1
|
He A, Zuo D, Jiang G, Tang X, Wang L, Feng L, Zhao Z, Wei J, Zheng N, Shen H. Eight-electron Pt/Cu superatom encapsulating three "electron-donating" hydrides. SCIENCE ADVANCES 2025; 11:eads4488. [PMID: 39772673 PMCID: PMC11708884 DOI: 10.1126/sciadv.ads4488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Hydrides in metal complexes or nanoclusters are typically viewed as electron-withdrawing. Several recent reports have demonstrated the emergence of "electron-donating" hydrides in tailoring the structure, electronic structure, and reactivity of metal nanoclusters. However, the number of such hydrides included in each cluster kernel is limited to one or two. There is even no structure model, neither theoretical nor experimental, for encapsulating a third electron-donating hydride into one cluster entity. Here, we present a structurally precise superatomic nanocluster, PtH3Cu23(iso-propyl-PhS)18(PPh3)4 (PtH3Cu23), which contains three interstitial electron-donating hydrides. The molecular structure of PtH3Cu23 describes the encapsulation of a PtCu12 core that contains three interstitial hydrides in a distorted anticuboctahedral architecture, in an outer sphere consisting of copper atoms and thiolate and phosphine ligands. Density functional theory calculations reveal that the three hydrides in PtH3Cu23 contribute their valence electrons to the cluster superatomic electron count of eight. In this regard, the cluster represents a rare Pt-included copper-hydride superatom with eight free electrons.
Collapse
Affiliation(s)
- Ayisha He
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Dongjie Zuo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Guangmei Jiang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Xiongkai Tang
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lin Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Liubin Feng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Jianyu Wei
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
2
|
Yu X, Pei W, Xu WW, Zhao Y, Su Y, Zhao J. Core-Packing-Related Vibrational Properties of Thiol-Protected Gold Nanoclusters and Their Excited-State Behavior. Inorg Chem 2023. [PMID: 38009722 DOI: 10.1021/acs.inorgchem.3c03482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Thiolate-protected gold nanoclusters, with unique nuclearity- and structure-dependent properties, have been extensively used in energy conversion and catalysis; however, the mystery between kernel structures and properties remains to be revealed. Here, the influence of core packing on the electronic structure, vibrational properties, and excited-state dynamics of four gold nanoclusters with various kernel structures is explored using density functional theory combined with time-domain nonadiabatic molecular dynamics simulations. We elucidate the correlation between the geometrical structure and excited-state dynamics of gold nanoclusters. The distinct carrier lifetimes of the four nanoclusters are attributed to various electron-phonon couplings arising from the different vibrational properties caused by core packing. We have identified specific phonon modes that participate in the electron-hole recombination dynamics, which are related to the gold core of nanoclusters. This study paints a physical picture from the geometric configuration, electronic structure, vibrational properties, and carrier lifetime of these nanoclusters, thereby facilitating their potential application in optoelectronic materials.
Collapse
Affiliation(s)
- Xueke Yu
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Wei Pei
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu 225009, China
| | - Wen-Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yang Zhao
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Yan Su
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Yu JH, Yuan ZR, Xu J, Wang JG, Azam M, Li TD, Li YZ, Sun D. Monoarsine-protected icosahedral cluster [Au 13(AsPh 3) 8Cl 4] +: comparative studies on ligand effect and surface reactivity with its stibine analogue. Chem Sci 2023; 14:6564-6571. [PMID: 37350827 PMCID: PMC10283507 DOI: 10.1039/d3sc01311a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/28/2023] [Indexed: 06/24/2023] Open
Abstract
Ligand shells of gold nanoclusters play important roles in regulating their molecular and electronic structures. However, the similar but distinct impacts of the homologous analogues of the protecting ligands remain elusive. The C2v symmetric monoarsine-protected cluster [Au13(AsPh3)8Cl4]+ (Au13As8) was facilely prepared by direct reduction of (Ph3As)AuCl with NaBH4. This cluster is isostructural with its previously reported stibine analogue [Au13(SbPh3)8Cl4]+ (Au13Sb8), enabling a comparative study between them. Au13As8 exhibits a blue-shifted electronic absorption band, and this is probably related to the stronger π-back donation interactions between the Au13 core and AsPh3 ligands, which destabilize its superatomic 1P and 1D orbitals. In comparison to the thermodynamically less stable Au13Sb8, Au13As8 achieves a better trade-off between catalytic stability and activity, as demonstrated by its excellent catalytic performance towards the aldehyde-alkyne-amine (A3) coupling reaction. Moreover, the ligand exchange reactions between Au13As8 with phosphines, as exemplified by PPh3 and Ph2P(CH2)2PPh2, suggest that Au13As8 may be a good precursor cluster for further cluster preparation through the "cluster-to-cluster" route.
