1
|
Zubenko AD, Pashanova AV, Mosaleva SP, Chernikova EY, Karnoukhova VA, Fedyanin IV, Egorova BV, Shchukina AA, Fedorov YV, Fedorova OA. Double-Armed 18- and 21-Membered Macrocycles as Potential Chelators for Lead and Bismuth Radiopharmaceuticals. Inorg Chem 2024; 63:21652-21669. [PMID: 39475211 DOI: 10.1021/acs.inorgchem.4c03116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
With increasing clinical applications and interest in targeted alpha therapy, there is growing interest in developing alternative chelating agents for [212Pb]Pb2+ and [212/213Bi]Bi3+ that exhibit rapid radiolabeling kinetics and kinetic inertness. Herein we report the synthesis and detailed investigation of diacetate and dipicolinate 18- and 21-membered macrocyclic chelators BADA-18, BADA-21, BADPA-18, and BADPA-21 for the complexation of Pb2+ and Bi3+ ions with potential use in the preparation of radiopharmaceuticals. The formation of mononuclear complexes was established by using ESI-mass spectrometry, and their stability constants were determined by potentiometric titration. A thorough study of the structure of the metal complexes was carried out by using X-ray diffraction and NMR spectroscopy. It was shown how the stability of the complex is influenced by an increase in the size of the macrocycle, the replacement of acetate arms with picolinate ones, the rigidity of the ligand, as well as the type of conformation (syn- or anti-) of the metal complex. The new ligands were radiolabeled with [210Pb]Pb2+ and [207Bi]Bi3+, and the in vitro stability of the resulting complexes in a competitive environment of serum and biologically significant metal ions was assessed. Rapid complex formation in 1-2 min at room temperature, as well as the high kinetic inertness of the complexes Pb(BADPA-18) and Bi(BADPA-18) in biological media, demonstrate its potential for use in targeted radionuclide therapy.
Collapse
Affiliation(s)
- Anastasia D Zubenko
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
| | - Anna V Pashanova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
| | - Sofia P Mosaleva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
- D. I. Mendeleev University of Chemistry and Technology of Russia, 125047 Miusskaya sqr., 9, Moscow 119991, Russian Federation
| | - Ekaterina Y Chernikova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
| | - Valentina A Karnoukhova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
| | - Ivan V Fedyanin
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
| | - Bayirta V Egorova
- Lomonosov Moscow State University, 119991 Leninskie Gory, 1/3, Moscow 119991, Russian Federation
| | - Anna A Shchukina
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
| | - Yury V Fedorov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
| | - Olga A Fedorova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
- D. I. Mendeleev University of Chemistry and Technology of Russia, 125047 Miusskaya sqr., 9, Moscow 119991, Russian Federation
| |
Collapse
|
2
|
Randhawa P, Kadassery KJ, McNeil BL, MacMillan SN, Wharton L, Yang H, Wilson JJ, Ramogida CF. The H 2S xmacropa Series: Increasing the Chemical Softness of H 2macropa with Sulfur Atoms to Chelate Radiometals [ 213Bi]Bi 3+ and [ 203Pb]Pb 2+ for Radiopharmaceutical Applications. Inorg Chem 2024; 63:21177-21193. [PMID: 39436680 DOI: 10.1021/acs.inorgchem.4c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The effects of replacing nitrogen with sulfur atoms in the 18-membered macrocycle of the H2macropa chelator on the binding affinity and stability of "intermediate" (radio)metal [203Pb]Pb2+ and [213Bi]Bi3+ complexes are investigated. The 1,4,10,13-tetraoxo-7,16-diazacyclooctadecane backbone was replaced with derivatives containing sulfur in the 1,4- or the 1,4,10,13-positions to yield the novel chelators H2S2macropa (N4O4S2) and H2S4macropa (N4O2S4), respectively. Trends on the nat/203Pb- and nat/213Bi-complex stability constants, coordination chemistry, radiolabeling, and kinetic inertness were assessed via potentiometric titrations, UV-vis spectroscopy, NMR spectroscopy, X-ray crystallography and density functional theory (DFT) calculations. 1H-207Pb NMR spectroscopy confirmed the involvement of backbone S and/or O donors in the metal coordination sphere. Overall, the trend demonstrated that increasing the softness of the donor atoms within the ligand backbone decreased the thermodynamic stability and kinetic inertness of both the Pb2+ and Bi3+ complexes. Conversely, DFT calculations with mock compounds dimethyl ether (DME) and dimethyl sulfide (DMS) demonstrated enhanced affinity of the S atom to both Pb2+ and Bi3+ with DMS compared to DME evinced by large ΔG° values for both Pb2+ and Bi3+ complexes. The decreased stability of Pb/Bi-Sxmacropa (x = 0, 2, 4) upon increased sulfur atom incorporation may be a result of the increased steric strain within the macrocyclic backbone upon sulfur atom introduction. Nonetheless, [203Pb]Pb2+ and [213Bi]Bi3+ labeling (pH = 7, 30 min reaction time; 10-4-10-8 M chelator) resulted in both S2macropa2- and macropa2- attaining similarly high radiolabeling efficiency. Meanwhile, S4macropa2- only possessed the ability to complex [213Bi]Bi3+. Both [203Pb][Pb(macropa)] and [203Pb][Pb(S2macropa)] remained greater than 97% intact when challenged against human serum over 72 h. The results of this study reveal the effects of incorporating sulfur donor atoms into macrocyclic chelators for [203Pb]Pb2+ and [213Bi]Bi3+ radiopharmaceuticals.
Collapse
Affiliation(s)
- Parmissa Randhawa
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Karthika J Kadassery
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Luke Wharton
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Hua Yang
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Chemistry and Biochemistry, University of California Santa Barbara, California 93106, United States
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| |
Collapse
|
3
|
Kanagasundaram T, Sun Y, Lee KK, MacMillan SN, Brugarolas P, Wilson JJ. Fluorine-18 incorporation and radiometal coordination in macropa ligands for PET imaging and targeted alpha therapy. Chem Commun (Camb) 2024; 60:11940-11943. [PMID: 39352495 DOI: 10.1039/d4cc04165h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The development of theranostic agents for radiopharmaceuticals based on therapeutic alpha emitters marks an important clinical need. We describe a strategy for the development of theranostic agents of this type via the functionalization of the ligand with the diagnostic radionuclide fluorine-18. An analogue of macropa, an 18-membered macrocyclic chelator with high affinity for alpha therapeutic radiometals, was synthesized and its complexation properties with metal ions were determined. The new macropa-F ligand was used for quantitative radiometal complexation with lead-203 and bismuth-207, as surrogates for their alpha-emitting radioisotopes. As a diagnostic partner, a radiofluorinated macropa ligand was used for quantitative bismuth(III) and lead(II) complexation. All fluorine-18 and radiometal complexes are highly stable in human serum over several days. This study presents a new proof-of-principle approach for developing theranostic agents based on alpha-emitting radionuclides and fluorine-18.
