1
|
Morozkov GV, Troickiy AA, Averin AD, Mitrofanov AY, Abel AS, Beletskaya IP. Visible Light Photoredox Catalysis in the Synthesis of Phosphonate-Substituted 1,10-Phenanthrolines. Molecules 2024; 29:5558. [PMID: 39683719 DOI: 10.3390/molecules29235558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Photoredox-catalyzed phosphonylation of bromo-substituted 1,10-phenanthrolines under visible light irradiation was studied. The reaction was shown to proceed under mild conditions with Eosin Y as a photocatalyst in DMSO under blue light irradiation. It is transition-metal-free and affords the target phosphonate-substituted 1,10-phenanthrolines in moderate yields (26-51%) in 22 to 40 h. The rate and selectivity of the reaction depend largely on the position of the bromine atom, as well as on the nature and position of other substituents in the 1,10-phenanthroline core.
Collapse
Affiliation(s)
- Gleb V Morozkov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Artem A Troickiy
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexei D Averin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| | - Alexander Yu Mitrofanov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Anton S Abel
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Irina P Beletskaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| |
Collapse
|
2
|
Queffélec C, Pati PB, Pellegrin Y. Fifty Shades of Phenanthroline: Synthesis Strategies to Functionalize 1,10-Phenanthroline in All Positions. Chem Rev 2024; 124:6700-6902. [PMID: 38747613 DOI: 10.1021/acs.chemrev.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
1,10-Phenanthroline (phen) is one of the most popular ligands ever used in coordination chemistry due to its strong affinity for a wide range of metals with various oxidation states. Its polyaromatic structure provides robustness and rigidity, leading to intriguing features in numerous fields (luminescent coordination scaffolds, catalysis, supramolecular chemistry, sensors, theranostics, etc.). Importantly, phen offers eight distinct positions for functional groups to be attached, showcasing remarkable versatility for such a simple ligand. As a result, phen has become a landmark molecule for coordination chemists, serving as a must-use ligand and a versatile platform for designing polyfunctional arrays. The extensive use of substituted phenanthroline ligands with different metal ions has resulted in a diverse array of complexes tailored for numerous applications. For instance, these complexes have been utilized as sensitizers in dye-sensitized solar cells, as luminescent probes modified with antibodies for biomaterials, and in the creation of elegant supramolecular architectures like rotaxanes and catenanes, exemplified by Sauvage's Nobel Prize-winning work in 2016. In summary, phen has found applications in almost every facet of chemistry. An intriguing aspect of phen is the specific reactivity of each pair of carbon atoms ([2,9], [3,8], [4,7], and [5,6]), enabling the functionalization of each pair with different groups and leading to polyfunctional arrays. Furthermore, it is possible to differentiate each position in these pairs, resulting in non-symmetrical systems with tremendous versatility. In this Review, the authors aim to compile and categorize existing synthetic strategies for the stepwise polyfunctionalization of phen in various positions. This comprehensive toolbox will aid coordination chemists in designing virtually any polyfunctional ligand. The survey will encompass seminal work from the 1950s to the present day. The scope of the Review will be limited to 1,10-phenanthroline, excluding ligands with more intracyclic heteroatoms or fused aromatic cycles. Overall, the primary goal of this Review is to highlight both old and recent synthetic strategies that find applicability in the mentioned applications. By doing so, the authors hope to establish a first reference for phenanthroline synthesis, covering all possible positions on the backbone, and hope to inspire all concerned chemists to devise new strategies that have not yet been explored.
