1
|
Dkhar B, Narayanan M, Venkatakrishnan P, Velusamy M, Kathiravan A. Intramolecular Charge Transfer-Induced Fluorescent Probe for the Sensitive Detection of Copper Tripeptide. J Phys Chem B 2025; 129:5005-5015. [PMID: 40359517 DOI: 10.1021/acs.jpcb.5c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Donor-acceptor-based fluorescent molecules have garnered considerable attention as excellent tool for trace detection of Cu2+ ions, owing to their tunable photophysical properties and higher sensitivity. Concurrently, these molecules may occasionally display undesired fluorescence quenching due to several factors, thereby diminishing selectivity. To address this concern, this work focuses on developing selective and reversible fluorescent sensors for Cu2+ ions. To pursue this, novel fluorescent probes were designed by incorporating donor moieties like diphenylamine and dimethylamine into an imidazopyridine unit. The probes were synthesized and characterized using conventional techniques. As synthesized probes exhibit strong fluorescence attributed to intramolecular charge transfer, confirmed by density functional theory calculations. The HOMO is localized on amine moiety, while LUMO resides on imidazopyridine segment. Utilizing an electron-rich pyridine acceptor as a selective binding site, both probes exhibit exceptional specificity toward Cu2+ ions over other competing metal ions. The binding of Cu2+ induces the ground-state complex formation, evidenced by the appearance of an isosbestic point in the absorption spectrum. This interaction results in a "turn-off" fluorescence response, disrupting the intramolecular charge transfer process that governs donor-acceptor fluorescence. The fluorometric titration method was employed to assess the sensitivity of probes for Cu2+ ions, which exhibited excellent linearity at lower concentrations, achieving a detection limit at picomolar levels. Moreover, owing to their low toxicity, validated by the MTT assay, the probes were successfully utilized for detecting Cu2+ ions in naturally occurring copper proteins. Consequently, the probe comprising of imidazopyridine unit serves as a viable tool for the detection of Cu2+ ions within intricate biological systems.
Collapse
Affiliation(s)
- Banmankhraw Dkhar
- Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya 793 022, India
| | - Mahalakshmi Narayanan
- Department of Chemistry & Centre for Molecular Photoscience, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu 600 062, India
| | | | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya 793 022, India
| | - Arunkumar Kathiravan
- Department of Chemistry & Centre for Molecular Photoscience, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu 600 062, India
| |
Collapse
|
2
|
Ghosh S, Anand A, Chattopadhyay S. A fluorescent nonconjugated zwitterionic polymer dot: hydrothermal synthesis and application in the nano-molar sensing of 2,4,6-trinitrophenol. NANOSCALE 2025; 17:11071-11081. [PMID: 40223538 DOI: 10.1039/d5nr00455a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Developing nonconjugated polymer dot-based sensors with high quantum yield for a targeted application is a challenging research field. Herein, we report the synthesis of a zwitterionic polymer dot (PD PAMAM 2.5, average diameter 12 nm), which contains a poly(aminoamide) core and amine and acid groups on the surface. The molecular structure and functionalities of the polymer dot were carefully established using various spectroscopic techniques, including NMR, FTIR, and XPS. The polymer dot revealed greenish blue/aqua emission (λmax = 470 nm) with a quantum yield of 28%. The mechanism for the synthesis of polymer dot with respect to its structure and fluorescence property was examined using a combination of techniques, including NMR, zeta potential and fluorescence spectrometry. The application of the fluorescent polymer dot for the selective detection of 2,4,6-trinitrophenol was studied in detail. The limit of detection was determined to be 0.77 nM, which was the best value among the current state-of-the-art. Furthermore, application of the polymer dot in real life scenarios was demonstrated using real life wastewater samples and a paper-based strip-test method.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, Bihar, India.
| | - Aayush Anand
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, Bihar, India.
| | - Subrata Chattopadhyay
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, Bihar, India.
| |
Collapse
|
3
|
Chen K, Cao J, Shang YJ, Gu JY, Ding WY, Wang KY, Zhao JL. Stable Interpenetrated Zirconium-Based Metal-Organic Framework for the Fluorescence Detection of MnO 4. Inorg Chem 2025; 64:6648-6655. [PMID: 40128184 DOI: 10.1021/acs.inorgchem.5c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
In this work, a novel stable zirconium-based metal-organic framework (Zr-MOF) with the formula [Zr6O4(OH)4(PVDC)6]4·66DMF (Zr-1, H2PVDC = (E,E)-2,5-dimethoxy-1,4-bis[2-(4-carboxylatestyryl)]benzene; DMF = N,N-dimethylformamide) was synthesized by introducing a linear phenylenevinylene-based carboxylate ligand to react with ZrCl4 under solvothermal conditions. According to single-crystal X-ray diffraction measurement, complex Zr-1 featured a 2-fold interpenetrated framework, in which the single coordination framework possessed a structure similar to that of the well-known Zr-MOF, UiO-66, constructed from [Zr6O4(OH)4]12+ clusters and carboxylate ligands PVDC2-. Due to the introduction of the phenylenevinylene-functionalized ligand, complex Zr-1 exhibited a unique fluorescence sensing performance toward permanganate (MnO4-) with different concentrations. At low concentrations, the fluorescence emission intensity of Zr-1 around 510 nm was enhanced significantly with an increase in the concentration of MnO4- in an aqueous suspension. However, while excess MnO4- was added into the suspension, the fluorescence emission intensity decreased significantly, and the single emission peak turned into five emission peaks upon the addition of MnO4-. Such a phenomenon has been scarcely reported in previous MOF-based fluorescence sensors. Moreover, complex Zr-1 showed high anti-interference capability for the detection of MnO4- both at low and high concentrations. This work may pave a new way for the development of MOF-based fluorescence sensing platforms.