Collapse
Affiliation(s)
- Thines Kanagasundaram
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Yang Sun
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA-02114, USA.
| | - Kevin K Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA-93106, USA.
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA-02114, USA.
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA-93106, USA.
| |
Collapse
|
4
|
Gu C, Zhu S, Gu Z. Advances in bismuth utilization for biomedical applications – From a bibliometric perspective. Coord Chem Rev 2024; 517:215988. [DOI: 10.1016/j.ccr.2024.215988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Lee KK, Chakraborty M, Hu A, Kanagasundaram T, Thorek DLJ, Wilson JJ. Chelation of [ 111In]In 3+ with the dual-size-selective macrocycles py-macrodipa and py 2-macrodipa. Dalton Trans 2024; 53:14634-14647. [PMID: 39163366 PMCID: PMC11663299 DOI: 10.1039/d4dt02146k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Indium-111 (111In) is a diagnostic radiometal that is important in nuclear medicine for single-photon emission computed tomography (SPECT). In order to apply this radiometal, it needs to be stably chelated and conjugated to a targeting vector that delivers it to diseased tissue. Identifying effective chelators that are capable of binding and retaining [111In]In3+in vivo is an important research area. In this study, two 18-membered macrocyclic chelators, py-macrodipa and py2-macrodipa, were investigated for their ability to form stable coordination complexes with In3+ and to be effectively radiolabeled with [111In]In3+. The In3+ complexes of these two chelators were characterized by NMR spectroscopy, X-ray crystallography, and density functional theory calculations. These studies show that both py-macrodipa and py2-macrodipa form 8-coordinate In3+ complexes and attain an asymmetric conformation, consistent with prior studies on this ligand class with small rare earth metal ions. Spectrophotometric titrations were carried out to determine the thermodynamic stability constants (log KML) of [In(py-macrodipa)]+ and [In(py2-macrodipa)]+, which were found to be 18.96(6) and 19.53(5), respectively, where the values in parentheses are the errors of the last significant figures obtained from the standard deviation from three independent replicates. Radiolabeling studies showed that py-macrodipa and py2-macrodipa can quantitatively be radiolabeled with [111In]In3+ at 25 °C within 5 min, even at ligand concentrations as low as 1 μM. The in vitro stability of the radiolabeled complexes was investigated in human serum at 37 °C, revealing that ∼90% of [111In][In(py-macrodipa)]+ and [111In][In(py2-macrodipa)]+ remained intact after 7 days. The biodistribution of these radiolabeled complexes in mice was investigated, showing lower uptake in the kidneys, liver, and blood at the 24 h mark compared to [111In]InCl3. These results demonstrate the potential of py-macrodipa and py2-macrodipa as chelators for [111In]In3+, suggesting their value for SPECT radiopharmaceuticals.
Collapse
Affiliation(s)
- Kevin K Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Mou Chakraborty
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Thines Kanagasundaram
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Daniel L J Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, 63110, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
6
|
Kovács A, Varga Z. Theoretical Study of Metal-Ligand Interactions in Lead Complexes with Radiopharmaceutical Interest. Molecules 2024; 29:4198. [PMID: 39275046 PMCID: PMC11397547 DOI: 10.3390/molecules29174198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024] Open
Abstract
The 203Pb and 212Pb lead radioisotopes are attracting growing interest as they can aid in the development of personalized, targeted radionuclide treatment for advanced and currently untreatable cancers. In the present study, the bonding interactions of Pb2+ with twelve macrocyclic ligands, having an octa and nona coordination, were assessed using Density Functional Theory (DFT) calculations. The molecular structures in an aqueous solution were computed utilizing the polarized continuum model. The preference for the twisted square antiprismatic (TSAP) structure was confirmed for ten out of the eleven cyclen-based complexes. The characteristics of the bonding were assessed using a Natural Energy Decomposition Analysis (NEDA). The analysis revealed a strong electrostatic character of the bonding in the complexes, with minor variations in electrical terms. The charge transfer (CT) had a comparable energetic contribution only in the case of neutral ligands, while in general, it showed notable variations regarding the various donor groups. Our data confirmed the general superiority of the carboxylate O and aromatic N donors. The combination of the selected efficient pendant arms pointed out the superiority of the acetate pendant arms and the lack of significant cooperation between the different pendant arms in the probed ligands. Altogether, the combination led only to a marginal enhancement in the total CTs in the complexes.
Collapse
Affiliation(s)
- Attila Kovács
- European Commission, Joint Research Centre (JRC), 76125 Karlsruhe, Germany
| | - Zoltán Varga
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Ramdhani D, Watabe H, Hardianto A, Janitra RS. Complexation of 3p- C-NETA with radiometal ions: A density functional theory study for targeted radioimmunotherapy. Heliyon 2024; 10:e34875. [PMID: 39144950 PMCID: PMC11320446 DOI: 10.1016/j.heliyon.2024.e34875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Bifunctional chelators (BFCs) are vital in the design of effective radiopharmaceuticals, as they are able to bind to both a radiometal ion and a targeting vector. The 3p-C-NETA or 4-[2-(bis-carboxy-methylamino)-5-(4-nitrophenyl)-entyl])-7-carboxymethyl-[1,4,7]tri-azonan-1-yl acetic acid is a novel and promising BFC, developed for diagnostic and therapeutic purposes. The binding affinity between the BFC and radiometal ion significantly impacts their effectiveness. Predicting the equilibrium constants for the formation of 1:1 radiometals/chelator complexes (log K1 values) is crucial for designing BFCs with improved affinity and selectivity for radiometals. The purpose of this study is to evaluate the complexation of Ga3+, Tb3+, Bi3+, and Ac3+ radiometal ions with 3p-C-NETA using density functional theory (B3LYP and M06-HF functional) and 6-311G(d)/SDD basis sets, where the 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetracetic acid (DOTA) was employed as a benchmark. Formation of the [Ac3+(3p-C-NETA)(H2O)]- complexes is predicted to be markedly less stable compared to the other complexes, exhibiting the lowest chemical hardness and the highest chemical softness. Additionally, the chelation stability of the complexes is mainly determined by ligand-ion and ion-water interactions, which depend on the atomic charge and atomic radius of the metal ion.