Collapse
Affiliation(s)
| | | | - Yann Pellegrin
- Nantes Université, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
3
|
Shang Y, Zhang Z, Huang M, Shu N, Luo H, Cao Q, Fan B, Han Y, Fang M, Wu Y, Xu J. Computational study of the photophysical properties and electronic structure of iridium(III) photosensitizer complexes with electron-withdrawing groups. Phys Chem Chem Phys 2023; 25:32666-32674. [PMID: 38010916 DOI: 10.1039/d3cp04900k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A series of novel [Ir(tpy)(btp)Cl]+ complexes (Ir1-Ir4) have been reported to show excellent performance as photosensitizers. The introduction of electron-withdrawing groups increases visible light absorption and the lifetime of triplet states. To improve the photophysical properties, we theoretically design Ir5-Ir9 with electron-withdrawing groups (Cl, F, COOH, CN and NO2). Surprisingly, our findings indicate that the photosensitizer performance does not strictly increase with the electron-withdrawing ability of the substituents. In this work, the geometric and electronic structures, transition features, and photophysical properties of Ir1-Ir9 are investigated. The natural transition orbital (NTO) analysis indicates that the T1 and T2 states play a role in the photochemical pathways. Ultraviolet-visible (UV-vis) absorption spectra and charge-transfer spectra (CTS) have been investigated to show that the introduction of electron-withdrawing groups not only improves the visible light absorbing ability, but also changes the nature of electron excitation, providing a future molecular design strategy for similar series of photosensitizers. The rates of (reverse) intersystem crossing and the Huang-Rhys factors are evaluated to interpret the experimental results within the framework of Marcus theory. For complexes Ir1-Ir7, the introduction of electron-withdrawing groups leads to a lower efficiency of reverse intersystem crossing and a strong non-radiative process T2 → T1, resulting in a long triplet lifetime and excellent performance as a photosensitizer. Furthermore, some newly designed complexes (Ir7-Ir9) show great potential as thermally activated delayed fluorescence emitters, contrary to our initial expectations.
Collapse
Affiliation(s)
- Yunlong Shang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhoujie Zhang
- Jiangsu Key Laboratory for Numerical Simulation of Large-Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, Jiangsu, P. R. China.
| | - Mengping Huang
- Jiangsu Key Laboratory for Numerical Simulation of Large-Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, Jiangsu, P. R. China.
| | - Na Shu
- Jiangsu Key Laboratory for Numerical Simulation of Large-Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, Jiangsu, P. R. China.
| | - Hanyu Luo
- Jiangsu Key Laboratory for Numerical Simulation of Large-Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, Jiangsu, P. R. China.
| | - Qiyan Cao
- Jiangsu Key Laboratory for Numerical Simulation of Large-Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, Jiangsu, P. R. China.
| | - Bingbing Fan
- Jiangsu Key Laboratory for Numerical Simulation of Large-Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, Jiangsu, P. R. China.
| | - Yu Han
- Jiangsu Key Laboratory for Numerical Simulation of Large-Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, Jiangsu, P. R. China.
| | - Min Fang
- Jiangsu Key Laboratory for Numerical Simulation of Large-Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, Jiangsu, P. R. China.
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| | - Yong Wu
- Jiangsu Key Laboratory for Numerical Simulation of Large-Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, Jiangsu, P. R. China.
| | - Jiawei Xu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
4
|
Wang LX, Cheng SC, Liu Y, Leung CF, Liu JY, Ko CC, Lau TC, Xiang J. Synthesis, structure and photoluminescence of Cu(I) complexes containing new functionalized 1,2,3-triazole ligands. Dalton Trans 2023; 52:16032-16042. [PMID: 37850402 DOI: 10.1039/d3dt02242k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The reaction of a triazole ligand, 2-(1H-1,2,3-triazol-4-yl)pyridine (L1), with 2-bromopyridine afforded three new ligands, 2,2'-(1H-1,2,3-triazole-1,4-diyl)dipyridine (L2), 2,2'-(2H-1,2,3-triazole-2,4-diyl)dipyridine (L3) and 2,2'-(1H-1,2,3-triazole-1,5-diyl)dipyridine (L4). A series of luminescent mononuclear copper(I) complexes of these ligands [Cu(Ln)(P^P)](ClO4) [n = 1, P^P = (PPh3)2 (1); n = 1, P^P = POP (2); n = 2, P^P = (PPh3)2 (3); n = 2, P^P = POP (4); n = 3, P^P = (PPh3)2 (5); n = 3, P^P = POP (6); n = 4, P^P = (PPh3)2 (9); n = 4, P^P = POP (10)] have been obtained from the reaction of Ln with [Cu(MeCN)4]ClO4 in the presence of PPh3 and POP. L3 was also found to form dinuclear compounds [Cu2(L3)(PPh3)4](ClO4)2 (7) and [Cu2(L3)(POP)2](ClO4)2 (8). All of the Cu(I) compounds have been characterized by IR, UV/vis, CV, 1H NMR, and 31P{1H} NMR. The molecular structures of 1-3, 5, and 7 have been further determined by X-ray crystallography. In CH2Cl2 solutions, these Cu(I) complexes exhibit tunable green to orange emissions (563-621 nm) upon excitation at λex = 380 nm. In the solid state, these complexes show intense emissions and it is interesting to note that 1 and 3 are blue-light emitters. Density functional theory (DFT) calculations revealed that the lowest energy electronic transition associated with these complexes predominantly originates from metal-to-ligand charge transfer transitions (MLCT).