Collapse
Affiliation(s)
- Jiu-Hong Yu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Zhi-Rui Yuan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Jin-Gui Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Tian-Duo Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Ying-Zhou Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 P. R. China
| |
Collapse
|
4
|
Wei J, MacLeod Carey D, Halet JF, Kahlal S, Saillard JY, Muñoz-Castro A. From 8- to 18-Cluster Electrons Superatoms: Evaluation via DFT Calculations of the Ligand-Protected W@Au 12(dppm) 6 Cluster Displaying Distinctive Electronic and Optical Properties. Inorg Chem 2023; 62:3047-3055. [PMID: 36734972 DOI: 10.1021/acs.inorgchem.2c03771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The iconic W@Au12 icosahedral bare cluster reaches the favorable closed-shell superatomic electron configuration 1S2 1P6 1D10, making it an 18-cluster electron (18-ce) superatom. Here, we pursue the evaluation of a ligand-protected counterpart based on the construction of a fully phosphine-protected [W@Au12(dppm)6] cluster strongly related to the characterized [Au13(dppm)6]5+ homometallic counterpart. The later cluster has the same total number of valence electrons as the former but is considered an 8-ce superatom with 1S2 1P6 configuration. The fundamental differences between 8- and 18-ce species are investigated. The character of the frontier orbitals varies from 1P/1D in the 8-ce case to a 1D/ligand for 18-ce species, enabling an efficient charge transfer toward the ligands upon irradiation, being interesting for electron injection in optoelectronic devices and black absorbers applications. Excited-state properties are also revisited, showing different geometrical and electronic structure variations between 8- and 18-ce species. Moreover, the continuum between the 8- and 18-ce limits has been explored by varying the nature of the encapsulated dopant between group 6 and group 11. The transition between the 8- and 18-ce counts can be formally situated between Pt (8-ce) and Ir (18-ce). Thus, 18-ce derivatives obtained as doped counterparts of homometallic gold clusters can introduce useful alternatives to achieve different properties in related structural motifs, which can be further explored owing to their extension of the well-established versatility of current gold nanoclusters.
Collapse
Affiliation(s)
- Jianyu Wei
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Univ Rennes, CNRS, F-35000Rennes, France
| | - Desmond MacLeod Carey
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago7500912, Chile
| | - Jean-François Halet
- CNRS-Saint-Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba305-0044, Japan
| | - Samia Kahlal
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Univ Rennes, CNRS, F-35000Rennes, France
| | - Jean-Yves Saillard
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Univ Rennes, CNRS, F-35000Rennes, France
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago8420524, Chile
| |
Collapse
|
5
|
Hirai H, Takano S, Nakashima T, Iwasa T, Taketsugu T, Tsukuda T. Doping-Mediated Energy-Level Engineering of M@Au 12 Superatoms (M=Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis. Angew Chem Int Ed Engl 2022; 61:e202207290. [PMID: 35608869 DOI: 10.1002/anie.202207290] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/18/2022]
Abstract
We synthesized a series of MAu12 (dppe)5 Cl2 (MAu12 ; M=Au, Pd, Pt, Rh, or Ir; dppe=1,2-bis(diphenylphosphino)ethane), which have icosahedral M@Au12 superatomic cores, and systematically investigated their electronic structures, photoluminescence (PL) and photocatalytic properties. The energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) was expanded when doping an M element positioned at the lower left of the periodic table. The PL quantum yield was enhanced with an increase in the HOMO-LUMO gap and reached 0.46-0.67 for MAu12 (M=Pt, Rh, or Ir) under deaerated conditions. The bright PLs from MAu12 (M=Pt, Rh, or Ir) were assigned to phosphorescence based on quenching by O2 . MAu12 (M=Pt, Rh, or Ir) acted as a more efficient and stable photocatalyst than Au13 for intramolecular [2+2] cycloaddition of bisenone via the oxidative quenching cycle. This study provides rational guides for designing photoluminescent and photocatalytic gold superatoms by the doping of heterometal elements.