Collapse
Affiliation(s)
- Danni Ramdhani
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Japan
| | - Hiroshi Watabe
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Japan
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Regaputra S. Janitra
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
8
|
Franchi S, Madabeni A, Tosato M, Gentile S, Asti M, Orian L, Di Marco V. Navigating through the coordination preferences of heavy alkaline earth metals: Laying the foundations for 223Ra- and 131/135mBa-based targeted alpha therapy and theranostics of cancer. J Inorg Biochem 2024; 256:112569. [PMID: 38701687 DOI: 10.1016/j.jinorgbio.2024.112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
The clinical success of [223Ra]RaCl2 (Xofigo®) for the palliative treatment of bone metastases in patients with prostate cancer has highlighted the therapeutic potential of α-particle emission. Expanding the applicability of radium-223 in Targeted Alpha Therapy of non-osseous tumors is followed up with significant interest, as it holds the potential to unveil novel treatment options in the comprehensive management of cancer. Moreover, the use of barium radionuclides, like barium-131 and -135m, is still unfamiliar in nuclear medicine applications, although they can be considered as radium-223 surrogates for imaging purposes. Enabling these applications requires the establishment of chelators able to form stable complexes with radium and barium radionuclides. Until now, only a limited number of ligands have been suggested and these molecules have been primarily inspired by existing structures known for their ability to complex large metal cations. However, a systematic inspection of chelators specifically tailored to Ra2+ and Ba2+ has yet to be conducted. This work delves into a comprehensive investigation of a series of small organic ligands, aiming to unveil the coordination preferences of both radium-223 and barium-131/135m. Electronic binding energies of both metal cations to each ligand were theoretically computed via Density Functional Theory calculations (COSMO-ZORA-PBE-D3/TZ2P), while thermodynamic stability constants were experimentally determined for Ba2+-ligand complexes by potentiometry, NMR and UV-Vis spectroscopies. The outcomes revealed malonate, 2-hydroxypyridine 1-oxide and picolinate as the most favorable building blocks to design multidentate chelators. These findings serve as foundation guidelines, propelling the development of cutting-edge radium-223- and barium-131/135m-based radiopharmaceuticals for Targeted Alpha Therapy and theranostics of cancer.
Collapse
Affiliation(s)
- Sara Franchi
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Andrea Madabeni
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Marianna Tosato
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Silvia Gentile
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Laura Orian
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; National Institute of Nuclear Physics, National Laboratories of Legnaro (INFN-LNL), 35020 Legnaro, Padova, Italy.
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
9
|
Toro-González M, Akingbesote N, Bible A, Pal D, Sanders B, Ivanov AS, Jansone-Popova S, Popovs I, Benny P, Perry R, Davern S. Development of 225Ac-doped biocompatible nanoparticles for targeted alpha therapy. J Nanobiotechnology 2024; 22:306. [PMID: 38825717 PMCID: PMC11145892 DOI: 10.1186/s12951-024-02520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
Targeted alpha therapy (TAT) relies on chemical affinity or active targeting using radioimmunoconjugates as strategies to deliver α-emitting radionuclides to cancerous tissue. These strategies can be affected by transmetalation of the parent radionuclide by competing ions in vivo and the bond-breaking recoil energy of decay daughters. The retention of α-emitting radionuclides and the dose delivered to cancer cells are influenced by these processes. Encapsulating α-emitting radionuclides within nanoparticles can help overcome many of these challenges. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are a biodegradable and biocompatible delivery platform that has been used for drug delivery. In this study, PLGA nanoparticles are utilized for encapsulation and retention of actinium-225 ([225Ac]Ac3+). Encapsulation of [225Ac]Ac3+ within PLGA nanoparticles (Zave = 155.3 nm) was achieved by adapting a double-emulsion solvent evaporation method. The encapsulation efficiency was affected by both the solvent conditions and the chelation of [225Ac]Ac3+. Chelation of [225Ac]Ac3+ to a lipophilic 2,9-bis-lactam-1,10-phenanthroline ligand ([225Ac]AcBLPhen) significantly decreased its release (< 2%) and that of its decay daughters (< 50%) from PLGA nanoparticles. PLGA nanoparticles encapsulating [225Ac]AcBLPhen significantly increased the delivery of [225Ac]Ac3+ to murine (E0771) and human (MCF-7 and MDA-MB-231) breast cancer cells with a concomitant increase in cell death over free [225Ac]Ac3+ in solution. These results demonstrate that PLGA nanoparticles have potential as radionuclide delivery platforms for TAT to advance precision radiotherapy for cancer. In addition, this technology offers an alternative use for ligands with poor aqueous solubility, low stability, or low affinity, allowing them to be repurposed for TAT by encapsulation within PLGA nanoparticles.
