1
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Kang Z, Bu W, Guo X, Wang L, Wu Q, Cao J, Wang H, Yu C, Gao J, Hao E, Jiao L. Synthesis and Properties of Bright Red-to-NIR BODIPY Dyes for Targeting Fluorescence Imaging and Near-Infrared Photothermal Conversion. Inorg Chem 2024; 63:3402-3410. [PMID: 38330908 DOI: 10.1021/acs.inorgchem.3c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An efficient synthesis of 3-pyrrolylBODIPY dyes has been developed from a rational mixture of various aromatic aldehydes and pyrrole in a straightforward condensation reaction, followed by in situ successively oxidative nucleophilic substitution using a one-pot strategy. These resultant 3-pyrrolylBODIPYs without blocking substituents not only exhibit the finely tunable photophysical properties induced by the flexible meso-aryl substituents but also serve as a valuable synthetic framework for further selective functionalization. As a proof of such potential, one 3-pyrrolylBODIPY dye (581/603 nm) through the installation of the morpholine group is applicable for lysosome-targeting imaging. Furthermore, an ethene-bridged 3,3'-dipyrrolylBODIPY dimer was constructed, which displayed a near-infrared (NIR) emission extended to 1200 nm with a large fluorescence brightness (2840 M-1 cm-1). The corresponding dimer nanoparticles (NPs) afforded a high photothermal conversion efficiency (PCE) value of 72.5%, eventually resulting in favorable photocytotoxicity (IC50 = 9.4 μM) and efficient in vitro eradication of HeLa cells under 808 nm laser irradiation, highlighting their potential application for photothermal therapy in the NIR window.
Collapse
Affiliation(s)
- Zhengxin Kang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Weibin Bu
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Long Wang
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jingjing Cao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hua Wang
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jiangang Gao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
3
|
Sakamoto DM, Tamura I, Yi B, Hasegawa S, Saito Y, Yamada N, Takakusagi Y, Kubota SI, Kobayashi M, Harada H, Hanaoka K, Taki M, Nangaku M, Tainaka K, Sando S. Whole-Body and Whole-Organ 3D Imaging of Hypoxia Using an Activatable Covalent Fluorescent Probe Compatible with Tissue Clearing. ACS NANO 2024; 18:5167-5179. [PMID: 38301048 DOI: 10.1021/acsnano.3c12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Elucidation of biological phenomena requires imaging of microenvironments in vivo. Although the seamless visualization of in vivo hypoxia from the level of whole-body to single-cell has great potential to discover unknown phenomena in biological and medical fields, no methodology for achieving it has been established thus far. Here, we report the whole-body and whole-organ imaging of hypoxia, an important microenvironment, at single-cell resolution using activatable covalent fluorescent probes compatible with tissue clearing. We initially focused on overcoming the incompatibility of fluorescent dyes and refractive index matching solutions (RIMSs), which has greatly hindered the development of fluorescent molecular probes in the field of tissue clearing. The fluorescent dyes compatible with RIMS were then incorporated into the development of activatable covalent fluorescent probes for hypoxia. We combined the probes with tissue clearing, achieving comprehensive single-cell-resolution imaging of hypoxia in a whole mouse body and whole organs.
Collapse
Affiliation(s)
- Daichi M Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Iori Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Bo Yi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sho Hasegawa
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoichi Takakusagi
- Quantum Hyperpolarized MRI Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city 263-8555, Japan
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city 263-8555, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenjiro Hanaoka
- Division of Analytical Chemistry for Drug Discovery, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
- Gftd DeSci, Gftd DAO, Nishikawa Building, 20 Kikuicho, Shinjuku-ku, Tokyo 162-0044, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Peng T, Qiu F, Qu Y, Yu C, Cheng X, Li L. Current and Future of "Turn-On" Based Small-Molecule Copper Probes for Cuproptosis. ChemistryOpen 2023; 12:e202300078. [PMID: 37705070 PMCID: PMC10499804 DOI: 10.1002/open.202300078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/20/2023] [Indexed: 09/15/2023] Open
Abstract
Increasing evidence shows that abnormal copper (Cu) metabolism is highly related to many diseases, such as Alzheimer's disease, Wilson's disease, hematological malignancies and Menkes disease. Very recently, cuproptosis, a Cu-dependent, programmed cell death was firstly described by Tsvetkov et al. in 2022. Their findings may provide a new perspective for the treatment of related diseases. However, the concrete mechanisms of these diseases, especially cuproptosis, remain completely unclear, the reason of which may be a lack of reliable tools to conduct highly selective, sensitive and high-resolution imaging of Cu in complex life systems. So far, numerous small-molecular fluorescent probes have been designed and utilized to explore the Cu signal pathway. Among them, fluorescence turn-on probes greatly enhance the resolution and accuracy of imaging and may be a promising tool for research of investigation into cuproptosis. This review summarizes the probes developed in the past decade which have the potential to study cuproptosis, focusing on the design strategies, luminescence mechanism and biological-imaging applications. Besides, we put forward some ideas concerning the design of next-generation probes for cuproptosis, aiming to tackle the main problems in this new field. Furthermore, the prospect of cuproptosis in the treatment of corresponding diseases is also highlighted.