Collapse
Affiliation(s)
- Li-Xin Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Shun-Cheung Cheng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Yingying Liu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Chi-Fai Leung
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Ji-Yan Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Chi-Chiu Ko
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Jing Xiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
5
|
Doettinger F, Yang Y, Karnahl M, Tschierlei S. Bichromophoric Photosensitizers: How and Where to Attach Pyrene Moieties to Phenanthroline to Generate Copper(I) Complexes. Inorg Chem 2023; 62:8166-8178. [PMID: 37200533 DOI: 10.1021/acs.inorgchem.3c00482] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pyrene is a polycyclic aromatic hydrocarbon and organic dye that can form superior bichromophoric systems when combined with a transition metal-based chromophore. However, little is known about the effect of the type of attachment (i.e., 1- vs 2-pyrenyl) and the individual position of the pyrenyl substituents at the ligand. Therefore, a systematic series of three novel diimine ligands and their respective heteroleptic diimine-diphosphine copper(I) complexes has been designed and extensively studied. Special attention was given to two different substitution strategies: (i) attaching pyrene via its 1-position, which occurs most frequently in the literature, or via its 2-position and (ii) targeting two contrasting substitution patterns at the 1,10-phenanthroline ligand, i.e., the 5,6- and the 4,7-position. In the applied spectroscopic, electrochemical, and theoretical methods (UV/vis, emission, time-resolved luminescence and transient absorption, cyclic voltammetry, density functional theory), it has been shown that the precise choice of the derivatization sites is crucial. Substituting the pyridine rings of phenanthroline in the 4,7-position with the 1-pyrenyl moiety has the strongest impact on the bichromophore. This approach results in the most anodically shifted reduction potential and a drastic increase in the excited state lifetime by more than two orders of magnitude. In addition, it enables the highest singlet oxygen quantum yield of 96% and the most beneficial activity in the photocatalytic oxidation of 1,5-dihydroxy-naphthalene.
Collapse
Affiliation(s)
- Florian Doettinger
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Yingya Yang
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Michael Karnahl
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Stefanie Tschierlei
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Rebenring 31, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
7
|
Recent developments of photoactive Cu(I) and Ag(I) complexes with diphosphine and related ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Kübler J, Pfund B, Wenger OS. Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion. JACS AU 2022; 2:2367-2380. [PMID: 36311829 PMCID: PMC9597861 DOI: 10.1021/jacsau.2c00442] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/28/2023]
Abstract
Many CuI complexes have luminescent triplet charge-transfer excited states with diverse applications in photophysics and photochemistry, but for isoelectronic ZnII compounds, this behavior is much less common, and they typically only show ligand-based fluorescence from singlet π-π* states. We report two closely related tetrahedral ZnII compounds, in which intersystem crossing occurs with appreciable quantum yields and leads to the population of triplet excited states with intraligand charge-transfer (ILCT) character. In addition to showing fluorescence from their initially excited 1ILCT states, these new compounds therefore undergo triplet-triplet energy transfer (TTET) from their 3ILCT states and consequently can act as sensitizers for photo-isomerization reactions and triplet-triplet annihilation upconversion from the blue to the ultraviolet spectral range. The photoactive 3ILCT state furthermore facilitates photoinduced electron transfer. Collectively, our findings demonstrate that mononuclear ZnII compounds with photophysical and photochemical properties reminiscent of well-known CuI complexes are accessible with suitable ligands and that they are potentially amenable to many different applications. Our insights seem relevant in the greater context of obtaining photoactive compounds based on abundant transition metals, complementing well-known precious-metal-based luminophores and photosensitizers.