Collapse
Affiliation(s)
- Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 ,China
| | - Jia Cao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 ,China
| | - Yu-Jing Shang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 ,China
| | - Jia-Yu Gu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 ,China
| | - Wen-Ya Ding
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 ,China
| | - Kui-Yuan Wang
- Institute of Zhejiang University-Quzhou, No. 99 Zheda Road, Quzhou 324000, P. R. China
| | - Jiang-Lin Zhao
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong 519080, China
| |
Collapse
|
4
|
Shit M, Mahapatra M, Sepay N, Sinha C, Dutta B, Hedayetullah Mir M. Highly Efficient Detection of Pd 2+ in Aqueous Medium by an Elusive Mn(II) Coordination Polymer. Chemistry 2024; 30:e202402425. [PMID: 39297522 DOI: 10.1002/chem.202402425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 11/01/2024]
Abstract
Herein, we report the synthesis of a Mn(II)-based coordination polymer (CP); and its structure, phase consistency and thermal stability have been established by single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD) and thermalgravimetric analysis (TGA) respectively. This is the first example of paramgnetic Mn(II)-based CP that acts as pH-dependent emitting material [λem=525 nm (pH=2.0-4.0) and 450 nm (pH=5.0-12.0)]. Its emission is quenched by Pd2+ in aqueous medium in presence of other thirteen cations with reasonably low pH-dependent limits of detection (LODs) [21.178 ppb (pH=3), 15.005 ppb (pH=7.0) and 59.940 ppb (pH=10.0)] as described by well-established mechanism. Therefore, urgency of such stable sensor remains high in regard to the environmental pollution.
Collapse
Affiliation(s)
- Manik Shit
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700 032, India
| | - Manas Mahapatra
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700 032, India
- Centre for Education and Research on Macromolecules (CERM), CESAM Research Units, Department of Chemistry, University of Liege, Liege, Belgium
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata, 700017, India
| | - Chittaranjan Sinha
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700 032, India
| | - Basudeb Dutta
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan
- Department of Chemistry, Aliah University, New Town, Kolkata, 700160, India
| | | |
Collapse
|
5
|
Ma X, Wang SY, Luo YJ, Fan QH, Wang P, Wang L, Du L, Zhao QH. Bifunctional In-MOFs for Selective and Sensitive Detection of Trace Nitrobenzene Compounds in Water and Possessing High Proton Conductivity. Inorg Chem 2024; 63:18323-18331. [PMID: 39270204 DOI: 10.1021/acs.inorgchem.4c03504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
With the escalating prevalence of terrorism and global environmental pollution, nitroaromatic compounds (NACs) have increasingly come into focus as the primary culprit. To counter these challenges, it is imperative to develop simple and efficient methods for detecting NACs. Considering the electron-deficient structure of NAC molecules, this paper constructed a novel three-dimensional In-MOF with permanent porosity using electron-rich organic molecules 4'-[1,2,2-tris(3',5'-dicarboxy[1,1'-biphenyl]-4-yl)ethenyl]-[1,1'-biphenyl]-3,5-dicarboxylic acid (H8ETTB) for fluorescence detection by photoinduced electron transfer. The results indicated that In-ETTB can sensitively detect trace NACs in water. In-ETTB exhibited the best detection performance for 3-NP, achieving a Ksv value of 8.75 × 104 M-1 with a limit of detection of 0.27 μΜ in aqueous solution; this belongs to a relatively high level among the reported metal organic framework (MOF) materials. Subsequently, anti-interference experiments revealed that In-ETTB exhibits strong specificity fluorescence recognition of NACs, and it could still maintain its structural integrity and fluorescence emission intensity even after 7 cycles of testing. We confirmed that the fluorescence detection of NACs was due to a combined effect of competitive absorption and photoinduced electron transfer through experimental collaboration DFT calculations in detail. Meanwhile, the proton conductivity reached 2.45 × 10-2 S·cm-1 at 98% relative humidity and 90 °C, which is also a high level in MOFs. This work provides a universal method theoretical basis for designing NAC detectors with practical application prospects.