Collapse
Affiliation(s)
- Miguel Toro-González
- Isotope Science and Engineering Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Ngozi Akingbesote
- Isotope Science and Engineering Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Amber Bible
- Biological and Environmental Systems Science Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Debjani Pal
- Isotope Science and Engineering Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Brian Sanders
- Biological and Environmental Systems Science Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Alexander S Ivanov
- Physical Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Santa Jansone-Popova
- Physical Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Ilja Popovs
- Physical Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Paul Benny
- Isotope Science and Engineering Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Rachel Perry
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sandra Davern
- Isotope Science and Engineering Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
10
|
Harriswangler C, Lucio-Martínez F, Rodríguez-Rodríguez A, Esteban-Gómez D, Platas-Iglesias C. Unravelling the 6sp ← 6s absorption spectra of Bi(III) complexes. Dalton Trans 2024; 53:2275-2285. [PMID: 38197124 DOI: 10.1039/d3dt03744d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
We report a spectroscopic and computational study that investigates the absorption spectra of Bi(III) complexes, which often show an absorption band in the UV region (∼270-350 nm) due to 6sp ← 6s transitions. We investigated the spectra of three simple complexes, [BiCl5]2-, [BiCl6]3- and [Bi(DMSO)8]3+, which show absorption maxima at 334, 326 and 279 nm due to 3P1 ← 1S0 transitions. Theoretical calculations based on quasi-degenerate N-electron valence perturbation theory to second order (QD-NEVPT2) provide an accurate description of the absorption spectra when employing CAS(2,9) wave functions. We next investigated the absorption spectra of the [Bi(NOTA)] complex (H3NOTA = 1,4,7-triazacyclononane-1,4,7-triacetic acid), which forms ternary complexes [Bi(NOTA)X]- (X = Cl, Br or I) in the presence of excess halide in aqueous solutions. Halide binding has an important impact on the position of the 3P1 ← 1S0 transition, which shifts progressively to longer wavelengths from 282 nm ([Bi(NOTA)]) to 298 nm (X = Cl), 305 nm (X = Br) and 325 nm (X = I). Subsequent QD-NEVPT2 calculations indicate that this effect is related to the progressive stabilization of the spin-orbit free states associated with the 6s16p1 configuration on increasing the covalent character of the metal-ligand(s) bonds, rather than with significant differences in spin-orbit coupling (SOC). These studies provide valuable insight into the coordination chemistry of Bi(III), an ion with increasing interest in targeted alpha therapy due to the possible application of bismuth isotopes bismuth-212 (212Bi, t1/2 = 60.6 min) and bismuth-213 (213Bi, t1/2 = 45.6 min).
Collapse
Affiliation(s)
- Charlene Harriswangler
- Universidade da Coruña, Centro de Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Fátima Lucio-Martínez
- Universidade da Coruña, Centro de Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Aurora Rodríguez-Rodríguez
- Universidade da Coruña, Centro de Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - David Esteban-Gómez
- Universidade da Coruña, Centro de Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| |
Collapse
|
11
|
Carbo-Bague I, Li C, McNeil BL, Gao Y, McDonagh AW, Van de Voorde M, Ooms M, Kunz P, Yang H, Radchenko V, Schreckenbach G, Ramogida CF. Comparative Study of a Decadentate Acyclic Chelate, HOPO-O 10, and Its Octadentate Analogue, HOPO-O 8, for Radiopharmaceutical Applications. Inorg Chem 2023; 62:20549-20566. [PMID: 36608341 DOI: 10.1021/acs.inorgchem.2c03671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Radiolanthanides and actinides are aptly suited for the diagnosis and treatment of cancer via nuclear medicine because they possess unique chemical and physical properties (e.g., radioactive decay emissions). These rare radiometals have recently shown the potential to selectively deliver a radiation payload to cancer cells. However, their clinical success is highly dependent on finding a suitable ligand for stable chelation and conjugation to a disease-targeting vector. Currently, the commercially available chelates exploited in the radiopharmaceutical design do not fulfill all of the requirements for nuclear medicine applications, and there is a need to further explore their chemistry to rationally design highly specific chelates. Herein, we describe the rational design and chemical development of a novel decadentate acyclic chelate containing five 1,2-hydroxypyridinones, 3,4,3,3-(LI-1,2-HOPO), referred to herein as HOPO-O10, based on the well-known octadentate ligand 3,4,3-(LI-1,2-HOPO), referred to herein as HOPO-O8, a highly efficient chelator for 89Zr[Zr4+]. Analysis by 1H NMR spectroscopy and mass spectrometry of the La3+ and Tb3+ complexes revealed that HOPO-O10 forms bimetallic complexes compared to HOPO-O8, which only forms monometallic species. The radiolabeling properties of both chelates were screened with [135La]La3+, [155/161Tb]Tb3+, [225Ac]Ac3+ and, [227Th]Th4+. Comparable high specific activity was observed for the [155/161Tb]Tb3+ complexes, outperforming the gold-standard 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, yet HOPO-O10 surpassed HOPO-O8 with higher [227Th]Th4+ affinity and improved complex stability in a human serum challenge assay. A comprehensive analysis of the decadentate and octadentate chelates was performed with density functional theory for the La3+, Ac3+, Eu3+, Tb3+, Lu3+, and Th4+ complexes. The computational simulations demonstrated the enhanced stability of Th4+-HOPO-O10 over Th4+-HOPO-O8. This investigation reveals the potential of HOPO-O10 for the stable chelation of large tetravalent radioactinides for nuclear medicine applications and provides insight for further chelate development.
Collapse
Affiliation(s)
- Imma Carbo-Bague
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Cen Li
- Department of Chemistry, University of Manitoba, Winnipeg, ManitobaR3T 2N2, Canada
| | - Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
- Life Sciences Division, TRIUMF, Vancouver, British ColumbiaV6T 2A3, Canada
| | - Yang Gao
- Department of Chemistry, University of Manitoba, Winnipeg, ManitobaR3T 2N2, Canada
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan610054, China
| | - Anthony W McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | | | - Maarten Ooms
- NURA Research Group, Belgian Nuclear Research Center, SCK CEN, 2400Mol, Belgium
| | - Peter Kunz
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
- Accelerator Division, TRIUMF, Vancouver, British ColumbiaV6T 2A3, Canada
| | - Hua Yang
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
- Life Sciences Division, TRIUMF, Vancouver, British ColumbiaV6T 2A3, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, British ColumbiaV6T 2A3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British ColumbiaV6T 1Z1, Canada
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, ManitobaR3T 2N2, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
- Life Sciences Division, TRIUMF, Vancouver, British ColumbiaV6T 2A3, Canada
| |
Collapse
|
12
|
Wharton L, Yang H, Jaraquemada-Peláez MDG, Merkens H, Engudar G, Ingham A, Koniar H, Radchenko V, Kunz P, Schaffer P, Bénard F, Orvig C. Rearmed Bifunctional Chelating Ligand for 225Ac/ 155Tb Precision-Guided Theranostic Radiopharmaceuticals─H 4noneunpaX. J Med Chem 2023; 66:13705-13730. [PMID: 37738446 DOI: 10.1021/acs.jmedchem.3c01151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Superior bifunctional chelating ligands, which can sequester both α-emitting radionuclides (225Ac, 213Bi) and their diagnostic companions (155Tb, 111In), remain a formidable challenge to translating targeted alpha therapy, with complementary diagnostic imaging, to the clinic. H4noneupaX, a chelating ligand with an unusual diametrically opposed arrangement of pendant donor groups, has been developed to this end. H4noneunpaX preferentially complexes Ln3+ and An3+ ions, forming thermodynamically stable (pLa = 17.8, pLu = 21.3) and kinetically inert complexes─single isomeric species by nuclear magnetic resonance and density functional theory. Metal binding versatility demonstrated in radiolabeling [111In]In3+, [155Tb]Tb3+, [177Lu]Lu3+, and [225Ac]Ac3+ achieved high molar activities under mild conditions. Efficient, scalable synthesis enabled in vivo evaluation of bifunctional H4noneunpaX conjugated to two octreotate peptides targeting neuroendocrine tumors. Single photon emission computed tomography/CT and biodistribution studies of 155Tb-radiotracers in AR42J tumor-bearing mice showed excellent image contrast, good tumor uptake, and high in vivo stability. H4noneunpaX shows significant potential for theranostic applications involving 225Ac/155Tb or 177Lu/155Tb.