Collapse
|
9
|
Brückmann J, Müller C, Maisuradze T, Mengele AK, Nauroozi D, Fauth S, Gruber A, Gräfe S, Leopold K, Kupfer S, Dietzek‐Ivanšić B, Rau S. Pyrimidoquinazolinophenanthroline Opens Next Chapter in Design of Bridging Ligands for Artificial Photosynthesis. Chemistry 2022; 28:e202200766. [PMID: 35719124 PMCID: PMC9546224 DOI: 10.1002/chem.202200766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/08/2022]
Abstract
The synthesis and detailed characterization of a new Ru polypyridine complex containing a heteroditopic bridging ligand with previously unexplored metal-metal distances is presented. Due to the twisted geometry of the novel ligand, the resultant division of the ligand in two distinct subunits leads to steady state as well as excited state properties of the corresponding mononuclear Ru(II) polypyridine complex resembling those of prototype [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine). The localization of the initially optically excited and the nature of the long-lived excited states on the Ru-facing ligand spheres is evaluated by resonance Raman and fs-TA spectroscopy, respectively, and supported by DFT and TDDFT calculations. Coordination of a second metal (Zn or Rh) to the available bis-pyrimidyl-like coordination sphere strongly influences the frontier orbitals, apparent by, for example, luminescence quenching. Thus, the new bridging ligand motif offers electronic properties, which can be adjusted by the nature of the second metal center. Using the heterodinuclear Ru-Rh complex, visible light-driven reduction of NAD+ to NADH was achieved, highlighting the potential of this system for photocatalytic applications.
Collapse
Affiliation(s)
- Jannik Brückmann
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Carolin Müller
- Institute of Physical ChemistryFriedrich-Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) e.V.Department Functional InterfacesAlbert-Einstein-Straße 907745JenaGermany
| | - Tamar Maisuradze
- Institute of Physical ChemistryFriedrich-Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Alexander K. Mengele
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Djawed Nauroozi
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Sven Fauth
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Andreas Gruber
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Stefanie Gräfe
- Institute of Physical ChemistryFriedrich-Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Kerstin Leopold
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Stephan Kupfer
- Institute of Physical ChemistryFriedrich-Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Benjamin Dietzek‐Ivanšić
- Institute of Physical ChemistryFriedrich-Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) e.V.Department Functional InterfacesAlbert-Einstein-Straße 907745JenaGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
10
|
Rentschler M, Boden PJ, Argüello Cordero MA, Steiger ST, Schmid MA, Yang Y, Niedner-Schatteburg G, Karnahl M, Lochbrunner S, Tschierlei S. Unexpected Boost in Activity of a Cu(I) Photosensitizer by Stabilizing a Transient Excited State. Inorg Chem 2022; 61:12249-12261. [PMID: 35877171 DOI: 10.1021/acs.inorgchem.2c01468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we present a slight but surprisingly successful structural modification of the previously reported heteroleptic Cu(I) photosensitizer Cubiipo ([(xantphos)Cu(biipo)]PF6; biipo = 16H-benzo-[4',5']-isoquinolino-[2',1':1,2]-imidazo-[4,5-f]-[1,10]-phenanthrolin-16-one). As a key feature, biipo bears a naphthalimide unit at the back, which is directly fused to a phenanthroline moiety to extend the conjugated π-system. This ligand was now altered to include two additional methyl groups at the 2,9-positions at the phenanthroline scaffold. Comparing the novel Cudmbiipo complex to its predecessor, ultrafast transient absorption spectroscopy reveals the efficient suppression of a major deactivation pathway by stabilization of a transient triplet state. Furthermore, quantitative measurements of singlet oxygen evolution in solution confirmed that a larger fraction of the excited-state population is transferred to the photocatalytically active ligand-centered triplet 3LC state with a much longer lifetime of ∼30 μs compared to Cubiipo (2.6 μs). In addition, Cudmbiipo was compared with the well-established reference complex Cubcp ([(xantphos)Cu(bathocuproine)]PF6) in terms of its photophysical and photocatalytic properties by applying time-resolved femto- and nanosecond absorption, step-scan Fourier transform infrared (FTIR), and emission spectroscopies. Superior light-harvesting properties and a greatly enhanced excited-state lifetime with respect to Cubcp enable Cudmbiipo to be more active in exemplary photocatalytic applications, i.e., in the formation of singlet oxygen and the isomerization of (E)-stilbene.
