1
|
Liu Y, Qin Y, Yu D, Zhuo H, Ma C, Chen K. Enhance Water Electrolysis for Green Hydrogen Production with Material Engineering: A Review. CHEM REC 2025:e202400258. [PMID: 40195465 DOI: 10.1002/tcr.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/21/2025] [Indexed: 04/09/2025]
Abstract
Water electrolysis, a traditional and highly technology, is gaining significant attention due to the growing demand for renewable energy resources. It stands as a promising solution for energy conversion, offer substantial benefits in environmental protection and sustainable development efforts. The aim of this research is to provide a concise review of the current state-of-the-art in the field of water electrolysis, focusing on the principles of water splitting fundamental, recent advancements in catalytic materials, various advanced characterization methods and emerging electrolysis technology improvements. Moreover, the paper delves into the development trends of catalysts engineering for water electrolysis, providing insight on how to enhance the catalytic performance. With the advancement of technology and the reduction of costs, hydrogen production through water electrolysis is expected to assume a more significant role in future energy ecosystem. This paper not only synthesizes existing knowledge but also highlights emerging opportunities and potential advancements in this field, offering a clear roadmap for further research and innovation.
Collapse
Affiliation(s)
- Ying Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yuanyuan Qin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Dawei Yu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Haiyue Zhuo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Churong Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Kai Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
2
|
Xu Z, Zhong M, Li S, Chen Y, Li P, Fan Z, Liu P, Wang D, Zhang Z. One-Step Hydrothermal Method Realizing Oxygen Vacancy Construction and P Doping of MnO 2 to Optimize Its Oxygen Evolution Performance. Inorg Chem 2025; 64:5029-5037. [PMID: 40019396 DOI: 10.1021/acs.inorgchem.4c05112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
MnO2 is considered one of the most potential catalysts for the oxygen evolution reaction, but its activity, which is determined by its electronic structure, crystal phase, and morphology, needs to be improved further. However, it is difficult to realize these multiscale structural regulations of MnO2 simultaneously during the preparation. In this study, α-MnO2 nanomaterial with a lot of oxygen vacancies (OVs) and Mn3+ is prepared by a one-step hydrothermal method, during which the protons of HCl can take the oxygen atom away from MnO2 to form a lot of OVs. The introduction of NH4H2PO4 can realize P doping in MnO2 to stabilize the product in the α-phase. In addition, the OV and P can increase the content of Mn3+ and regulate the Mn-O bond length synergistically to optimize the reaction kinetics. As a result, the product shows obviously enhanced catalytic activity. This study provides a one-step method for multiscale structural regulation of MnO2, which can easily create oxygen vacancies and achieve nonmetallic doping to optimize the oxygen evolution reaction (OER) performance of MnO2.
Collapse
Affiliation(s)
- Zhicheng Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Mingfeng Zhong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shuwei Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yi Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Pengping Li
- Key Laboratory of Harbor and Marine Structure Durability Technology Ministry of Communications, Guangzhou 510230, P. R. China
| | - Zhihong Fan
- Key Laboratory of Harbor and Marine Structure Durability Technology Ministry of Communications, Guangzhou 510230, P. R. China
| | - Pingan Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Da Wang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhijie Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
3
|
Chen Y, Yang S, Wang T, Li S, Liu X, Zhang W, Cao R. Mo-Doped α-MnO 2 for Enhanced Electrocatalytic Water Oxidation. CHEMSUSCHEM 2025; 18:e202401553. [PMID: 39422073 DOI: 10.1002/cssc.202401553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Manganese is a key metal involved in the catalysis of natural photosynthesis. Thus, the investigation of Mn-based electrocatalysts for water oxidation is of high importance. This work reports the doping of Mo into α-MnO2 nanorods to improve the water oxidation performance. The doping of Mo can transform the microstructure of α-MnO2 from nanorods into nanosphere superstructures. As a dopant, Mo expands the α-MnO2 lattice to result in a decrease in the average oxidation state of Mn and the generation of oxygen vacancies, which are beneficial to water oxidation catalysis. Under optimized doping, the overpotential of 2.34 wt.% Mo/α-MnO2 is reduced by 80 mV (at 10 mA/cm2) compared with pure α-MnO2.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
4
|
Xu J, Kao CC, Shen H, Liu H, Zheng Y, Qiao SZ. Ru 0.1Mn 0.9O x Electrocatalyst for Durable Oxygen Evolution in Acid Seawater. Angew Chem Int Ed Engl 2025; 64:e202420615. [PMID: 39581862 DOI: 10.1002/anie.202420615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
Currently, direct electrolysis of seawater for green hydrogen production is primarily focused on neutral and alkaline systems. However, the precipitation of calcium and magnesium ions restricts the advancement of this technology. An acidic system can effectively address this issue. Given that Ru/Ir-based catalysts with high oxygen evolution reaction (OER) activity also exhibit high chlorine evolution reaction (CER) activity, acid seawater splitting requires anodes with higher selectivity and stability compared to the other two systems. In this study, we propose a non-precious Ru0.1Mn0.9Ox as the active anode for direct acid seawater electrolysis, which exhibits a high OER selectivity and remarkable stability for more than 1200 hours. Different from the Cl--free system, *Cl occupied on Ru sites could shift the OER active center to Mn on Ru0.1Mn0.9Ox, which prevents the lattice oxygen consumed on Ru and hinders the metal site dissolution. As the CER-insensitive catalytic center, Mn activated by the introduction of Ru can adsorb a substantial amount of *OH, creating an OER-favored local environment that inhibits CER. We introduce Cl--assisted transfer of OER active sites to CER-insensitive Mn as a fundamental strategy for achieving highly selective and durable oxygen evolution in acidic seawater.