Collapse
Affiliation(s)
- Luke Wharton
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - María de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Molecular Oncology Group, British Columbia Cancer Research Centre (BCCRC), Vancouver, British Columbia V5Z 1L3, Canada
| | - Helen Merkens
- Molecular Oncology Group, British Columbia Cancer Research Centre (BCCRC), Vancouver, British Columbia V5Z 1L3, Canada
| | - Gokce Engudar
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Aidan Ingham
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Helena Koniar
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Peter Kunz
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - François Bénard
- Molecular Oncology Group, British Columbia Cancer Research Centre (BCCRC), Vancouver, British Columbia V5Z 1L3, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
13
|
Lucio-Martínez F, Esteban-Gómez D, Valencia L, Horváth D, Szücs D, Fekete A, Szikra D, Tircsó G, Platas-Iglesias C. Rigid H 4OCTAPA derivatives as model chelators for the development of Bi(III)-based radiopharmaceuticals. Chem Commun (Camb) 2023; 59:3443-3446. [PMID: 36857648 DOI: 10.1039/d2cc06876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Octadentate ligands containing ethyl (H4OCTAPA), cyclohexyl (H4CHXOCTAPA) or cyclopentyl (H4CpOCTAPA) spacers were assessed as chelators for Bi(III)-based radiopharmaceuticals. The H4CHXOCTAPA chelator displays excellent properties, including 205/206Bi-nuclide radiolabelling under mild conditions, excellent stability in serum and in the presence of competing cations or H5DTPA. The poor performance of H4CpOCTAPA appears to be related to the stereochemical activity of the Bi(III) lone pair.
Collapse
Affiliation(s)
- Fátima Lucio-Martínez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - David Esteban-Gómez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, Pontevedra 36310, Spain
| | - Dávid Horváth
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Dániel Szücs
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary.
| | - Anikó Fekete
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary.
| | - Dezső Szikra
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary.
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| |
Collapse
|
14
|
Johnson K, Driscoll DM, Damron JT, Ivanov AS, Jansone-Popova S. Size Selective Ligand Tug of War Strategy to Separate Rare Earth Elements. JACS AU 2023; 3:584-591. [PMID: 36873676 PMCID: PMC9976341 DOI: 10.1021/jacsau.2c00671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 05/08/2023]
Abstract
Separating rare earth elements is a daunting task due to their similar properties. We report a "tug of war" strategy that employs a lipophilic and hydrophilic ligand with contrasting selectivity, resulting in a magnified separation of target rare earth elements. Specifically, a novel water-soluble bis-lactam-1,10-phenanthroline with an affinity for light lanthanides is coupled with oil-soluble diglycolamide that selectively binds heavy lanthanides. This two-ligand strategy yields a quantitative separation of the lightest (e.g., La-Nd) and heaviest (e.g., Ho-Lu) lanthanides, enabling efficient separation of neighboring lanthanides in-between (e.g., Sm-Dy).
Collapse
Affiliation(s)
- Katherine
R. Johnson
- Nuclear
Energy and Fuel Cycle Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Darren M. Driscoll
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joshua T. Damron
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander S. Ivanov
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Santa Jansone-Popova
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
15
|
Franchi S, Di Marco V, Tosato M. Bismuth chelation for targeted alpha therapy: Current state of the art. Nucl Med Biol 2022; 114-115:168-188. [PMID: 35753940 DOI: 10.1016/j.nucmedbio.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/22/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022]
Abstract
Current interest in the α-emitting bismuth radionuclides, bismuth-212 (212Bi) and bismuth-213 (213Bi), stems from their great potential for targeted alpha therapy (TAT), an expanding and promising approach for the treatment of micrometastatic disease and the eradication of single malignant cells. To selectively deliver their emission to the cancer cells, these radiometals must be firmly coordinated by a bifunctional chelator (BFC) attached to a tumour-seeking vector. This review provides a comprehensive overview of the current state-of-the-art chelating agents for bismuth radioisotopes. Several aspects are reported, from their 'cold' chelation chemistry (thermodynamic, kinetic, and structural properties) and radiolabelling investigations to the preclinical and clinical studies performed with a variety of bioconjugates. The aim of this review is to provide both a guide for the rational design of novel optimal platforms for the chelation of these attractive α-emitters and emphasize the prospects of the most encouraging chelating agents proposed so far.
Collapse
Affiliation(s)
- Sara Franchi
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Marianna Tosato
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
16
|
Horváth D, Vágner A, Szikra D, Trencsényi G, Demitri N, Guidolin N, Maiocchi A, Ghiani S, Travagin F, Giovenzana GB, Baranyai Z. Boosting Bismuth(III) Complexation for Targeted α-Therapy (TAT) Applications with the Mesocyclic Chelating Agent AAZTA. Angew Chem Int Ed Engl 2022; 61:e202207120. [PMID: 36073561 PMCID: PMC9828418 DOI: 10.1002/anie.202207120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 01/12/2023]
Abstract
Targeted α therapy (TAT) is a promising tool in the therapy of cancer. The radionuclide 213 BiIII shows favourable physical properties for this application, but the fast and stable chelation of this metal ion remains challenging. Herein, we demonstrate that the mesocyclic chelator AAZTA quickly coordinates BiIII at room temperature, leading to a robust complex. A comprehensive study of the structural, thermodynamic and kinetic properties of [Bi(AAZTA)]- is reported, along with bifunctional [Bi(AAZTA-C4-COO- )]2- and the targeted agent [Bi(AAZTA-C4-TATE)]- , which incorporates the SSR agonist Tyr3 -octreotate. An unexpected increase in the stability and kinetic inertness of the metal chelate was observed for the bifunctional derivative and was maintained for the peptide conjugate. A cyclotron-produced 205/206 Bi mixture was used as a model of 213 Bi in labelling, stability, and biodistribution experiments, allowing the efficiency of [213 Bi(AAZTA-C4-TATE)]- to be estimated. High accumulation in AR42J tumours and reduced kidney uptake were observed with respect to the macrocyclic chelate [213 Bi(DOTA-TATE)]- .