Collapse
Affiliation(s)
- Martin Rentschler
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Pit Jean Boden
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Miguel A Argüello Cordero
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 23, 18051 Rostock, Germany
| | - Sophie Theres Steiger
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Marie-Ann Schmid
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Yingya Yang
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Gereon Niedner-Schatteburg
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Michael Karnahl
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 23, 18051 Rostock, Germany
| | - Stefanie Tschierlei
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| |
Collapse
|
11
|
Yang Y, Doettinger F, Kleeberg C, Frey W, Karnahl M, Tschierlei S. How the Way a Naphthalimide Unit is Implemented Affects the Photophysical and -catalytic Properties of Cu(I) Photosensitizers. Front Chem 2022; 10:936863. [PMID: 35783217 PMCID: PMC9247301 DOI: 10.3389/fchem.2022.936863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Driven by the great potential of solar energy conversion this study comprises the evaluation and comparison of two different design approaches for the improvement of copper based photosensitizers. In particular, the distinction between the effects of a covalently linked and a directly fused naphthalimide unit was assessed. For this purpose, the two heteroleptic Cu(I) complexes CuNIphen (NIphen = 5-(1,8-naphthalimide)-1,10-phenanthroline) and Cubiipo (biipo = 16H-benzo-[4′,5′]-isoquinolino-[2′,1′,:1,2]-imidazo-[4,5-f]-[1,10]-phenanthroline-16-one) were prepared and compared with the novel unsubstituted reference compound Cuphen (phen = 1,10-phenanthroline). Beside a comprehensive structural characterization, including two-dimensional nuclear magnetic resonance spectroscopy and X-ray analysis, a combination of electrochemistry, steady-state and time-resolved spectroscopy was used to determine the electrochemical and photophysical properties in detail. The nature of the excited states was further examined by (time-dependent) density functional theory (TD-DFT) calculations. It was found that CuNIphen exhibits a greatly enhanced absorption in the visible and a strong dependency of the excited state lifetimes on the chosen solvent. For example, the lifetime of CuNIphen extends from 0.37 µs in CH2Cl2 to 19.24 µs in MeCN, while it decreases from 128.39 to 2.6 µs in Cubiipo. Furthermore, CuNIphen has an exceptional photostability, allowing for an efficient and repetitive production of singlet oxygen with quantum yields of about 32%.
Collapse
Affiliation(s)
- Yingya Yang
- TU Braunschweig, Institute of Physical and Theoretical Chemistry, Department of Energy Conversion, Braunschweig, Germany
| | - Florian Doettinger
- TU Braunschweig, Institute of Physical and Theoretical Chemistry, Department of Energy Conversion, Braunschweig, Germany
| | - Christian Kleeberg
- TU Braunschweig, Institute of Inorganic and Analytical Chemistry, Braunschweig, Germany
| | - Wolfgang Frey
- University of Stuttgart, Institute of Organic Chemistry, Stuttgart, Germany
| | - Michael Karnahl
- TU Braunschweig, Institute of Physical and Theoretical Chemistry, Department of Energy Conversion, Braunschweig, Germany
- *Correspondence: Michael Karnahl, ; Stefanie Tschierlei,
| | - Stefanie Tschierlei
- TU Braunschweig, Institute of Physical and Theoretical Chemistry, Department of Energy Conversion, Braunschweig, Germany
- *Correspondence: Michael Karnahl, ; Stefanie Tschierlei,
| |
Collapse
|
12
|
Schmid L, Glaser F, Schaer R, Wenger OS. High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis. J Am Chem Soc 2022; 144:963-976. [PMID: 34985882 DOI: 10.1021/jacs.1c11667] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclometalated Ir(III) complexes are often chosen as catalysts for challenging photoredox and triplet-triplet-energy-transfer (TTET) catalyzed reactions, and they are of interest for upconversion into the ultraviolet spectral range. However, the triplet energies of commonly employed Ir(III) photosensitizers are typically limited to values around 2.5-2.75 eV. Here, we report on a new Ir(III) luminophore, with an unusually high triplet energy near 3.0 eV owing to the modification of a previously reported Ir(III) complex with isocyanoborato ligands. Compared to a nonborylated cyanido precursor complex, the introduction of B(C6F5)3 units in the second coordination sphere results in substantially improved photophysical properties, in particular a high luminescence quantum yield (0.87) and a long excited-state lifetime (13.0 μs), in addition to the high triplet energy. These favorable properties (including good long-term photostability) facilitate exceptionally challenging organic triplet photoreactions and (sensitized) triplet-triplet annihilation upconversion to a fluorescent singlet excited state beyond 4 eV, unusually deep in the ultraviolet region. The new Ir(III) complex photocatalyzes a sigmatropic shift and [2 + 2] cycloaddition reactions that are unattainable with common transition metal-based photosensitizers. In the presence of a sacrificial electron donor, it furthermore is applicable to demanding photoreductions, including dehalogenations, detosylations, and the degradation of a lignin model substrate. Our study demonstrates how rational ligand design of transition-metal complexes (including underexplored second coordination sphere effects) can be used to enhance their photophysical properties and thereby broaden their application potential in solar energy conversion and synthetic photochemistry.