Collapse
Affiliation(s)
- Jun Xu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chun-Chuan Kao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Haifeng Shen
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hao Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Bi L, Hu H, Wang L, Li Z, Zhan F, He Y, Zu Y, Li Y, Liang X. Effect of Mn 2+ concentration on the growth of δ-MnO 2 crystals under acidic conditions. GEOCHEMICAL TRANSACTIONS 2024; 25:9. [PMID: 39342042 PMCID: PMC11439261 DOI: 10.1186/s12932-024-00091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024]
Abstract
δ-MnO2 is an important component of environmental minerals and is among the strongest sorbents and oxidants. The crystalline morphology of δ-MnO2 is one of the key factors affecting its reactivity. In this work, δ-MnO2 was initially synthesized and placed in an acidic environment to react with Mn2+ and undergo a crystalline transformation. During the transformation of crystalline δ-MnO2, kinetic sampling was conducted, followed by analyses of the structures and morphologies of the samples. The results showed that at pH 2.5 and 4, δ-MnO2 nanoflakes spontaneously self-assembled into nanoribbons via edge-to-edge assembly in the initial stage. Subsequently, these nanoribbons attached to each other to form primary nanorods through a face-to-face assembly along the c-axis. These primary nanorods then assembled along the (001) planes and lateral surfaces, achieving further growth and thickening. Since a lower pH is more favorable for the formation of vacancies in δ-MnO2, δ-MnO2 can rapidly adsorb Mn2+ directly onto the vacancies to form tunnel walls. At the same time, the rapid formation of the tunnel walls leads to a quick establishment of hydrogen bonding between adjacent nanoribbons, enabling the assembly of these nanoribbons into primary nanorods. Therefore, in a solution with the same concentration of Mn2+, the structure transformation and morphology evolution of δ-MnO2 to α-MnO2 occur faster at pH 2.5 than at pH 4. These findings provide insights into the mechanism for crystal growth from layer-based to tunnel-based nanorods and methods for efficient and controlled syntheses of nanomaterials.
Collapse
Affiliation(s)
- Liyan Bi
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Haoran Hu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yuan Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
6
|
Fu L, Li Z, Wu Y, Tang A, Yang H. Adjusted MnO oxygen vacancy for highly selective ORR production of H 2O 2. Chem Commun (Camb) 2024; 60:8091-8094. [PMID: 38993020 DOI: 10.1039/d4cc01614a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The oxygen reduction reaction (ORR) via the two-electron pathway is an important method of hydrogen peroxide (H2O2) production. This study demonstrates that MnO with different oxygen vacancies possesses great 2e- ORR activity. The H2O2 selectivity increased from 10% to 93% with increasing oxygen vacancy concentration by adjusting the reaction temperature and time. Moreover, the H2O2 yield of the optimal MnO reached 544.1 mmol g-1 h-1, and it showed extraordinary stability over a long period of time (10 000 circles CV), surpassing most of the reported transition metal catalysts. This provides a new strategy for efficient and low-cost electrochemical production of H2O2.