Collapse
Affiliation(s)
- Haru Hirai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Nakashima
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
6
|
She J, Pei W, Zhou S, Zhao J. Enhanced Fluorescence with Tunable Color in Doped Diphosphine-Protected Gold Nanoclusters. J Phys Chem Lett 2022; 13:5873-5880. [PMID: 35728267 DOI: 10.1021/acs.jpclett.2c01522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rational control of the luminescent properties of ligand-protected coinage metal clusters has long been pursued but remains challenging. Here we explore the crucial structural and electronic factors governing the fluorescence of a diphosphine-protected [Au13(dppe)5Cl2]3+ cluster by time-dependent density functional theory calculations. By substituting the central Au atom with group 5 to group 11 transition metal atoms, the emission wavelength is adjustable from red to blue, accompanied by enhanced fluorescence intensity compared with the undoped cluster. The evolution of light-emitting behavior upon doping and the corresponding roles of the dopant, Au cage, ligands, and their interplay are interpreted at the electronic structure level. In particular, strong dopant-Au cage interaction associated with large electron-hole overlap on the dopant are is a key factor to endow large emission energy and intensity. These theoretical results provide vital guidance for designing atomically precise nanoclusters with visible fluorescence and high quantum yield for practical uses.
Collapse
Affiliation(s)
- Jie She
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Wei Pei
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| |
Collapse
|
7
|
Chiu TH, Liao JH, Gam F, Wu YY, Wang X, Kahlal S, Saillard JY, Liu CW. Hydride-Containing Eight-Electron Pt/Ag Superatoms: Structure, Bonding, and Multi-NMR Studies. J Am Chem Soc 2022; 144:10599-10607. [PMID: 35654753 DOI: 10.1021/jacs.2c03715] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent reports on hydride-doped noble metal nanoclusters strongly suggest that the encapsulated hydride is a part of the superatom core, but no accurate location of the hydride could be experimentally proved, so far. We report herein a hydride-doped eight-electron platinum/silver alloy nanocluster in which the position of four-coordinated hydride was determined by neutron diffraction for the first time. X-ray structures of [PtHAg19(dtp/desp)12] (dtp = S2P(OnPr)2, 1; dsep = Se2P(OiPr)2, 2) describe a central platinum hydride (PtH) unit encapsulated within a distorted Ag12 icosahedron, the resulting (PtH)@Ag12 core being stabilized by an outer sphere made up of 7 capping silver atoms and 12 dichalcogenolates. Solid-state structures of 1 and 2 differ somewhat in the spatial configuration of their outer spheres, resulting in overall different symmetries, C1 and C3, respectively. Whereas the multi-NMR spectra of 2 in solution at 173 K reveal that the structure of C3 symmetry is the predominant one, 1H and 195Pt NMR spectra of 1 at the same temperature disclose the presence of isomers of both C1 and C3 symmetry. DFT calculations found both isomers to be very close in energy, supporting the fact that they co-exist in solution. They also show that the [PtH@Ag12]5+ kernel can be viewed as a closed-shell superatomic core, the μ4-hydride electron contributing to its eight-electron count. On the other hand, the 1s(H) orbital contributes only moderately to the superatomic orbitals, being mainly involved in the building of a Pt-H bonding electron pair with the 5dz2(Pt) orbital.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan (Republic of China)
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan (Republic of China)
| | - Franck Gam
- CNRS, ISCR-UMR 6226, Univ Rennes, Rennes F-35000, France
| | - Ying-Yann Wu
- Institute of Chemistry, Academia Sinica, Taipei 11528, Taiwan (Republic of China)
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Samia Kahlal
- CNRS, ISCR-UMR 6226, Univ Rennes, Rennes F-35000, France
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan (Republic of China)
| |
Collapse
|
8
|
Hirai H, Takano S, Nakashima T, Iwasa T, Taketsugu T, Tsukuda T. Doping‐Mediated Energy‐Level Engineering of M@Au12 Superatoms (M = Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haru Hirai
- The University of Tokyo: Tokyo Daigaku Department of Chemistry, Graduate School of Science JAPAN
| | - Shinjiro Takano
- The University of Tokyo: Tokyo Daigaku Department of Chemistry, Graduate School of Science JAPAN
| | - Takuya Nakashima
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Scienc JAPAN
| | - Takeshi Iwasa
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science JAPAN
| | - Tetsuya Taketsugu
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science JAPAN
| | - Tatsuya Tsukuda
- The University of Tokyo Department of Chemistry 7-3-1 Hongo, Bunkyo-ku 113-0033 Tokyo JAPAN
| |
Collapse
|
9
|
Day PN, Pachter R, Nguyen KA. Calculated linear and nonlinear optical absorption spectra of phosphine-ligated gold clusters. Phys Chem Chem Phys 2022; 24:11234-11248. [DOI: 10.1039/d2cp01232d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although prediction of optical excitations of ligated gold clusters by time-dependent density functional theory (TDDFT) is relatively well-established, limitations still exist, for example in the choice of the exchange-correlation functional....