Collapse
Affiliation(s)
- Lucius Schmid
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Felix Glaser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Raoul Schaer
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
13
|
Ejarque D, Calvet T, Font-Bardia M, Pons J. Influence of a series of pyridine ligands on the structure and photophysical properties of Cd( ii) complexes. CrystEngComm 2022. [DOI: 10.1039/d1ce01584b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Five Cd(ii) complexes based on α-acetamidocinnamic acid (HACA) and a set of N,N^N and N^N^N-pyridine (dPy) yield complexes with diverse nuclearities and enhanced quantum yields, benefiting from the chelation enhanced effect (CHEF) of dPy.
Collapse
Affiliation(s)
- Daniel Ejarque
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Teresa Calvet
- Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raig-X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Josefina Pons
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
14
|
Castro J, Ferraro V, Bortoluzzi M. Visible-emitting Cu( i) complexes with N-functionalized benzotriazole-based ligands. NEW J CHEM 2022. [DOI: 10.1039/d2nj03165e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bidentate benzotriazole-based N-ligands are suited for the preparation of luminescent heteroleptic copper(i) complexes with noticeable emissions related to 3MLCT transitions.
Collapse
Affiliation(s)
- Jesús Castro
- Departamento de Química Inorgánica, Universidade de Vigo, Facultade de Química, Edificio de Ciencias Experimentais, 36310 Vigo, Galicia, Spain
| | - Valentina Ferraro
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, I-30172 Mestre (VE), Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, I-30172 Mestre (VE), Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
15
|
Wu Z, Cui S, Zhao Z, He B, Li XL. Photophysical properties of homobimetallic Cu( i)–Cu( i) and heterobimetallic Cu( i)–Ag( i) complexes of 2-(6-bromo-2-pyridyl)-1 H-imidazo[4,5- f][1,10]phenanthroline. NEW J CHEM 2022. [DOI: 10.1039/d2nj00774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heteronuclear Cu(i)–Ag(i) complexes show dual emission bands and enhanced luminescence compared with their isostructural homobinuclear Cu(i) complexes.
Collapse
Affiliation(s)
- Zhan Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Shu Cui
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Zhenqin Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Bingling He
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiu-Ling Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
16
|
Alconchel A, Crespo O, García-Orduña P, Gimeno MC. Closo- or Nido-Carborane Diphosphane as Responsible for Strong Thermochromism or Time Activated Delayed Fluorescence (TADF) in [Cu(N^N)(P^P)] 0/. Inorg Chem 2021; 60:18521-18528. [PMID: 34812617 PMCID: PMC8653344 DOI: 10.1021/acs.inorgchem.1c03092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 11/29/2022]
Abstract
Ortho-closo or ortho-nido-carborane-diphosphanes have been selected to prepare the heteroleptic cationic or neutral [Cu(N^N){(PPh2)2C2B10H10}]PF6 (1) and [Cu(N^N){(PPh2)2C2B9H10}] (2) [N^N = 2-(4-thiazolyl)benzimidazole], respectively. Complexes 1 and 2 display very different emissive behavior. Neutral complex 2 exhibits TADF (time activated delayed fluorescence) which has been studied both as powder and PMMA composite with similar ΔE(S1 - T1), τ(T1), and τ(S1) in both phases. Cationic complex 1 displays a much lower quantum yield than 2 and does not show TADF, but it exhibits a significant thermochromic luminescence, and its emission is very dependent on the medium. Theoretical studies show that metal-ligand (M-diphosphane) to ligand (L', diimine) transitions, MLL'CT, are responsible of the transitions which originate the emissive properties, but with very different contribution of the copper center, carborane cluster, and diphosphane phenyl rings for 1 and 2.
Collapse
Affiliation(s)
- Adrián Alconchel
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH). Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
| | - Olga Crespo
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH). Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
| | - Pilar García-Orduña
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH). Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH). Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
| |
Collapse
|