Collapse
Affiliation(s)
- Ting‐En Peng
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Feng Qiu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Yunwei Qu
- The Institute of Flexible Electronics (IFE, Future Technologies)Xiamen UniversityXiamen361005China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Xiamin Cheng
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
- The Institute of Flexible Electronics (IFE, Future Technologies)Xiamen UniversityXiamen361005China
| |
Collapse
|
5
|
Fan H, McGhee CE, Lake RJ, Yang Z, Guo Z, Zhang XB, Lu Y. A Highly Selective Mn(II)-Specific DNAzyme and Its Application in Intracellular Sensing. JACS AU 2023; 3:1615-1622. [PMID: 37388692 PMCID: PMC10302744 DOI: 10.1021/jacsau.3c00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
Manganese is an essential trace element in the human body that acts as a cofactor in many enzymes and metabolisms. It is important to develop methods to detect Mn2+ in living cells. While fluorescent sensors have been very effective in detecting other metal ions, Mn2+-specific fluorescent sensors are rarely reported due to nonspecific fluorescence quenching by the paramagnetism of Mn2+ and poor selectivity against other metal ions such as Ca2+ and Mg2+. To address these issues, we herein report in vitro selection of an RNA-cleaving DNAzyme with exceptionally high selectivity for Mn2+. Through converting it into a fluorescent sensor using a catalytic beacon approach, Mn2+ sensing in immune cells and tumor cells has been achieved. The sensor is also used to monitor degradation of manganese-based nanomaterials such as MnOx in tumor cells. Therefore, this work provides an excellent tool to detect Mn2+ in biological systems and monitor the Mn2+-involved immune response and antitumor therapy.
Collapse
Affiliation(s)
- Huanhuan Fan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Nanjing University, Nanjing 210023, China
| | - Claire E. McGhee
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ryan J. Lake
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zijian Guo
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiao-Bing Zhang
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative
Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Yi Lu
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Chen Y, Zheng S, Kim MH, Chen X, Yoon J. Recent progress of TP/NIR fluorescent probes for metal ions. Curr Opin Chem Biol 2023; 75:102321. [PMID: 37196449 DOI: 10.1016/j.cbpa.2023.102321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023]
Abstract
Metal ions are of significance in various pathological and physiological processes. As such, it is crucial to monitor their levels in organisms. Two-photon (TP) and near-infrared (NIR) fluorescence imaging has been utilized to monitor metal ions because of minimal background interference, deeper tissue depth penetration, lower tissue self-absorption, and reduced photodamage. In this review, we briefly summarize recent progress from 2020 to 2022 of TP/NIR organic fluorescent probes and inorganic sensors in the detection of metal ions. Additionally, we present an outlook for the development of TP/NIR probes for bio-imaging, diagnosis of diseases, imaging-guided therapy, and activatable phototherapy.