Collapse
|
10
|
Gam F, Chantrenne I, Kahlal S, Chiu TH, Liao JH, Liu CW, Saillard JY. Alloying dichalcogenolate-protected Ag 21 eight-electron nanoclusters: a DFT investigation. NANOSCALE 2021; 14:196-203. [PMID: 34908067 DOI: 10.1039/d1nr06019h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The isoelectronic doping of dichalcogenolato nanoclusters of the type [Ag21{E2P(OR)2}12]+ (E = S, Se) by any heteroatom belonging to groups 9-12 was systematically investigated using DFT calculations. Although they can differ in their global structure, all of these species have the same M@M12-centered icosahedral core. In any case, the different structure types are all very close in energy. In all of them, three different alloying sites can be identified (central, icosahedral, peripheral) and calculations allowed the trends in heteroatom site occupation preference across the group 9-12 family to be revealed. These trends are supported by complementary experimental results. They were rationalized on the basis of electronegativity, potential involvement in the bonding of valence d-orbitals and atom size. TD-DFT calculations showed that the effect of doping on optical properties is sizable and this should stimulate research on the modulation of luminescence properties in the dithiolato and diseleno families of complexes.
Collapse
Affiliation(s)
- Franck Gam
- Université de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Isaac Chantrenne
- Université de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Samia Kahlal
- Université de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China.
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China.
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China.
| | | |
Collapse
|
11
|
Abstract
Superatomic molecular orbitals (SAMOs) have symmetries (angular quantum numbers) similar to those of atoms, and thus, it is possible to realize Rydberg state excitations (RSEs) in superatomic molecules. In this Letter, the feasibility of superatomic Rydberg state excitation (SRSE) is explored using gold superatoms based on first-principles calculations. The results show that the SRSE exists in the high and low excited states of the gold superatoms and their SAMOs make a major contribution to electronic transitions. The radial distribution function of electronic density shows that the main distribution of electrons in the lowest unoccupied molecular orbitals and other unoccupied superatomic molecular orbitals is extremely far from the geometric center, and thus, they can be unambiguously identified as Rydberg orbitals. We found that due to the two-dimensional ductility of the planar SAMOs, superatoms are superior in the RSE regulation. Our findings may provide a new source of superatom-based RSE and will contribute to the regulation and efficient preparation of Rydberg states.
Collapse
Affiliation(s)
- Zheng Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xiaochen Wu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yu Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Rui Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Famin Yu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Zhigang Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
12
|
Takano S, Hirai H, Nakashima T, Iwasa T, Taketsugu T, Tsukuda T. Photoluminescence of Doped Superatoms M@Au 12 (M = Ru, Rh, Ir) Homoleptically Capped by (Ph 2)PCH 2P(Ph 2): Efficient Room-Temperature Phosphorescence from Ru@Au 12. J Am Chem Soc 2021; 143:10560-10564. [PMID: 34232036 DOI: 10.1021/jacs.1c05019] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of doped gold superatoms M@Au12 (M = Ru, Rh, Ir) was synthesized by capping with the bidentate ligand (Ph2)PCH2P(Ph2). A single-crystal X-ray diffraction analysis showed that all the M@Au12 superatoms had icosahedral motifs with a significantly higher symmetry than that of the pure Au13 counterpart due to different coordination geometries. The Ru@Au12 superatom exhibited a room-temperature phosphorescence with the highest quantum yield of 0.37 in deaerated dichloromethane. Density functional theory calculations suggested that the efficient phosphorescence is ascribed to a rapid intersystem crossing due to the similarity between the singlet and triplet excited states in terms of structure and energy.
Collapse
Affiliation(s)
- Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haru Hirai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Nakashima
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|