Collapse
Affiliation(s)
- Xun Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Shu-Yu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Yu-Jie Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Qian-Hong Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Peng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Lei Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Qi-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| |
Collapse
|
6
|
Mondal U, Raksha K, Mondal P, Banerjee P. Mixed N,O-donor Directed Blue Emissive Nano-dispersed Mesoporous Mn(II)-MOF: Dual Sensing Probe for Recyclable and Ultrasensitive ppb-Level Recognition of TNP and Cr(VI)-Oxoanions. Chem Asian J 2024; 19:e202400374. [PMID: 38771693 DOI: 10.1002/asia.202400374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
A new mesoporous Mn(II)-MOF [Mn2(phen)2(nia)2]∞ with 4-c uninodal net topology and reiterating rectangular channels in its cargo-net like extension was synthesized using π-conjugated phenanthroline (phen) and syn-syn bridging 5-nitroisopthalic acid (nia) linkers. The MOF (1) exhibited phase purity, uniform morphology, photo and thermal stability, and robustness; duly triggered by the exceptional framework rigidity via intermolecular H-bonding and interlayer π-π stacking interactions. The bright-blue luminescence of the MOF nano-dispersion was explored for sensitive, specific and ultrafast detection of trinitrophenol (TNP) with extremely low LOD (90.62 nM), high KSV (18.27×104 M-1) and Kq (4×1014 M-1s-1). The vapor-phase TNP sensing was also accomplished. Additionally, 1 served towards discriminatory, aqueous-phase monitoring of Cr(VI)-oxoanions, depicting LODs: 36.08 and 35.70 ppb; KSV: 3.46×104 and 4.87×104 M-1; Kq: 3.26×1013 M-1s-1 and 4.31×1013 M-1s-1; and response time: 32 and 40s for CrO4 2- and Cr2O7 2- respectively. The quenching mechanisms (i. e., RET, PET, IFE, weak interactions, collisional quenching and π⋅⋅⋅π stacking) was explained from several experimental investigations and theoretical DFT calculations. The recyclable sensing events and quantification from complex environmental matrices with admirable recovery rates and high KSV (13.02-22.44×104; ~6.31-10.98×104 and ~6.60-11.42×104 M-1 for TNP, CrO4 2- and Cr2O7 2-) undoubtedly advocated the consistency of the probe.
Collapse
Affiliation(s)
- Udayan Mondal
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute (CSIR-CMERI), M. G. Avenue, Durgapur, 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Kumari Raksha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Priyantan Mondal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI), Khurda, 752050, Odisha, India
| | - Priyabrata Banerjee
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute (CSIR-CMERI), M. G. Avenue, Durgapur, 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
7
|
Mandal J, Dey A, Sarkar S, Khatun M, Ghorai P, Ray PP, Mahata P, Saha A. Chromone-Based Cd(II) Fluorescent Coordination Polymer Fabricated to Study Optoelectronic and Explosive Sensing Properties. Inorg Chem 2024; 63:4527-4544. [PMID: 38408204 DOI: 10.1021/acs.inorgchem.3c03646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Here, electrical conductivity and explosive sensing properties of multifunctional chromone-Cd(II)-based coordination polymers (CPs) (1-4) have been explored. The presence of different pseudohalide linkers, thiocyanate ions, and dicyanamide ions resulted in 1D and 3D architecture in the CPs. Thin film devices developed from CPs 1-4 (complex-based Schottky devices, CSD1, CSD2, CSD3, and CSD4, respectively) showed semiconductor behavior. Their conductivity values increased under photo illumination (1.37 × 10-5, 1.85 × 10-5, 1.61 × 10-5, and 2.01 × 10-5 S m-1 under dark conditions and 5.06 × 10-5, 8.78 × 10-5, 7.26 × 10-5, and 10.21 × 10-5 S m-1 under light). The nature of the I-V plots of these thin film devices under light irradiation and dark are nonlinear rectifying, which has been observed in Schottky barrier diodes (SBDs). All four CPs (1-4) exhibited highly selective fluorescence quenching-based sensing properties toward well-known explosives, 2,4-dinitrophenol (DNP) and 2,4,6-trinitrophenol (TNP). The limit of detection (LOD) values are 55, 28, 27, and 31 μM for TNP and 78, 44, 32, and 41 μM for DNP for complexes 1-4, respectively. A structure property correlation has been established to explain optoelectronic and explosive sensing properties.
Collapse
Affiliation(s)
- Jayanta Mandal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Arka Dey
- Department of Physics, Jadavpur University, Kolkata 700032, India
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sec. III, Salt Lake, Kolkata 700106, India
| | - Sourav Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Mohafuza Khatun
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Pravat Ghorai
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209, India
| | | | - Partha Mahata
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Amrita Saha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
8
|
Zhang CH, Zhou BX, Lin X, Mo YH, Cao J, Cai SL, Fan J, Zhang WG, Zheng SR. Iodine Adsorption-Desorption-Induced Structural Transformation and Improved Ag + Turn-On Luminescent Sensing Performance of a Nonporous Eu(III) Metal-Organic Framework. Inorg Chem 2024; 63:4185-4195. [PMID: 38364251 DOI: 10.1021/acs.inorgchem.3c04222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Posttreatment of pristine metal-organic frameworks (MOFs) with suitable vapor may be an effective way to regulate their structures and properties but has been less explored. Herein, we report an interesting example in which a crystalline nonporous Eu(III)-MOF was transferred to a porous amorphous MOF (aMOF) via iodine vapor adsorption-desorption posttreatment, and the resulting aMOF showed improved turn-on sensing properties with respect to Ag+ ions. The crystalline Eu-MOF, namely, Eu-IPDA, was assembled from Eu(III) and 4,4'-{4-[4-(1H-imidazol-1-yl)phenyl]pyridine-2,6-diyl}dibenzoic acid (H2IPDA) and exhibited a two-dimensional (2D) coordination network based on one-dimensional secondary building blocks. The close packing of the 2D networks gives rise to a three-dimensional supramolecular framework without any significant pores. Interestingly, the nonporous Eu-IPDA could absorb iodine molecules when Eu-IPDA crystals were placed in iodine vapor at 85 °C, and the adsorption capacity was 1.90 g/g, which is comparable to those of many MOFs with large BET surfaces. The adsorption of iodine is attributed to the strong interactions among the iodine molecule, the carboxy group, and the N-containing group and leads to the amorphization of the framework. After immersion of the iodine-loaded Eu-IPDA in EtOH, approximately 89.7% of the iodine was removed, resulting in a porous amorphous MOF, denoted as a-Eu-IPDA. In addition, the remaining iodine in the a-Eu-IPDA framework causes strong luminescent quenching in the fluorescence emission region of the Eu(III) center when compared with that in Eu-IPDA. The luminescence intensity of a-Eu-IPDA in water suspensions was significantly enhanced when Ag+ ions were added, with a detection limit of 4.76 × 10-6 M, which is 1000 times that of pristine Eu-IPDA. It also showed strong anti-interference ability over many common competitive metal ions and has the potential to sense Ag+ in natural water bodies and traditional Chinese medicine preparations. A mechanistic study showed that the interactions between Ag+ and the absorbed iodine, the carboxylate group, and the N atoms all contribute to the sensing performance of a-Eu-IPDA.
