong Z, Li F, Borch T, Shi Q, Fang L. Incorporation of Cu into Goethite Stimulates Oxygen Activation by Surface-Bound Fe(II) for Enhanced As(III) Oxidative Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2162-2174. [PMID: 36703566 DOI: 10.1021/acs.est.2c07065] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The dark production of reactive oxygen species (ROS) coupled to biogeochemical cycling of iron (Fe) plays a pivotal role in controlling arsenic transformation and detoxification. However, the effect of secondary atom incorporation into Fe(III) oxyhydroxides on this process is poorly understood. Here, we show that the presence of oxygen vacancy (OV) as a result of Cu incorporation in goethite substantially enhances the As(III) oxidation by Fe(II) under oxic conditions. Electrochemical and density functional theory (DFT) evidence reveals that the electron transfer (ET) rate constant is enhanced from 0.023 to 0.197 s-1, improving the electron efficiency of the surface-bound Fe(II) on OV defective surfaces. The cascade charge transfer from the surface-bound Fe(II) to O2 mediated by Fe(III) oxyhydroxides leads to the O-O bond of O2 stretching to 1.46-1.48 Å equivalent to that of superoxide (•O2-), and •O2- is the predominant ROS responsible for As(III) oxidation. Our findings highlight the significant role of atom incorporation in changing the ET process on Fe(III) oxyhydroxides for ROS production. Thus, such an effect must be considered when evaluating Fe mineral reactivity toward changing their surface chemistry, such as those noted here for Cu incorporation, which likely determines the fates of arsenic and other redox sensitive pollutants in the environments with oscillating redox conditions.
Collapse
Affiliation(s)
- Zebin Hong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Thomas Borch
- Department of Soil and Crop Sciences and Department of Chemistry, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado80523, United States
| | - Qiantao Shi
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, New Jersey07030, United States
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| |
Collapse
|
6
|
Dedushko MA, Greiner MB, Downing AN, Coggins M, Kovacs JA. Electronic Structure and Reactivity of Dioxygen-Derived Aliphatic Thiolate-Ligated Fe-Peroxo and Fe(IV) Oxo Compounds. J Am Chem Soc 2022; 144:8515-8528. [PMID: 35522532 DOI: 10.1021/jacs.1c07656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we examine the electronic and geometric structural properties of O2-derived aliphatic thiolate-ligated Fe-peroxo, Fe-hydroxo, and Fe(IV) oxo compounds. The latter cleaves strong C-H bonds (96 kcal mol-1) on par with the valine C-H bond cleaved by isopencillin N synthase (IPNS). Stopped-flow kinetics studies indicate that the barrier to O2 binding to [FeII(SMe2N4(tren))]+ (3) is extremely low (Ea = 36(2) kJ mol-1), as theoretically predicted for IPNS. Dioxygen binding to 3 is shown to be reversible, and a superoxo intermediate, [FeIII(SMe2N4(tren))(O2)]+ (6), forms in the first 25 ms of the reaction at -40 °C prior to the rate-determining (Ea = 46(2) kJ mol-1) formation of peroxo-bridged [(SMe2N4(tren))Fe(III)]2(μ-O2)2+ (7). A log(kobs) vs log([Fe]) plot for the formation of 7 is consistent with the second-order dependence on iron, and H2O2 assays are consistent with a 2:1 ratio of Fe/H2O2. Peroxo 7 is shown to convert to ferric-hydroxo [FeIII(SMe2N(tren))(OH)]+ (9, g⊥ = 2.24, g∥ = 1.96), the identity of which was determined via its independent synthesis. Rates of the conversion 7 → 9 are shown to be dependent on the X-H bond strength of the H-atom donor, with a kH/kD = 4 when CD3OD is used in place of CH3OH as a solvent. A crystallographically characterized cis thiolate-ligated high-valent iron oxo, [FeIV(O)(SMe2N4(tren))]+ (11), is shown to form en route to hydroxo 9. Electronic structure calculations were shown to be consistent with 11 being an S = 1 Fe(IV)═O with an unusually high νFe-O stretching frequency at 918 cm-1 in line with the extremely short Fe-O bond (1.603(7) Å).
Collapse
Affiliation(s)
- Maksym A Dedushko
- Department of Chemistry, University of Washington, Campus Box 351700, Seattle, Washington 98195-1700, United States
| | - Maria B Greiner
- Department of Chemistry, University of Washington, Campus Box 351700, Seattle, Washington 98195-1700, United States
| | - Alexandra N Downing
- Department of Chemistry, University of Washington, Campus Box 351700, Seattle, Washington 98195-1700, United States
| | - Michael Coggins
- Department of Chemistry, University of Washington, Campus Box 351700, Seattle, Washington 98195-1700, United States
| | - Julie A Kovacs
- Department of Chemistry, University of Washington, Campus Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|