Collapse
Affiliation(s)
- Yahui Chen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea; New and Renewable Energy Research Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Shiyue Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Myung Hwa Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea; New and Renewable Energy Research Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
7
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
8
|
Fang H, Chen Y, Jiang Z, He W, Guo Z. Fluorescent Probes for Biological Species and Microenvironments: from Rational Design to Bioimaging Applications. Acc Chem Res 2023; 56:258-269. [PMID: 36652599 DOI: 10.1021/acs.accounts.2c00643] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Some important biological species and microenvironments maintain a complex and delicate dynamic balance in life systems, participating in the regulation of various physiological processes and playing indispensable roles in maintaining the healthy development of living bodies. Disruption of their homeostasis in living organisms can cause various diseases and even death. Therefore, real time monitoring of these biological species and microenvironments during different physiological and pathological processes is of great significance. Fluorescent-probe-based techniques have been recognized as one of the most powerful tools for real time imaging in biological samples. In this Account, we introduce the representative works from our group in the field of fluorescent probes for biological imaging capable of detecting metal ions, small bioactive molecules, and the microenvironment. The design strategies of small molecule fluorescent probes and their applications in biological imaging will be discussed. By regulating the design strategy and mechanism (e.g., ICT, PeT, and FRET) of the electronic and spectral characteristics of the fluorescent platforms, these chemical probes show high selectivity and diverse functions, which can be used for imaging of various physiological and pathological processes. Through the exploration of the rational response mechanism and design strategy, combined with a variety of imaging techniques, such as super-resolution imaging, photoacoustic (PA) imaging, etc., we have realized multimode imaging of the important biological analytes from the subcellular level to the in vivo level, which provides powerful means to study the physiological and pathological functions of these species and microenvironments. This Account aims to offer insights and inspiration for the development of novel fluorescent probes for biological imaging, which could provide powerful tools for the study of chemical biology. Overall, we represent a series of turn-on/turn-off/ratiometric fluorescent/PA probes to visually and dynamically trace biological species and microenvironments in cells and even in vivo that seek higher resolution and depth molecular imaging to improve diagnostic methods and clarify new discoveries related to chemical biology. Our future efforts will be devoted to developing multiorganelle targeted fluorescent probes to study the mechanism of subcellular organelle interaction and employing various dual-mode probes of NIR II and PA imaging to investigate the development of related diseases and treat the related diseases at subcellular and in vivo levels.
Collapse
Affiliation(s)
- Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China.,Nanchuang (Jiangsu) Institute of Chemistry and Health, 3-1 Xinjinhu Road, Nanjing 211899, China
| | - Zhiyong Jiang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China.,Nanchuang (Jiangsu) Institute of Chemistry and Health, 3-1 Xinjinhu Road, Nanjing 211899, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China.,Nanchuang (Jiangsu) Institute of Chemistry and Health, 3-1 Xinjinhu Road, Nanjing 211899, China
| |
Collapse
|
9
|
Kundu S, Mondal D, Rajasekaran VV, Goswami A, Schmittel M. Three-Input Logic AND Gate Drives Sequential Three-Step Catalysis by Parallel Activation of H + and Ag + as a Catalyst Duo. Inorg Chem 2022; 61:17007-17011. [PMID: 36264551 DOI: 10.1021/acs.inorgchem.2c03349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Boolean operations with multiple catalysts as output are yet unknown using molecular logic. The issue is solved using a two-component ensemble, composed of a receptor and rotaxane, which acts as a three-input AND gate with a dual catalytic output. Actuation of the ensemble gate by the stoichiometric addition of metal ions (Ag+ and Cd2+) and 2,2,2-trifluoroacetic acid generated in the (1,1,1) truth table state a catalyst duo that synergistically enabled a three-step reaction, furnishing a dihydroisoquinoline as the output of a three-input logic AND gate operation.
Collapse
Affiliation(s)
- Sohom Kundu
- Center of Micro- and Nanochemistry and (Bio)Technology, Department of Chemistry-Biology, Organische Chemie I, University of Siegen, Adolf-Reichwein Strasse 2, D-57068 Siegen, Germany
| | - Debabrata Mondal
- Center of Micro- and Nanochemistry and (Bio)Technology, Department of Chemistry-Biology, Organische Chemie I, University of Siegen, Adolf-Reichwein Strasse 2, D-57068 Siegen, Germany
| | - Vishnu Verman Rajasekaran
- Center of Micro- and Nanochemistry and (Bio)Technology, Department of Chemistry-Biology, Organische Chemie I, University of Siegen, Adolf-Reichwein Strasse 2, D-57068 Siegen, Germany
| | - Abir Goswami
- Center of Micro- and Nanochemistry and (Bio)Technology, Department of Chemistry-Biology, Organische Chemie I, University of Siegen, Adolf-Reichwein Strasse 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Department of Chemistry-Biology, Organische Chemie I, University of Siegen, Adolf-Reichwein Strasse 2, D-57068 Siegen, Germany
| |
Collapse
|
10
|
Li Z, Hou JT, Wang S, Zhu L, He X, Shen J. Recent advances of luminescent sensors for iron and copper: Platforms, mechanisms, and bio-applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|