Collapse
Affiliation(s)
- Chu-Hong Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Bing-Xun Zhou
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Xian Lin
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Yi-Hong Mo
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jun Cao
- School of Materials Science and Hydrogen Energy, Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, P. R. China
| | - Song-Liang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Wei-Guang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Sheng-Run Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
9
|
Jiang J, Li ZW, Wu ZF, Huang XY. A Soluble Porous Coordination Polymer for Fluorescence Sensing of Explosives and Toxic Anions under Homogeneous Environment. SENSORS (BASEL, SWITZERLAND) 2023; 23:9719. [PMID: 38139565 PMCID: PMC10747015 DOI: 10.3390/s23249719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
In the past decades, porous coordination polymers (PCPs) based fluorescent (FL) sensors have received intense attention due to their promising applications. In this work, a soluble Zn-PCP is presented as a sensitive probe towards explosive molecules, chromate, and dichromate ions. In former reports, PCP sensors were usually ground into fine powders and then dispersed in solvents to form FL emulsion for sensing applications. However, their insoluble characters would cause the sensing accuracy which is prone to interference from environmental effects. While in this work, the as-made PCP could be directly soluble in organic solvents to form a clear solution with bright blue emission, representing the first soluble PCP based fluorescence sensor to probe explosive molecules under a homogeneous environment. Moreover, the FL PCP solution also shows sensitive detection behaviors towards the toxic anions of CrO42- and Cr2O72-, which exhibit a good linear relationship between the fluorescence intensity of Zn-PCP and the concentrations of both analytes. This work provides a reference for designing task-specific PCP sensors utilized under a homogeneous environment.
Collapse
Affiliation(s)
- Jiang Jiang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zi-Wei Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China; (Z.-W.L.); (X.-Y.H.)
| | - Zhao-Feng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China; (Z.-W.L.); (X.-Y.H.)
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China; (Z.-W.L.); (X.-Y.H.)
| |
Collapse
|
10
|
Li Q, Liu Y, Liang L, Zhang X, Huang K, Qin D. A terpyridyl-rhodamine hybrid fluorescent probe for discriminative sensing of Hg (II) and Cu (II) in water and applications for molecular logic gate and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123124. [PMID: 37451213 DOI: 10.1016/j.saa.2023.123124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/13/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Sensitive and discriminative sensing of more than one analyte with a single fluorescent probe is significant and challenging. Herein a new terpyridyl-rhodamine hybrid, namely TRH, has been rationally designed and prepared with two responsive groups in the molecular structure, which facilitate the discriminative detection of Hg2+ and Cu2+ ions in water with detection limits of 4.9 and 53.3 nM by ratiometric fluorescence change (F595/F485) and fluorescence quenching, respectively. Investigations show that the selectivity to Hg2+ ions can be attributed to Hg2+-promoted spirolactam ring opening and further hydrolysis, followed by a through-bond energy transfer (TBET) process. The selective fluorescence quenching to Cu2+ ions probably can be ascribed to the binding Cu2+ to terpyridyl that triggers a ligand-to-metal charge transfer (LMCT) process, which can also efficiently inhibit the TBET process induced by Hg2+ ions and promotes the discriminative sensing of Cu (II) and Hg (II). In addition, the fluorescent responses to Hg2+ and Cu2+ ions cover a wide pH range. Moreover, a combinatorial logic gate with the functions of NOR and INHIBIT has been fabricated by using Hg2+ and Cu2+ ions as chemical input signals, and fluorescence at 485 and 595 nm as output signals. Besides, TRH also exhibits sensitive and discriminative sensing ability to Hg2+ and Cu2+ ions by the fluorescence of rhodamine fluorophore. Significantly, based on the fluorescence signal output of rhodamine moiety, TRH can be used as a tracer for the discriminative sensing of Hg2+ and Cu2+ ions by using living cells.
Collapse
Affiliation(s)
- Qi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Yuting Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Lijuan Liang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiangyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China.
| | - Dabin Qin
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
11
|
Lin YQ, Tian XM, Xiong Y, Huang C, Chen DM, Zhu BX. Coordination-Driven Heterochiral Self-Assembly: Construction of Cd(II) Coordination Polymers with Sorption Behaviors for Iodine and Dyes. Inorg Chem 2023. [PMID: 38019755 DOI: 10.1021/acs.inorgchem.3c01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
A racemic bispyridyl ligand (L) was synthesized via a Schiff base condensation reaction. Four Cd(II) complexes, {[CdL2Cl2]·2DMF}n (1), [CdLI2]n (2), {[CdL2Br2]·4H2O}n (3), and {[CdL2(H2O)2](NO3)2·2CH3OH·8H2O}n (4), were synthesized and further characterized based on this ligand. Single-crystal structures show that the coordination-driven assembly of the bispyridyl ligand with Cd(II) salts bearing different counteranions can lead to multidimensional coordination polymers via a heterochiral self-discrimination process. Complex 1 exists as a one-dimensional (1D) looped chain polymer, and complex 2 exists as a 1D zigzag chain polymer. Complex 3 is a 2D grid coordination polymer, and complex 4 exists as a 3D framework polymer. Furthermore, the iodine sorption capacities of the four complexes were investigated in the solution of n-hexane and water as well as in the iodine steam. The dye sorption behaviors were investigated in water, which showed that complex 2 exhibited good adsorption for crystal violet (CV), while complex 4 had good adsorption capability toward direct yellow 4 (DY).