Collapse
Affiliation(s)
- Dávid Horváth
- Department of Physical ChemistryUniversity of DebrecenEgyetem tér 14010DebrecenHungary
| | | | - Dezsö Szikra
- Scanomed Ltd.Nagyerdei Krt. 984032DebrecenHungary,Medical Imaging ClinicUniversity of DebrecenNagyerdei krt. 984032DebrecenHungary
| | - György Trencsényi
- Scanomed Ltd.Nagyerdei Krt. 984032DebrecenHungary,Medical Imaging ClinicUniversity of DebrecenNagyerdei krt. 984032DebrecenHungary
| | - Nicola Demitri
- Elettra-Sincrotrone TriesteS.S. 14 Km 163.5 in Area Science Park34149Basovizza (TS)Italy
| | - Nicol Guidolin
- Bracco Imaging SpaBracco Research CentreVia Ribes 510010Colleretto Giacosa (TO)Italy
| | - Alessandro Maiocchi
- Bracco Imaging SpaBracco Research CentreVia Ribes 510010Colleretto Giacosa (TO)Italy
| | - Simona Ghiani
- Bracco Imaging SpaBracco Research CentreVia Ribes 510010Colleretto Giacosa (TO)Italy
| | - Fabio Travagin
- Dipartimento di Scienze del FarmacoUniversità del Piemonte OrientaleLargo Donegani 2/328100NovaraItaly
| | - Giovanni B. Giovenzana
- Dipartimento di Scienze del FarmacoUniversità del Piemonte OrientaleLargo Donegani 2/328100NovaraItaly
| | - Zsolt Baranyai
- Bracco Imaging SpaBracco Research CentreVia Ribes 510010Colleretto Giacosa (TO)Italy
| |
Collapse
|
17
|
Horváth D, Vágner A, Szikra D, Trencsényi G, Demitri N, Guidolin N, Maiocchi A, Ghiani S, Travagin F, Giovenzana GB, Baranyai Z. Boosting Bismuth(III) Complexation for Targeted α‐Therapy (TAT) Applications with the Mesocyclic Chelating Agent AAZTA. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dávid Horváth
- University of Debrecen Department of Physical Chemistry HUNGARY
| | | | | | | | - Nicola Demitri
- Elettra Sincrotrone Trieste SCpA Elettra Sincrotrone Trieste SCpA ITALY
| | | | | | | | - Fabio Travagin
- Universita degli Studi del Piemonte Orientale Amedeo Avogadro Dipartimento di Scienze del Farmaco ITALY
| | - Giovanni Battista Giovenzana
- Università degli Studi del Piemonte Orientale Amedeo Avogadro Facoltà di Farmacia: Universita degli Studi del Piemonte Orientale Amedeo Avogadro Dipartimento di Scienze del Farmaco Dipartimento di Scienze del Farmaco Largo Donegani 2/3Via Bovio 6 28100 Novara ITALY
| | | |
Collapse
|
18
|
Volkov PA, Khrapova KO, Telezhkin AA, Albanov AI, Apartsin KA, Trofimov BA. SNHAr Reaction of Pyridines with Bis(polyfluoroalkyl)phosphonates Assisted by Electron-Deficient Acetylenes. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222090134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Ivanov AS, Simms ME, Bryantsev VS, Benny PD, Griswold JR, Delmau LH, Thiele NA. Elucidating the coordination chemistry of the radium ion for targeted alpha therapy. Chem Commun (Camb) 2022; 58:9938-9941. [PMID: 35983753 DOI: 10.1039/d2cc03156f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The coordination chemistry of Ra2+ is poorly defined, hampering efforts to design effective chelators for 223Ra-based targeted alpha therapy. Here, we report the complexation thermodynamics of Ra2+ with the biomedically-relevant chelators DOTA and macropa. Our work reveals the highest affinity chelator to date for Ra2+ and advances our understanding of key factors underlying complex stability and selectivity for this underexplored ion.
Collapse
Affiliation(s)
- Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | - Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | - Paul D Benny
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Justin R Griswold
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Laetitia H Delmau
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| |
Collapse
|
20
|
Hu A, Simms ME, Kertesz V, Wilson JJ, Thiele NA. Chelating Rare-Earth Metals (Ln 3+) and 225Ac 3+ with the Dual-Size-Selective Macrocyclic Ligand Py 2-Macrodipa. Inorg Chem 2022; 61:12847-12855. [PMID: 35914099 DOI: 10.1021/acs.inorgchem.2c01998] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radioisotopes of metallic elements, or radiometals, are widely employed in both therapeutic and diagnostic nuclear medicine. For this application, chelators that efficiently bind the radiometal of interest and form a stable metal-ligand complex with it are required. Toward the development of new chelators for nuclear medicine, we recently reported a novel class of 18-membered macrocyclic chelators that is characterized by their ability to form stable complexes with both large and small rare-earth metals (Ln3+), a property referred to as dual size selectivity. A specific chelator in this class called py-macrodipa, which contains one pyridyl group within its macrocyclic core, was established as a promising candidate for 135La3+, 213Bi3+, and 44Sc3+ chelation. Building upon this prior work, here we report the synthesis and characterization of a new chelator called py2-macrodipa with two pyridyl units fused into the macrocyclic backbone. Its coordination chemistry with the Ln3+ series was investigated by NMR spectroscopy, X-ray crystallography, density functional theory (DFT) calculations, analytical titrations, and transchelation assays. These studies reveal that py2-macrodipa retains the expected dual size selectivity and possesses an enhanced thermodynamic affinity for all Ln3+ compared to py-macrodipa. By contrast, the kinetic stability of Ln3+ complexes with py2-macrodipa is only improved for the light, large Ln3+ ions. Based upon these observations, we further assessed the suitability of py2-macrodipa for use with 225Ac3+, a large radiometal with valuable properties for targeted α therapy. Radiolabeling and stability studies revealed py2-macrodipa to efficiently incorporate 225Ac3+ and to form a complex that is inert in human serum over 3 weeks. Although py2-macrodipa does not surpass the state-of-the-art chelator macropa for 225Ac3+ chelation, it does provide another effective 225Ac3+ chelator. These studies shed light on the fundamental coordination chemistry of the Ln3+ series and may inspire future chelator design efforts.