Collapse
Affiliation(s)
- Liangjie Fu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Zixiong Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Yimin Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
7
|
Lu Q, Han Q, Wang X, Wei C, Guan X, Qu C, Li J. High-value utilization of Cr-containing sludge: Eco-friendly and ultra-low-cost electrocatalyst for efficient OER in alkaline media from Cr-containing sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119020. [PMID: 37734212 DOI: 10.1016/j.jenvman.2023.119020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Economically sustainable development requires more viable waste recycling solutions. In this context, we address the problem of utilizing chromium-containing sludge, a prevalent and environmentally hazardous waste. Meanwhile, sustainable energy development must develop ecology-friendly and low-cost electrocatalysts for the oxygen evolution reaction (OER) in alkaline media. Herein, we report an ultra-low-cost electrocatalyst from chromium-containing sludge. The optimum preparation conditions are determined by optimizing the calcination temperature and the loading of nickel acetylacetonate. The optimized catalyst delivers excellent stability and outstanding OER activity with overpotentials of 320 mV at 10 mA cm-2 in alkaline media. Density functional theory calculations reveal that the energy barrier of OER is decreased because of the catalyst's heterogeneous structure arrangement and confirm the influence of chromium on performance improvement. The concept of "turning waste into treasure" stimulates the search for methods to process Cr-containing waste and produce low-cost, high-performance electrocatalysts.
Collapse
Affiliation(s)
- Qiangqiang Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Qingxin Han
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China.
| | - Xuechuan Wang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Chao Wei
- Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Xiaoyu Guan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Chun Qu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Ji Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
8
|
Zhang H, Bai Y, Lu X, Wang L, Zou Y, Tang Y, Zhu D. Ni-Doped MnO 2 Nanosheet Arrays for Efficient Urea Oxidation. Inorg Chem 2023; 62:5023-5031. [PMID: 36898358 DOI: 10.1021/acs.inorgchem.3c00234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Urea oxidation reaction (UOR), with a low thermodynamic potential, offers great promise for replacing anodic oxygen evolution reaction of electrolysis systems such as water splitting, carbon dioxide reduction, etc., thus reducing the overall energy consumption. To promote the sluggish kinetics of UOR, highly efficient electrocatalysts are required, and Ni-based materials have been widely investigated. However, most of these reported Ni-based catalysts suffer from large overpotentials, as they generally undergo self-oxidation to form NiOOH species at high potentials, which act as catalytically active sites for UOR. Herein, Ni-doped MnO2 (Ni-MnO2) nanosheet arrays were successfully prepared on nickel foam. The as-fabricated Ni-MnO2 shows distinct UOR behavior with most of the previously reported Ni-based catalysts, as urea oxidation on Ni-MnO2 proceeds before the formation of NiOOH. Notably, a low potential of 1.388 V vs reversible hydrogen electrode was required to achieve a high current density of 100 mA cm-2 on Ni-MnO2. It is suggested that both Ni doping and nanosheet array configuration are responsible for the high UOR activities on Ni-MnO2. The introduction of Ni modifies the electronic structure of Mn atoms, and more Mn3+ species are generated in Ni-MnO2, contributing to its outstanding UOR performance.
Collapse
Affiliation(s)
- Huaiyu Zhang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Yu Bai
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Xue Lu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Liang Wang
- Centre for Catalysis and Clean Energy, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia
| | - Yan Zou
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Yujia Tang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| |
Collapse
|
9
|
Wei X, Liu D, Wang C, Yu R, Zhang K, Li S, Wu Z, Du Y. Ce-Modified Flowerlike NiFe-MOF Nanostructure Based on Ion Competitive Coordination for Enhancing the Oxygen Evolution Reaction. Inorg Chem 2023; 62:3238-3247. [PMID: 36760210 DOI: 10.1021/acs.inorgchem.2c04261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Metal-organic framework (MOF) has become a popular electrocatalyst for the oxygen evolution reaction (OER) because of its large specific surface area and adjustable porosity. Nevertheless, the electrochemical performance of MOFs has been greatly limited by poor intrinsic conductivity and catalytic activity. Herein, we report a Ce-doped nanoflower-like MOF material Ce@NiFe-MOF-5 via a facile ion competitive coordination effect and doping method. Benefiting from the nanoflower structure formed by the stacking of nanosheets, a large number of active sites can be exposed, which favors electron/mass transfer during water oxidation. The coordination substitution of Ce ions not only promoted an increase in the number of active sites on the surface of the nanosheets but also optimized the electronic structure of pristine NiFe-MOF. The well-designed Ce@NiFe-MOF-5 catalysts exhibited superior OER performance under basic conditions, which only required an overpotential of 258 mV at a current density of 10 mA cm-2 and a Tafel slope of 54.44 mV dec-1. Moreover, when Ce@NiFe-MOF-5 served as an anode and Pt/C as a cathode, the two-electrode system only needed 1.56 V to drive overall water splitting at 10 mA cm-2.