Collapse
Affiliation(s)
- Yue-Qun Lin
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xiao-Mao Tian
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ying Xiong
- School of Chemistry and Materials, Guizhou Normal University, Guiyang 550025, China
| | - Chao Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Dong-Mei Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Bi-Xue Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Wang YN, Xu H, Wang SD, Zhang MH, Wang YT, Qiu QC, Bai JT, Mo Y, Feng WY, Yang QF. Multifunctional Cd-CP for fluorescence sensing of Cr(VI), MnO 4-, acetylacetone and ascorbic acid in aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122369. [PMID: 36657289 DOI: 10.1016/j.saa.2023.122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The development of multifunctional fluorescent chemosensors for the detection of multiple targets remains challenging but of great importance. In this paper, one novel coordination polymer (CP), denoted as [Cd2(edda)(phen)2]∙H2O (compound 1, H4edda = 5,5' (ethane-1,2-diylbis(oxy)) diisophthalic acid, phen = 1,10-phenanthroline) is successfully designed and prepared under hydrothermal conditions. Structural analysis indicates that compound 1 possesses a one-dimensional (1D) double chain structure, then self-assembles into a three-dimensional (3D) supramolecular framework via π…π interactions between phen molecules. Interestingly, compound 1 is found to be tolerant in wide range of acidic to alkaline aqueous solutions (pH = 2-13). Fluorescent spectral investigations reveal that compound 1 exhibits highly selective and sensitive fluorescence responses toward MnO4-, Cr(VI) ions, acetylacetone (acac) and ascorbic acid (AA) by fluorescence quenching in the aqueous phase. The detection limits are in the very low range, reaching μM level for the detection of MnO4-, Cr(VI) ions, nM for AA and ppm for acac detection. The distinguished multi-responsive performance suggests compound 1 to be a potential multifunctional probe. Furthermore, the possible quenching mechanisms have also been systematically investigated in this work.
Collapse
Affiliation(s)
- Yan-Ning Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Hao Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shao-Dan Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Meng-Han Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yi-Tong Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Qing-Chen Qiu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Jun-Tai Bai
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yuan Mo
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Wu-Yi Feng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Qing-Feng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
13
|
Wang LB, Wang JJ, Yue EL, Li JF, Tang L, Bai C, Wang X, Zhang Y, Ren YX, Chen XL. Water-Stable Cd-MOF with fluorescent sensing of Tetracycline, Pyrimethanil, abamectin benzoate and construction of logic gate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121894. [PMID: 36152506 DOI: 10.1016/j.saa.2022.121894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Due to the indiscriminate abuse of pesticides and antibiotics has caused serious threats to the environment and human and animal bodies, the detection of antibiotics and pesticides has attracted widespread attention in recent years. Herein, a novel 2D Cd (II)-MOF, [Cd(L)0.5(1,2-bimb)] (Cd-L-1,2-bimb), [H4L = 1, 1'-ethylbiphenyl -3, 3', 5, 5'- tetracarboxylic acid, 1, 2-bimb = 1, 2-bis[(1H-imidazol-1-yl) methyl] benzene] is synthesized. Cd-L-1,2-bimb has excellent stability in different organic solvents and in the range of pH 1.1-12.5. Cd-L-1,2-bimb exhibits high selectivity, high sensitivity, and fast luminescent response to pesticides [pyrimethanil (PTH, LOD = 2.2 μM) and abamectin benzoate (AMB, LOD = 2.39 μM)] and antibiotic contaminants tetracycline (TET, LOD = 0.13 μM). Cd-L-1,2-bimb displays discriminative fluorescence when detecting AMB and PTH, and is an implication logic gate. Finally, the possible detection mechanism of Cd-L-1,2-bimb toward different pollutants is also further investigated. This MOF-based multifunctional sensor opens up new prospects for environmental monitors.
Collapse
Affiliation(s)
- Lao-Bang Wang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Ji-Jiang Wang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Er-Lin Yue
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Jin-Feng Li
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Long Tang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Chao Bai
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xiao Wang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yuqi Zhang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yi-Xia Ren
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xiao-Li Chen
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| |
Collapse
|
14
|
Ghorai P, Hazra A, Mandal J, Malik S, Brandão P, Banerjee P, Saha A. Selective Low-Level Detection of a Perilous Nitroaromatic Compound Using Tailor-Made Cd(II)-Based Coordination Polymers: Study of Photophysical Properties and Effect of Functional Groups. Inorg Chem 2023; 62:98-113. [PMID: 36562764 DOI: 10.1021/acs.inorgchem.2c03027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three coordination polymers (CPs 1-3) are prepared based on diverse electron-donating properties and coordination arrangements of conjugated ligands. Interestingly, this is also reflected in their photophysical properties. The distinguishable high emissive nature of the luminescent coordination polymer shows its potentiality toward the detection of the perilous substance 2,4,6-trinitrophenol (TNP) or picric acid (PA). TNP has a higher propensity among explosive nitroaromatic compounds (epNACs) due to its significant π···π interaction with the free benzene moieties present in the CPs. Among CPs 1-3, 2 exhibits the highest sensitivity and selectivity toward TNP because of the most favorable π-π stacking with the conjugated organic linker. The calculated limit of detection (LOD) and corresponding quenching constant (KSV) from the Stern-Volmer (SV) plot for 1, 2, and 3 are found to be 0.68 μM and 7.49 × 104 M-1, 0.41 μM and 8.01 × 104 M-1, and 1.18 μM and 8.1 × 104 M-1, respectively. The fluorescence quenching mechanism is also highly influenced by their structure and coordination arrangement.