Collapse
Affiliation(s)
- Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
21
|
Ingham A, Wharton L, El Sayed T, Southcott L, McNeil BL, Ezhova MB, Patrick BO, Jaraquemada-Peláez MDG, Orvig C. H 2ampa─Versatile Chelator for [ 203Pb]Pb 2+, [ 213Bi]Bi 3+, and [ 225Ac]Ac 3. Inorg Chem 2022; 61:9119-9137. [PMID: 35678752 DOI: 10.1021/acs.inorgchem.2c00636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new decadentate chelator, H2ampa, was designed to be a potential radiopharmaceutical chelator component. The chelator involves both amide and picolinate functional groups on a large non-macrocyclic, ether-bridged backbone. With its large scaffold, H2ampa was paired with [nat/203Pb]Pb2+, [nat/213Bi]Bi3+, and natLa3+/[225Ac]Ac3+ ions. Nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry were used to study the non-radioactive metal complexes. A single crystal of [Bi(ampa)](NO3) was obtained; its asymmetric, 10-coordinate complex structure was revealed by X-ray diffraction. Optimal conformations of the metal complexes were assessed by density functional theory studies to provide further structural information. Solution studies providing thermodynamic insights into metal complex formation revealed H2ampa coordinated Bi3+, Pb2+, and La3+ ions to obtain pM values of 26, 14.8, and 15.1, respectively. Preliminary concentration-dependent radiolabeling experiments were carried out between H2ampa and three different radiometals to evaluate their compatibility for radiopharmaceutical applications. The chelator radiolabeled [203Pb]Pb2+, [213Bi]Bi3+, and [225Ac]Ac3+ in short reaction times (7-30 min), at dilute concentrations, and under mild conditions. Thus, H2ampa was proven to be a versatile chelator able to well coordinate a small range of radiometals frequently considered to be alpha therapeutic candidates.
Collapse
Affiliation(s)
- Aidan Ingham
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Luke Wharton
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Tarek El Sayed
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Lily Southcott
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Brooke L McNeil
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada.,Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, Canada
| | - Maria B Ezhova
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - María de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
22
|
Hu A, Wilson JJ. Advancing Chelation Strategies for Large Metal Ions for Nuclear Medicine Applications. Acc Chem Res 2022; 55:904-915. [PMID: 35230803 DOI: 10.1021/acs.accounts.2c00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nuclear medicine leverages radioisotopes of a wide range of elements, a significant portion of which are metals, for the diagnosis and treatment of disease. To optimally use radioisotopes of the metal ions, or radiometals, for these applications, a chelator that efficiently forms thermodynamically and kinetically stable complexes with them is required. The chelator also needs to attach to a biological targeting vector that locates pathological tissues. Numerous chelators suitable for small radiometals have been established to date, but chelators that work well for large radiometals are significantly less common. In this Account, we describe recent progress by us and others in the advancement of ligands for large radiometal chelation with emerging applications in nuclear medicine.First, we discuss and analyze the coordination chemistry of the chelator macropa, a macrocyclic ligand that contains the 18-crown-6 backbone and two picolinate pendent arms, with large metal ions in the context of nuclear medicine. This ligand is known for its unusual reverse size selectivity, the preference for binding large over small metal ions. The radiolabeling properties of macropa with large radiometals 225Ac3+, 132/135La3+, 131Ba2+, 223Ra2+, 213Bi3+, and related in vivo investigations are described. The development of macropa derivatives containing different pendent donors or rigidifying groups in the macrocyclic core is also briefly reviewed.Next, efforts to transform macropa into a radiopharmaceutical agent via covalent conjugation to biological targeting vectors are summarized. In this discussion, two types of bifunctional analogues of macropa reported in the literature, macropa-NCS and mcp-click, are presented. Their implementation in different radiopharmaceutical agents is discussed. Bioconjugates containing macropa attached to small-molecule targeting vectors or macromolecular antibodies are presented. The in vitro and in vivo evaluations of these constructs are also discussed.Lastly, chelators with dual size selectivity are described. This class of ligands exhibits good affinities for both large and small metal ions. This property is valuable for nuclear medicine applications that require the simultaneous chelation of both large and small radiometals with complementary therapeutic and diagnostic properties. Recently, we reported an 18-membered macrocyclic ligand called macrodipa that attains this selectivity pattern. This chelator, its second-generation analogue py-macrodipa, and their applications for chelating the medicinally relevant large 135La3+, 225Ac3+, 213Bi3+, and small 44Sc3+ ions are also presented. Studies with these radiometals show that py-macrodipa can effectively radiolabel and stably retain both large and small radiometals. Overall, this Account makes the case for innovative ligand design approaches for novel emerging radiometal ions with unusual coordination chemistry properties.