Collapse
Affiliation(s)
- Xiao Wei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Dongmei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Rui Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Kewang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhengying Wu
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.,School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, P. R. China
| |
Collapse
|
10
|
Zheng X, Zuria AM, Mohamedi M. Hybrid Carbon Sphere Chain-MnO 2 Nanorods as Bifunctional Oxygen Electrocatalysts for Rechargeable Zinc-Air Batteries. Inorg Chem 2023; 62:989-1000. [PMID: 36579965 DOI: 10.1021/acs.inorgchem.2c03916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is now recognized that the development of self-supported and efficient bifunctional air cathodes via the direct growth of earth-abundant catalysts onto the surface of the conductive collector would be a cutting-edge strategy to reduce interfacial resistance, enhance the mechanical tenure, and reduce the final weight and cost of manufacturing of rechargeable Zn-air batteries (ZABs). This work reports an innovative self-supported precious metal-free electrode, comprising carbon sphere chains (CSCs) directly grown onto a carbon paper (CP) substrate, wherein the CSCs have a functionalized surface bearing carbon nanobud defects, oxygen functional groups, and high-density MnO2 hierarchical nanorods (NRs), uniformly coating the surface of CSCs. Not only is the metal-free functionalized CSC catalyst functional for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) but its combination with MnO2 NRs impressively enhances the ORR/OER activities. A homemade ZAB assembled with functionalized CSC/MnO2 air cathode can successfully power a timer for a period of 17 days with no voltage loss, whereas two series-connected ZABs can light up 39 red light-emitting diode (LED) bulbs. The self-supported and earth-abundant-based CSC/MnO2 materials open up an opportunity for lightweight and cost-effective ZABs and metal-air batteries in general.
Collapse
Affiliation(s)
- Xiaoying Zheng
- Énergie Matériaux Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS), 1650, Boulevard Lionel-Boulet, Varennes, QuébecJ3X 1P7, Canada
| | - Alonso Moreno Zuria
- Énergie Matériaux Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS), 1650, Boulevard Lionel-Boulet, Varennes, QuébecJ3X 1P7, Canada
| | - Mohamed Mohamedi
- Énergie Matériaux Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS), 1650, Boulevard Lionel-Boulet, Varennes, QuébecJ3X 1P7, Canada
| |
Collapse
|
11
|
In-system synthesize Fe nanodots-doped Ni hydroxide nanoflakes on Ni foam for efficient oxygen evolution catalysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Duraivel M, Nagappan S, Park KH, Prabakar K. Hierarchical 3D flower like cobalt hydroxide as an efficient bifunctional electrocatalyst for water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Gan X, Guo X, Li S, Wang Y, Wang F, Lv X. Hollow Co layered double hydroxide decorated Ag nanoparticles for oxygen evolution reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xingyu Gan
- Qufu Normal University School of Chemistry and Chiamical Engineering CHINA
| | - Xinjie Guo
- Qufu Normal University School of Chemistry and Chiamical Engineering CHINA
| | - Suozhu Li
- Qufu Normal University School of Chemistry and Chiamical Engineering CHINA
| | - Yun Wang
- Qufu Normal University School of Chemistry and Chiamical Engineering CHINA
| | - Fengxiang Wang
- Qufu Normal University School of Chemistry and Chiamical Engineering CHINA
| | - Xiaoxia Lv
- Qufu Normal University School of Chemistry and Chemical Engineering 57 Jingxuan West Road 273165 Qufu CHINA
| |
Collapse
|
14
|
Chen Y, Chen J, Zhang J, Xue Y, Wang G, Wang R. Anchoring Highly Dispersed Pt Electrocatalysts on TiO x with Strong Metal-Support Interactions via an Oxygen Vacancy-Assisted Strategy as Durable Catalysts for the Oxygen Reduction Reaction. Inorg Chem 2022; 61:5148-5156. [PMID: 35289604 DOI: 10.1021/acs.inorgchem.2c00329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pt electrocatalysts with high activity and durability have still crucial issues for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). In this study, a novel catalyst consisting of Pt nanoparticles (NPs) on TiOx/C composites (TiOx-Vo-H/C) with abundant oxygen vacancies (Vo) is proposed, which is abbreviated as PTO-Vo-H/C. The introduction of Vo helps anchor highly dispersed Pt NPs with low loading and strengthen the strong metal-support interaction (SMSI), which benefits to the enhanced ORR catalytic activity. Moreover, the accelerated durability test (ADT) demonstrates the higher retention of ORR activity for PTO-Vo-H/C. Experimental and theoretical analyses reveal that electronic interactions between Pt NPs and TiOx/C composite support give rise to an electron-rich Pt NPs and strong SMSI effect, which is favorable for the electron transfer and stabilization of Pt NPs. More importantly, the assembled PEMFC with PTO-Vo-H/C shows only 6.9% of decay on maximum power density after 3000 ADT cycles while the performance of Pt/C sharply decreased. This work provides a new insight into the unique vacancy regulation of dispersive Pt on metal oxides for superior ORR performance.
Collapse
Affiliation(s)
- Yihan Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China.,Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Yali Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China.,Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| |
Collapse
|