Collapse
Affiliation(s)
- Pravat Ghorai
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Abhijit Hazra
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jayanta Mandal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Suvamoy Malik
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrita Saha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
15
|
Wang X, Wang Y, Xu N, Ma J, Liu G. Electrochemical and fluorescence sensing performance of four new coordination polymers tuned by different metal ions and dicarboxylic acids. CrystEngComm 2023. [DOI: 10.1039/d2ce01484j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Four new ZnII, CdII, CoII, and NiII coordination polymers (CPs) were successfully prepared from a bis-pyridyl–bis-amide and various dicarboxylate mixed ligands, which show good electrochemical and fluorescence sensing performance.
Collapse
Affiliation(s)
- Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Yue Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Na Xu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Jianxin Ma
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Guocheng Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
16
|
Wang YN, Wang SD, Wang SY, Dou WQ, Dong PH, Lu SQ, Wang F, Sun Y, Yang QF. Water-stable nickel-based coordination polymer for selective and sensitive enhancing and quenching fluorescence sensing of ascorbic acid and acetylacetone. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
A quinoline-fluoran hybrid fluorescent probe for selectively and sensitively sensing copper ions and fluorescence imaging application. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Li Q, Xu S, He L, Huang K, Zhang X, Qin D. A new zinc-organic framework with 1D channel for constructing a ratiometric Al 3+-selective sensor and four inputs INHIBIT logic gate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121461. [PMID: 35691163 DOI: 10.1016/j.saa.2022.121461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
To develop Al3+ fluorescent sensor is significant because the abnormal levels of Al3+ in environment may pose great threat to human body. Herein, a novel metal-organic framework {Zn(Dpada)(Imdba)·H2O}n (Dpada = 3, 6-di(1H-imidazol-1-yl) pyridazine and Imdba = 2, 2'-iminodibenzoic acid), named Zn-MOF, has been architected with one-dimensional channel under hydrothermal conditions. Zn-MOF exhibits good thermal and solvent stability and can also keep structural integrity over the pH range of 5.0 - 9.0. Fluorescent experiments show that Zn-MOF has high selectivity and sensitivity towards Al3+ via ratiometric fluorescence signal changes (F470 nm/F390 nm) and the detection limit is evaluated to be 0.69 μM. In addition, Zn-MOF performs good recyclability in sensing of Al3+ with at least 5 cycles. Besides, an INHIBIT logic gate has been constructed with chemical ions (Al3+, Cr3+, Fe3+ and Hg2+) as input signals and emission ratio (F470 nm/F390 nm) as output signal. Significantly, Zn-MOF can be applied to tracing Al3+ using real water samples, presenting great potential in water quality monitoring application.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Siji Xu
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Liangyu He
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Xiangyu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dabin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
19
|
Qi D, Si X, Guo L, Yan Z, Shao C, Yang L. Two novel and high-efficiency optical chemosensors of detecting Fe3+ and CrO42− based on Metal−organic frameworks of Cd(Ⅱ). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Li X, Feng SS, Wei YX, Dong WK. An investigation of a relatively rigid acyclic salamo-type ligand and its square planar Cu(II) complex. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2123738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Xun Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Shan-Shan Feng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Yu-Xin Wei
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| |
Collapse
|
21
|
Kumar S, Ma S, Mohan B, Li S, Ren P. Triazole-Based Cu(I) Cationic Metal-Organic Frameworks with Lewis Basic Pyridine Sites for Selective Detection of Ce 3+ Ions. Inorg Chem 2022; 61:14778-14786. [PMID: 36069102 DOI: 10.1021/acs.inorgchem.2c02215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly symmetric bis-triazole-pyridine-based organic ligand, i.e., 3,5-di(4H-1,2,4-triazol-4-yl)pyridine (L), and Cu(II) salts were used to synthesize three cationic Cu(I) metal-organic frameworks (MOFs), namely, {[Cu(L)]·(NO3)·(H2O)}n (1), {[Cu(L)]·(BF4)·0.5H2O}n (2), and {[Cu1.25(L)]·1.25(ClO4)·H2O}n (3). All three MOFs have nonbonded anions situated inside the pore spaces. Both 1 and 2 have a two-dimensional network structure, while 3 has a three-dimensional structure. All three MOFs were characterized using Fourier transform infrared spectroscopy, elemental (C, H, and N) analysis, thermogravimetric analysis, and powder and single-crystal X-ray diffraction. Due to the presence of a Lewis basic pyridine moiety, these MOFs could serve as luminescent probes for the selective detection of Ce3+ ions with excellent efficiency (10-7 M). The synthesis of Cu(I)-based MOFs and their use to detect Ce3+ ions in water via a turn-on fluorescence process have rarely been reported. These MOFs are highly stable in water, are recyclable, and function efficiently at different pH values.