Collapse
Affiliation(s)
- Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
23
|
Woods JJ, Unnerstall R, Hasson A, Abou DS, Radchenko V, Thorek DLJ, Wilson JJ. Stable Chelation of the Uranyl Ion by Acyclic Hexadentate Ligands: Potential Applications for 230U Targeted α-Therapy. Inorg Chem 2022; 61:3337-3350. [PMID: 35137587 PMCID: PMC9382226 DOI: 10.1021/acs.inorgchem.1c03972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Uranium-230 is an α-emitting radionuclide with favorable properties for use in targeted α-therapy (TAT), a type of nuclear medicine that harnesses α particles to eradicate cancer cells. To successfully implement this radionuclide for TAT, a bifunctional chelator that can stably bind uranium in vivo is required. To address this need, we investigated the acyclic ligands H2dedpa, H2CHXdedpa, H2hox, and H2CHXhox as uranium chelators. The stability constants of these ligands with UO22+ were measured via spectrophotometric titrations, revealing log βML values that are greater than 18 and 26 for the "pa" and "hox" chelators, respectively, signifying that the resulting complexes are exceedingly stable. In addition, the UO22+ complexes were structurally characterized by NMR spectroscopy and X-ray crystallography. Crystallographic studies reveal that all six donor atoms of the four ligands span the equatorial plane of the UO22+ ion, giving rise to coordinatively saturated complexes that exclude solvent molecules. To further understand the enhanced thermodynamic stabilities of the "hox" chelators over the "pa" chelators, density functional theory (DFT) calculations were employed. The use of the quantum theory of atoms in molecules revealed that the extent of covalency between all four ligands and UO22+ was similar. Analysis of the DFT-computed ligand strain energy suggested that this factor was the major driving force for the higher thermodynamic stability of the "hox" ligands. To assess the suitability of these ligands for use with 230U TAT in vivo, their kinetic stabilities were probed by challenging the UO22+ complexes with the bone model hydroxyapatite (HAP) and human plasma. All four complexes were >95% stable in human plasma for 14 days, whereas in the presence of HAP, only the complexes of H2CHXdedpa and H2hox remained >80% intact over the same period. As a final validation of the suitability of these ligands for radiotherapy applications, the in vivo biodistribution of their UO22+ complexes was determined in mice in comparison to unchelated [UO2(NO3)2]. In contrast to [UO2(NO3)2], which displays significant bone uptake, all four ligand complexes do not accumulate in the skeletal system, indicating that they remain stable in vivo. Collectively, these studies suggest that the equatorial-spanning ligands H2dedpa, H2CHXdedpa, H2hox, and H2CHXhox are highly promising candidates for use in 230U TAT.
Collapse
Affiliation(s)
- Joshua J. Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Ryan Unnerstall
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Abbie Hasson
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA
| | - Diane S. Abou
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Valery Radchenko
- Life Science Division, TRIUMF, Vancouver, BC Canada
- Chemistry Department, University of British Columbia, Vancouver, BC, BC V6T 2A3, Canada
| | - Daniel L. J. Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
24
|
Baba K, Nagata K, Yajima T, Yoshimura T. Synthesis, Structures, and Equilibrium Reactions of La(III) and Ba(II) Complexes with Pyridine Phosphonate Pendant Arms on a Diaza-18-crown-6 Ether. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazuaki Baba
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita 565-0871
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043
| | - Kojiro Nagata
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita 565-0871
| | - Tatsuo Yajima
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita 564-8680
| | - Takashi Yoshimura
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita 565-0871
| |
Collapse
|
25
|
Hu A, Brown V, MacMillan SN, Radchenko V, Yang H, Wharton L, Ramogida CF, Wilson JJ. Chelating the Alpha Therapy Radionuclides 225Ac 3+ and 213Bi 3+ with 18-Membered Macrocyclic Ligands Macrodipa and Py-Macrodipa. Inorg Chem 2022; 61:801-806. [PMID: 34965102 PMCID: PMC9372718 DOI: 10.1021/acs.inorgchem.1c03670] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The radionuclides 225Ac3+ and 213Bi3+ possess favorable physical properties for targeted alpha therapy (TAT), a therapeutic approach that leverages α radiation to treat cancers. A chelator that effectively binds and retains these radionuclides is required for this application. The development of ligands for this purpose, however, is challenging because the large ionic radii and charge-diffuse nature of these metal ions give rise to weaker metal-ligand interactions. In this study, we evaluated two 18-membered macrocyclic chelators, macrodipa and py-macrodipa, for their ability to complex 225Ac3+ and 213Bi3+. Their coordination chemistry with Ac3+ was probed computationally and with Bi3+ experimentally via NMR spectroscopy and X-ray crystallography. Furthermore, radiolabeling studies were conducted, revealing the efficient incorporation of both 225Ac3+ and 213Bi3+ by py-macrodipa that matches or surpasses the well-known chelators macropa and DOTA. Incubation in human serum at 37 °C showed that ∼90% of the 225Ac3+-py-macrodipa complex dissociates after 1 d. The Bi3+-py-macrodipa complex possesses remarkable kinetic inertness reflected by an EDTA transchelation challenge study, surpassing that of Bi3+-macropa. This work establishes py-macrodipa as a valuable candidate for 213Bi3+ TAT, providing further motivation for its implementation within new radiopharmaceutical agents.
Collapse
Affiliation(s)
- Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Victoria Brown
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Luke Wharton
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Caterina F. Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Abstract
8-Hydroxyquinoline (8-HQ, oxine) is a small, monoprotic, bicyclic aromatic compound and its relative donor group orientation imparts impressive bidentate metal chelating abilities that have been exploited in a vast array of applications over decades. 8-HQ and its derivatives have been explored in medicinal applications including anti-neurodegeneration, anticancer properties, and antimicrobial activities. One long established use of 8-HQ in medicinal inorganic chemistry is the coordination of radioactive isotopes of metal ions in nuclear medicine. The metal-oxine complex with the single photon emission computed tomography (SPECT) imaging isotope [111In]In3+ was developed in the 1970s and 1980s to radiolabel leukocytes for inflammation and infection imaging. The [111In][In(oxine)3] complex functions as an ionophore: a moderately stable lipophilic complex to enter cells; however, inside the cell environment [111In]In3+ undergoes exchange and remains localized. As new developments have progressed towards radiopharmaceuticals capable of both imaging and therapy (theranostics), 8-HQ has been re-explored in recent years to investigate its potential to chelate larger radiometal ions with longer half-lives and different indications. Further, metal-oxine complexes have been used to study liposomes and other nanomaterials by tracking these nanomedicines in vivo. Expanding 8-HQ to multidentate ligands for highly thermodynamically stable and kinetically inert complexes has increased the possibilities of this small molecule in nuclear medicine. This article outlines the historic use of metal-oxine complexes in inorganic radiopharmaceutical chemistry, with a focus on recent advances highlighting the possibilities of developing higher denticity, targeted bifunctional chelators with 8-HQ.
Collapse
Affiliation(s)
- Lily Southcott
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada.,Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
27
|
Grieve ML, Paterson BM. The Evolving Coordination Chemistry of Radiometals for Targeted Alpha Therapy. Aust J Chem 2021. [DOI: 10.1071/ch21184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|