Collapse
Affiliation(s)
- Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shixuan Ma
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shuangshuang Li
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
22
|
Ma C, Pan W, Zhang J, Zeng X, Gong C, Xu H, Shen R, Zhu DR, Xie J. Metal-organic frameworks derived from chalcone dicarboxylic acid: new topological characters and initial catalytic properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zhu CY, Wang CL, Chen L, Gao W, Li P, Zhang XM. A water-stable Zn(II) coordination polymer for a high sensitivity detection of Fe3+ and 2,4,6-trinitrophenol. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Bhattacharjee S, Bera S, Das R, Chakraborty D, Basu A, Banerjee P, Ghosh S, Bhaumik A. A Ni(II) Metal-Organic Framework with Mixed Carboxylate and Bipyridine Ligands for Ultrafast and Selective Sensing of Explosives and Photoelectrochemical Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20907-20918. [PMID: 35476926 DOI: 10.1021/acsami.2c01647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a Ni-MOF (nickel metal-organic framework), Ni-SIP-BPY, synthesized by using two linkers 5-sulfoisophthalic acid (SIP) and 4,4'-bipyridine (BPY) simultaneously. It displays an orthorhombic crystal system with the Ama2 space group: a = 31.425 Å, b = 19.524 Å, c = 11.2074 Å, α = 90°, β = 90°, γ = 90°, and two different types of nickel(II) centers. Interestingly, Ni-SIP-BPY exhibits excellent sensitivity (limit of detection, 87 ppb) and selectivity toward the 2,4,6-trinitrophenol (TNP)-like mutagenic environmental toxin in the pool of its other congeners via "turn-off" fluorescence response by the synergism of resonance energy transfer, photoinduced electron transfer, intermolecular charge transfer, π-π interactions, and competitive absorption processes. Experimental studies along with corroborated theoretical experimentation, vide density functional theory studies, shed light on determining the plausible mechanistic pathway in selective TNP detection, which is highly beneficial in the context of homeland security perspective. Along with the sensing of nitroaromatic explosives, the moderately low band gap and the p-type semiconducting behavior of Ni-SIP-BPY make it suitable as a photoanode material for visible-light-driven water splitting. Highly active surface functionalities and sufficient conduction band minima effectively reduce the water and result in a seven times higher photocurrent density under visible-light illumination.
Collapse
Affiliation(s)
- Sudip Bhattacharjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Susmita Bera
- Energy Materials & Devices Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Riyanka Das
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Debabrata Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Akash Basu
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Srabanti Ghosh
- Energy Materials & Devices Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
25
|
Wang Y, Xu N, Ma J, Li H, Zhang Y, Liu G, Wang X. Stable Zinc(II) Coordination Polymer as a Rapid and Highly Sensitive Fluorescence Sensor for the Discriminative Sensing of Biomarker 2-(2-Methoxyethoxy) Acetic Acid. Inorg Chem 2022; 61:7780-7786. [PMID: 35544386 DOI: 10.1021/acs.inorgchem.2c00164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel two-dimensional bilayer Zn-based luminescent coordination polymer (LCP) [Zn2(μ2-OH)(4-dptp)(3,4',5-bpt)] (LCP 1) [4-dptp = N3,N4-bis(pyridin-4-ylmethyl)thiophene-3,4-dicarboxamide and 3,4',5-H3bpt = biphenyl-3,4',5-tricarboxylic acid] was successfully prepared under hydrothermal conditions and characterized by single-crystal X-ray diffraction, IR spectroscopy, powder X-ray diffraction, and luminescence spectroscopy. LCP 1 displayed excellent fluorescence-quenching efficiency toward a biomarker 2-(2-methoxyethoxy) acetic acid (MEAA) with a high Ksv (5.153 × 104 M-1), a low limit of detection (0.244 μM), and a rapid response time (28 s). Additionally, LCP 1 can repeatedly detect MEAA at least eight times with excellent stability. The sensing mechanism was also carefully investigated through UV-vis absorption spectroscopy, density functional theory calculations, and fluorescence lifetime analysis.
Collapse
Affiliation(s)
- Yue Wang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Na Xu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Jianxin Ma
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Hui Li
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Yue Zhang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Guocheng Liu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| |
Collapse
|
26
|
Xian G, Wang L, Wan X, Yan H, Cheng J, Chen Y, Lu J, Li Y, Li D, Dou J, Wang S. Two Multiresponsive Luminescent Zn-MOFs for the Detection of Different Chemicals in Simulated Urine and Antibiotics/Cations/Anions in Aqueous Media. Inorg Chem 2022; 61:7238-7250. [PMID: 35504023 DOI: 10.1021/acs.inorgchem.1c03502] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two Zn-MOFs, namely, {[Zn(L)0.5(bpea)]·0.5H2O·0.5DMF}n [LCU-113 (for Liaocheng University)] and {[Zn(L)0.5(ibpt)]·H2O·DMF}n (LCU-114), were synthesized based on flexible tetracarboxylic acid 1,3-bis(3,5-dicarboxyphenoxy)benzene (H4L) and different N-ligands [bpea = 1,2-dipyridyl ethane; ibpt = 3-(4'-imidazolobenzene)-5-(pyridine-4'-yl)-1,2,4-triazole]. LCU-113 and LCU-114 possess twofold interpenetrating three-dimensional pillared layer structures, in which a two-dimensional layer formed by carboxylic acid and Zn2+ ions was pillared by bpea and ibpt, respectively. The two complexes show high water stability and high luminescence sensing performance toward organic solvents, ions, and antibiotics, as well as chemicals, in simulated urine. The investigation showed that (1) LCU-113 and LCU-114 could detect uric acid (UA, 2,6,8-trihydroxypurine, metabolite of purine) and p-aminophenol (PAP, biomarker of phenamine) in simulated urine by luminescence quenching, respectively, and (2) luminescence quenching of LCU-113 and LCU-114 occurred in aqueous solutions of nitrofurazone (NZF), Fe3+, and CrO42-/Cr2O72-. All the above detections have excellent anti-interference ability and recyclability. The luminescence mechanism analysis indicates that weak interactions between the framework structures and the target analytes as well as the energy competition (inner filter effect) play an important role in sensing the above analytes. The practical application for monitoring NZF/Fe3+ in water samples was also tested.
Collapse
Affiliation(s)
- Guoxuan Xian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
| | - Luyao Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
| | - Xiaoyu Wan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
| | - Hui Yan
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
| | - Jiawei Cheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
| | - Yuqian Chen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
| | - Dacheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
| |
Collapse
|
27
|
A multi-functional Tb-organic network featuring high selectivity fluorescent sensing for Fe3+, Cr2O72−, tetracycline and 2,4,6-trinitrophenol in aqueous solution. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Yuan R, Huang K, Zou Y, Zhang X, Qin D. Two multifunctional luminescent cobalt metal-organic frameworks for selectively and sensitively sensing of Cu2+, MnO4- and picric acid in water. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Liu X, Liu W, Kou Y, Yang X, Ju Z, Liu W. Multifunctional lanthanide MOF luminescent sensor built by structural designing and energy level regulation of a ligand. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00859a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In order to reduce usage cost and simplify the detection process, it is necessary to develop multifunctional and multi-emitter Ln-MOF luminescent sensors.
Collapse
Affiliation(s)
- Xueguang Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special unction Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Liu
- Institute of National Nuclear Industry, Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000, Lanzhou, China
| | - Yao Kou
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special unction Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoshan Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special unction Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhenghua Ju
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special unction Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special unction Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
30
|
Yuan Z, Hou G, Han L. A Terbium‐Based MOF as fluorescent probe for the detection of Malachite Green, Fe
3+
and MnO
4
−. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhuang‐Dong Yuan
- School of Chemistry Chemical Engineering and Materials Jining University Qufu 273155 P. R. China
| | - Guo‐Zheng Hou
- School of Chemistry Chemical Engineering and Materials Jining University Qufu 273155 P. R. China
| | - Li‐Juan Han
- School of Chemistry Chemical Engineering and Materials Jining University Qufu 273155 P. R. China
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
31
|
Rani P, Husain A, Bhasin KK, Kumar G. Coordination Polymers as a Functional Material for the Selective Molecular Recognition of Nitroaromatics and ipso-Hydroxylation of Arylboronic Acids. Chem Asian J 2021; 17:e202101204. [PMID: 34792296 DOI: 10.1002/asia.202101204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Indexed: 12/12/2022]
Abstract
We report the synthesis and structural characterization of two coordination polymers (CPs), namely; [{Zn(L)(DMF)4 } ⋅ 2BF4 ]α (1) and [{Cd(L)2 (Cl)2 } ⋅ 2H2 O]α (2) (where L=N2 ,N6 -di(pyridin-4-yl)naphthalene-2,6-dicarboxamide). Crystal packing of 1 reveals the existence of channels running along the b- and c-axis filled by the ligated DMF and lattice anions, respectively. Whereas, crystal packing of 2 reveals that the metallacycles of each 1D chain are intercalating into the groove of adjacent metallacycles resulting in the stacking of 1D loop-chains to form a sheet-like architecture. In addition, both 1 and 2 were exploited as multifunctional materials for the detection of nitroaromatic compounds (NACs) as well as a catalyst in the ipso-hydroxylation of aryl/heteroarylboronic acids. Remarkably, 1 and 2 showed high fluorescence stability in an aqueous medium and displayed a maximum 88% and 97% quenching efficiency for 4-NPH, respectively among all the investigated NACs. The mechanistic investigation of NACs recognition suggested that the fluorescence quenching occurred via electron as well as energy transfer process. Furthermore, the ipso-hydroxylation of aryl/heteroarylboronic acids in presence of 1 and 2 gave up to 99% desired product yield within 15 min in our established protocol. In both cases, 1 and 2 are recyclable upto five cycles without any significant loss in their efficiency.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Ahmad Husain
- Department of Chemistry, DAV University Jalandhar, Punjab, 144012, India
| | - K K Bhasin
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Girijesh Kumar
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
32
|
Wang CL, Zheng YX, Chen L, Zhu CY, Gao W, Li P, Jie-Ping L, Zhang XM. The construction of a multifunctional luminescent Eu-MOF for the sensing of Fe 3+, Cr 2O 72− and amines in aqueous solution. CrystEngComm 2021. [DOI: 10.1039/d1ce01192h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A 3D Eu(iii)-based metal–organic framework has been synthesized as a multiresponsive chemosensor for highly sensitive and selective detection of Fe3+, Cr2O72− and amines in water.
Collapse
Affiliation(s)
- Cui-Li Wang
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Ya-Xin Zheng
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Le Chen
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Cai-Yong Zhu
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Wei Gao
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Peng Li
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Liu Jie-Ping
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Xiu-Mei Zhang
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| |
Collapse
|